

PRAISE FOR STEVE LOHR’S GO TO

“Go To is smooth, creamy, and sometimes delightful. It is a sort of Iliad for the computer age, the epochal story of how the ‘software revolution’ came about and who did what. The story never bogs down because he tells it as a series of miniature biographies. . . . Mr. Lohr writes fine, translucent prose, engaging and never overwrought. And he knows the field well.”

—David Gelernter, New York Times

“Go To is an enlightening read and does a fine job of demonstrating the power of imagination. If you can imagine it and code it, you can indeed change the world.”

—Boston Sunday Globe

“. . . a clear, understandable introduction to a host of thorny technical concepts. An excellent primer for anyone curious about the insides of a PC, Go To is also Lohr’s reply to John McCarthy, one of the great gray-beards of computer science, who complained to Lohr about ‘ignorant journalists.’ . . . Lohr’s book should be required reading for any journalist who covers the field.”

—New York Times Books Review

“This is no textbook. It is history; it is not technical, and it is told through the amazing personalities who created the programming languages and the software that make computers do their tricks. . . . [Go To] is clear, no nonsense journalism. The programmers we meet are captured by the thrill of being engineers who work without building materials and saws and hammers. They can build something out of nothing, and limited only by their imagination.”

—International Herald Tribune

“If Steve Lohr were a programmer, his code would be coherent and well ordered, proceeding to the proper subroutines without baroque diversions or mind-jarring shortcuts. That’s the way he writes: with clear prose that makes sense of a complicated subject in Go To, a whirlwind meet-and-greet of ‘math majors, bridge players, chess wizards, maverick scientists and iconoclasts. . . the programmers who created the software revolution.’”

—Newsweek

“Whether covering European innovations like Algol of Sun Microsystems’ creation of Java or even Richard Stallman’s Free Software and the GNU project, Mr. Lohr has written a comprehensive account of the development of the coder’s art. It’s a solid, informative read.”

—Red Herring

“. . . Go To present[s] a fascinating overview of the challenges faced by the inventors of these technologies. . . a tour de force.”

—Nature

“Steve Lohr has written a defining history of the computer revolution. . . readers of his first endeavor will not be disappointed: Lohr has delivered once again with a masterful piece of research. . . . Through the use of wonderful anecdotes, Lohr presents some intimate details of the lives of creative programmers. . . . Even readers who have limited computer experience will be entertained.”

—Science Books & Films (SB&F)

Go To

Also by Steve Lohr

U.S. v. Microsoft:The Inside Story of the Landmark Case
 (co-authored with Joel Brinkley)

THE STORY OF THE MATH MAJORS,

BRIDGE PLAYERS, ENGINEERS,

CHESS WIZARDS, MAVERICK

SCIENTISTS AND ICONOCLASTS–

THE PROGRAMMERS WHO

CREATED THE SOFTWARE

REVOLUTION

Go To

STEVE LOHR

[image: i_Image6]

A Member of the Perseus Books Group

Copyright © 2001 by Steve Lohr
Published by Basic Books,
A Member of the Perseus Books Group

All rights reserved. Printed in the United States of America. No part of this book may be reproduced in any manner whatsoever without written permission, except in the case of brief quotations embodied in critical articles and reviews. For information, address Basic Books, 387 Park Avenue South, New York, NY 10016-8810.

Designed by Bookcomp, Inc.

A CIP catalog record for this book is available from the Library of Congress.
ISBN 0-465-04226-0
eBook ISBN: 9780786730766

02 03 04 / 10 9 8 7 6 5 4 3 2 1

To Fred, Terry and Nikki

Acknowledgments

A seed for this book was planted when Jim Gray passed through New York in the spring of 1999 on his way to pick up his Turing Award, an accolade that has been called the Nobel prize of computer science. A California native, Gray was educated at Berkeley in the 1960s and has worked nearly all his life in Silicon Valley. Gray is a veteran of many a business cycle in the Valley, and he shook his head with bemused disdain at the Internet investment mania of the time – all elevator pitches and IPOs. People seemed to be a lot more excited about money than about technology – a world askew, by Gray’s standards.

Sure, he said, people with skills make a good living in the field. “But it’s not about money,” Gray observed. “The joy and the real appeal is to be able to play and build things with this cool technology of software.”

I thought it might be fun to take a deeper look at the history of computer programming, and talk to the architects and builders of the software world that we increasingly live in. An added benefit was that because computing has moved so rapidly – and is such a comparatively recent field – most of the pioneers of programming are still alive.

It seemed like a good idea at the time.

Some others thought it might be an intriguing project as well,and they deserve my thanks. Without the encouragement of the agents at Brockman Inc. – John Brockman and Katinka Matson – I would not have gotten started in the first place. Basic Books made a commitment, and Elizabeth Maguire, the editorial director of Basic, and William Morrison were deft and thoughtful editors. The New York Times, and especially the executive editor, Joseph Lelyveld, generously gave me a leave of absence – an absence that lasted longer than advertised.

Tom Goldstein, the dean of Columbia Graduate School of Journalism, kindly offered me a place to work from while I was away from the Times.

I am most grateful to the Alfred P. Sloan Foundation and Doron Weber, director of the foundation’s program for the public understanding of science and technology, for a grant to help me complete the book.

I want to thank the professional and educational organizations that helped me in my research. The Association for Computing Machinery gave me access to its digital library, which was invaluable. The Charles Babbage Institute’s oral history project was another important resource. The videotaped lectures sponsored by the Computer Museum History Center were also extremely useful.

I am especially thankful to the people who extended their time, patience, and wisdom in interviews. These people suffered all manner of inquisition and harassment in lengthy interviews in person – sometimes repeatedly – and by phone and e-mail. Some even reviewed portions of the manuscript. They include:Alex Aiken, Fran Allen, Dennis Allison, Marc Andreessen, John Backus, Jean Bartik, Brian Behlendorf, Robert Bemer,Tim Berners-Lee, Dan Bricklin, Frederick P. Brooks, Jr., Tom Button, Martin Campbell-Kelly, Peter Capek, Steve Capps, Don Chamberlin, Alan Cooper, George Coulouris, Richard Dawkins, Doug Engelbart, Bob Frankston, John Gage, Bill Gates, Richard Goldberg, James Gosling, Jim Gray, Satish Gupta, Lois Haibt, Andy Hertzfeld, Anders Hejlsberg,Tony Hoare, and Watts Humphrey.

They also include Bill Joy, Philippe Kahn, Howard Katz, Alan Kay, Ken Kennedy, Brian Kernighan, Don Knuth, Thomas Kurtz, J. A. N. Lee, Butler Lampson, John McCarthy, Pamela McCorduck, Dan McCracken, Douglas McIlroy, Roger Needham, John H. Palmer, Raj Reddy, Dennis Ritchie, Jean Sammet, David Sayre, Eric Schmidt, Carl Shapiro, Fred Shapiro, Mike Sheridan, John Shoch, Charles Simonyi, Richard Stallman, Guy Steele, Bjarne Stroustrup, Randy Terbush, Charles Thacker, Ken Thompson, Linus Torvalds, Joseph Traub, Guy Tribble, Arthur Van Hoff, Maurice Wilkes, Irving Wladawsky-Berger, Richard Saul Wurman, and Irving Ziller.

I would also like to thank John Markoff, my friend and colleague, for his counsel, lodging in San Francisco, and his patience, because he could not depart for his book leave until I returned. Thanks also to John’s wife, Leslie Terzian, for welcoming a frequent visitor.

And finally, thanks to Terry and Nikki, as always.

1
 Introduction: The Rise of Software and the Programming Art

A LONE SAILBOAT IN THE DISTANCE makes its way across the rippled surface of Lake Washington in the crisp autumn dusk, framed on the horizon by the skyline of Seattle. The view is from the lakeside home of Charles Simonyi, who was a 17-year-old computer programming prodigy when he left Budapest for good in 1966. Since then, he has come a remarkable distance, in every sense. His house, though all but invisible from the road, sweeps down the hillside toward the water’s edge, covers more than 20,000 square feet and includes a library, computer lab, fitness center, and swimming pool. Made of glass, wood, and steel, the home is a work of high modernism, outside and in. The black floors of polished stone glisten, and visitors are asked to remove their shoes. The walls are bare except for works of modern art by Roy Lichtenstein, Jasper Johns, and Victor Vasarely. Besides art, Simonyi collects jets. He has two, including a retired NATO fighter, which he flies. His multimillion-dollar philanthropic donations have placed his name on an endowed chair at Oxford University and on the mathematics building at the Institute for Advanced Study in Princeton. Simonyi fled Hungary as a teenager with nothing, but he now regards money with the nonchalance of the billionaire he has become. “I have no mercenary reasons for things anymore,” he said.

Simonyi owes it all to software, and his uncanny facility with computer code – aided, of course, by good timing, good luck, and the whimsy of capitalism. His career began at Hungary’s Central Statistical Office in the mid-1960s, where he was a kind of communist version of an American teenage computer hacker. He hung around, made himself useful, and taught himself how to program on a Russian-made Ural II. In computing time, the Budapest center was living in the early 1950s, generations behind the West. Over the years, advances in software have allowed programmers to lift their gaze up further and further from the level of binary digits, or bits – the 1’s and 0’s that are the natural vernacular of the machine. But Simonyi learned to talk to the computer almost entirely on the machine’s terms. “It was Stone Age programming,” he recalled. “I’ve been through a time warp.”

After immigrating to the United States, Simonyi changed his name from Karoly to Charles. He attended the University of California at Berkeley and Stanford University, and later joined the Xerox Palo Alto Research Center. Simonyi was at Xerox PARC during the glory years of the 1970s, when the team there did so much of the research and development that has shaped how people use personal computers. At Xerox PARC, Simonyi was the principal developer of Bravo, an innovative program for writing and editing text that allowed a person to display words on a computer screen as if plucked from the imagination of a skilled typesetter. It was a capability that became known as WYSIWYG – “What You See Is What You Get” – and it opened the door to the desktop publishing industry, and helped define the personal computer as a tool for enhancing individual creativity.

When it became clear that Xerox did not really grasp the significance of the work of its Palo Alto lab, Simonyi looked for work elsewhere. In the summer of 1980, he made an unannounced call, on a little company outside Seattle trying to make its way in the fledgling personal computer industry – Microsoft. The startup had only 40 employees, but Simonyi sniffed the future there. He and Bill Gates hit it off immediately, and Simonyi went to Microsoft.

Microsoft’s Word text editor is one of the most widely used software programs in the world, and Simonyi is the “father of Word,” the commercial descendant of Bravo. To him, the personal computer is a kind of delivery vehicle for software, empowering users and magnifying the power of the programmer. “You write a few lines of code and suddenly life is better for a hundred million people,” he said. “That’s software.”

For the last several years, Simonyi has been working on an ambitious research project with the goal of greatly improving the productivity of computer programmers. He believes that the tools and methods programmers use are still fairly crude, limiting the amount of human intelligence that can be transmitted in software and thus slowing progress. Despite the constraints, Simonyi cannot help but marvel at the rise of software during his lifetime. “It shows how powerful software is. Even with the primitive tools we still use, look at how much software can do. It’s amazing.”

The ascent of software in the postwar years – as a field of endeavor, as an industry and as a medium of communication and commerce – has been rapid, remarkable, and almost surreptitious. The ancestry of what we now call computer programming goes back at least to the nineteenth century, when the English mathematician Charles Babbage struggled with how to handle calculations in his Analytical Engine, a conceptual forerunner of the modern computer. What he was trying to do we would now call programming. The most fundamental concept in programming is the algorithm – simply put, a set of instructions for doing something, a recipe for calculation. The algorithm apparently traces its roots to the Babylonians, and the word is a distortion of al-Khwarizmi, the family name of a Persian scholar, Muhammad ibn Musa al-Khwarizmi, who wrote a treatise on algebraic methods.

Yet it was not until World War II that electronics had advanced to the point that building useful computers became a real possibility. In those early days, programming was an afterthought. It was considered more a technician’s chore, usually referred to as “setting up” or “coding” the machine. The glamour was all in the hardware – that was deemed real science and engineering. The ENIAC, for Electronic Numerical Integrator and Computer, was the machine generally credited with starting the era of digital electronic computing. That computer, at the University of Pennsylvania, did not have software. Its handlers had to set up the machine by hand, plugging and unplugging a maze of wires and properly positioning row upon row of switches. It was as if the machine had to be rebuilt for each new problem. It was hard-wired programming. To do it, the government hired a handful of young women with math skills as trainees. These early women programmers were known, literally, as “computers,” a throwback to the eighteenth century use of the term to refer to the human computers who prepared statistical tables used in map-making and ocean navigation.

Programming the ENIAC to calculate the trajectory of artillery shells – its Pentagon-assigned mission – was painstaking and difficult work, and the women devised some innovative techniques for simplifying the process. They would draw elaborate charts on paper, mapping out how the problem could most efficiently navigate its way through the machine. Then, they would set up the machine by hand. “We knew how every wire and every switch was to be set,” recalled Jean Bartik. That could take weeks. Yet, thanks to their efforts, the ENIAC’s public demonstration was a great success. It could calculate a firing trajectory faster than a shell flew. “Fabulous,” Bartik recalled, “one of the most exciting days of my life,” though it was in the spring of 1946, after the war was over.

The term used to describe the practitioners of the new profession evolved quickly. A human “computer” became a “coder.” And “programmer” would soon irresistibly supplant the more quotidian label – apparently a contribution from some English members of the craft, perhaps being both more status-conscious and more literary. Grace Hopper, a software pioneer who began computing equations for the war effort on the Harvard Mark I in 1944, always felt that programming was too lofty a term for the early work. “The word ‘programming’ didn’t appear until it came over from England,” she recalled. “Actually I think what we were writing when we wrote machine code was coding. We should have reserved the word programming for a higher level. But it came over from England, and it sounded better than being a coder so everyone wanted to be a programmer.”

Higher-level programming, however, would soon be possible because of a breakthrough in computer design. The idea came out of the ENIAC group, and was articulated in a June 1945 paper, “A First Draft of a Report on the EDVAC,” written by John von Neumann. A renowned mathematician and game theorist, von Neumann was a consultant to the Manhattan Project that developed the atomic bomb. Designing the bomb required thousands of computations, mostly done by battalions of clerks with desktop calculating machines. So von Neumann, intrigued by the potential of computers, became a consultant to the ENIAC project in 1944.The EDVAC, for Electronic Discrete Variable Automatic Computer, was to be the successor to the ENIAC. Others were involved in the EDVAC planning, notably the ENIAC project leaders, J. Presper Eckert and John Mauchly, but von Neumann wrote the report and he got the credit for designing the “stored-program computer,” which later became known as the von Neumann architecture. Virtually every computer today employs the von Neumann architecture.

The early stored-program computers began appearing after the war. The stored-program design meant that not only the computer’s data – typically, numbers to be calculated in those days – but also its programming instructions could be stored in the machine. At one level, there was a straightforward efficiency benefit to this, enabling a measure of automation. The hand work of setting switches and wires could be eliminated because the programming instructions could be placed onto punched cards or tapes and fed into the computer, along with the data to be processed.

Yet there was a much deeper implication to the stored-program concept. It would make building software an engineering discipline that, in the phrase of the computer scientist Butler Lampson, is “uniquely self-referential” in that all the machinery of computing could be applied to itself. That is, a stored-program computer could be used to have programs modify other programs or to create new ones. And it is this computer-mediated interaction of programming code – a digital ecology inside the machine, one piece of code scooting off, modifying another piece, which loops back to mingle with yet another – that made possible the development of programming languages that are far more understandable to humans than binary 1’s and 0’s. This ability of code to assemble, reassemble, and modify itself constantly is behind everything from computer games to the Internet to artificial intelligence.

The developers of the early stored-program computers were also the first to get a real taste of the intricate, often unforeseen complexity of programming. The first stored-program computer to get up and running was built by a team led by Maurice Wilkes at Cambridge University. The machine was called the EDSAC, for Electronic Delay Storage Automatic Calculator. In his memoir, Wilkes recalled precisely when he first grasped that “bugs” were destined to be the programmer’s eternal nemesis. “By June 1949,” Wilkes wrote, “people had begun to realize that it was not so easy to get a program right as had at one time appeared.” Wilkes was laboring to get his first “non-trivial program” to work and as he was about to mount a flight of stairs at Cambridge, he remembered,“the realization came over me with full force that a good part of the remainder of my life was going to be spent in finding errors in my own programs.”

The word “software” arrived on the scene long after computers were in use, suggesting a grudging recognition of this troublesome technology. The first published use of “software” as a computing term was in 1958, in the American Mathematical Monthly. John Tukey, a mathematician at Princeton University, wrote, “Today the ‘software’ comprising the carefully planned interpretive routines, compilers, and other aspects of automative programming are at least as important to the modern electronic calculator as its ‘hardware’ of tubes, transistors, wires, tapes and the like.” Such sentiments were not necessarily the prevailing view at the time.

In the engineering culture of computing, programmers were long regarded askance by the hardware crowd; hardware was the real discipline, while programmers were the unruly bohemians of computing. The hardware people tended to come from the more established field of electrical engineering. There were EE departments in universities, and hardware behaved according to the no-nonsense rules of the “hard sciences” like physics and chemistry. Some mathematicians were fascinated by computers and programming, but their perspective was often from the high ground of theory, not wrestling with code and debugging programs. It was not until the 1960s, with the formation of computer science departments, that programming began to be taken seriously in academia, and then only slowly.

The recruiting and hiring of programmers in the 1950s, and beyond, was scarcely a science. Programming skills were much in demand: new people had to be trained, but there was no sure test for ability. “Early programming is where the story originated that if you looked in one ear and couldn’t see daylight you could hire the person,” said Robert Bemer, who was a manager in IBM’s programming research department in the late 1950s. “It seemed we were just taking personnel in off the streets.” Lois Haibt joined IBM in 1955, becoming a member of the 10-person team that developed the Fortran programming language as a freshly-minted graduate fromVassar College. “They took anyone who seemed to have an aptitude for problem-solving skills – bridge players, chess players, even women,” she recalled. As an IBM manager, Bemer cast his recruiting net broadly. “I once decided to advertise for chess players because I thought they would be pretty good programmers. It worked very well. We even hired the US chess champion, Arthur Bisguier. He mostly played chess and didn’t do that much programming.” Lesser chess players, however, proved to be more productive. The ads in 1957, which appeared in The New York Times, The Los Angeles Times, and Scientific American, yielded four or five hires – a good catch, Bemer figured, at a time when there were an estimated 15,000 professional programmers in the United States, roughly 80 percent of the world’s code writers.

Today, much has changed. The software industry is huge, employing nearly 9 million professional programmers worldwide. Computer science is a respected field in academia; fine minds and research funding are dedicated to plumbing the mysteries of software. For good reason, since it is software that animates not only our personal computers and the Internet, but also our telephones, credit-card networks, airline reservations systems, automobile fuel injectors, kitchen appliances, and on and on. A presidential advisory group on technology observed in 1999 that software is “the new physical infrastructure of the information age” – a critical raw material that is “fundamental to economic success, scientific and technical research, and national security.”

Indeed, the modern economy is built on software, and that dependence will only grow. Business cycles and Wall Street enthusiasms will come and go, but someone will have to build all the needed software. Programmers are the artisans, craftsmen, brick layers, and architects of the Information Age. None of this could have been imagined in the early days, because no one could foresee what the pace of technological change would make possible – the ever-expanding horizons of computing, thanks to advances in hardware and software. John von Neumann and Herman Goldstine, leading computer visionaries of their day, wrote in 1946 that about 1,000 lines of programming instructions were “a reasonable upper limit for the complexity of problems now envisioned.” An electric toothbrush may now have 3,000 lines of code, while personal computer programs have millions of lines of code.

Despite its importance, computer programming remains a black art to most people, and that is hardly surprising. Software, after all, is almost totally invisible. It cannot be touched, felt, heard, smelled, or tasted. But software is what makes a computer do anything useful, interesting or entertaining. Computers are very powerful, but very dumb, machines. Their view of the world is all 1’s and 0’s, switches ON or OFF. The simple computer that ran the “Pong” video game of the 1970s – two lines of light for “paddles” tapping a cursor-like “ball”
– saw the world like this:

0011101010101000011100011010101000

And IBM’s Deep Blue supercomputer, which defeated the world chess champion Gary Kasparov in 1997, saw the world like this:

0011101010101000011100011010101000

There were, fundamentally, only two differences between those two computers. The superior speed and power of the turbocharged bit-processing engine in Deep Blue, and the software. Software is the embodiment of human intelligence – the mediator between man and machine – conveying our questions or orders to the computers that surround us.

As a profession, programming is a curious blend of art, science, and engineering. The task of making software is still a remarkably painstaking, step-by-step endeavor – more handcraftmanship than machine magic, a form of creativity in the medium of software. Chefs work with food, artists with oil paint, programmers with code. Yet programming is a very practical art form, and the people who are pulled to it have the engineering fascination with how things work and the itch to build things.

As a child, Grace Hopper would tear apart and rebuild clocks. Ken Thompson, creator of the Unix operating system, built backyard rockets. Dan Bricklin, co-creator of the electronic spreadsheet, built the family television from a Heathkit set. James Gosling, creator of the Java programming language, rebuilt old farm machinery in his grandfather’s yard in Calgary. Building things, it seems, is the real thrill for those naturally drawn to programming – especially so since software is a medium without the constraints of matter. The programmer can build simulated cities without needing steel, glass, or concrete; simulated airplanes without aluminum, jet engines, or tires; simulated weather without light, heat or water. At a computer, the programmer can make ideas real – at least visually real – and test them in a virtual world of his or her own creation.

Much of the history of computer programming can be seen as the effort to extend the franchise – to make it easier for more and more people to program. FORTRAN, the first real programming language, was intended to make it easier for scientists and engineers to program. COBOL was designed to make it easier for business people to program. Over the years there have been a succession of advances in programming to make things less difficult. But the idealistic vision of making programming accessible to everyone – a notion that first surfaced in the 1960s – has remained out of reach, although there have been significant strides. Nearly everyone can use a computer these days, and many thousands, even millions, of people can do the basic programming required to create a Web page or set up a financial model on a spreadsheet.

Yet more serious, and seriously useful, programming remains a fairly elite activity. By now, there has been research done on skilled programmers. It has found, yes, they share certain intellectual traits. They are the kind of people who have deep, particular interests outside work as well as professionally. An interest in science fiction, for example, will tend to be focused on one author or two. The same would be true of music, recreational pursuits, whatever. It is the kind of intellectual intensity and deep focus required in programming. In psychology, academics have looked at software programmers when studying what is called flow – a state of deep concentration, total absorption, and intellectual peak performance that is the mental equivalent of what athletes describe as being in the “zone.”

Still, such study only hints at what it takes, and who has the potential, to be a gifted programmer. “Some people are three to four times better as programmers, astonishingly better than others with similar education and IQ,” said Ken Kennedy, a computer science professor at Rice University. “And that is a phenomenon that is not really understood” – further evidence, it seems, that programming is as much art as science.

Donald Knuth has spent his career teaching the craft. Knuth, a professor emeritus at Stanford, helped create the field of computer science as an academic discipline. He is best-known as the author of the defining treatise on writing software, The Art of Computer Programming, a project he began in 1962 and that now runs to three volumes, and counting. In the book-lined, second-floor study of his home in the hills behind Stanford, Knuth observed, “There are a certain percentage of undergraduates – perhaps two percent or so – who have the mental quirks that make them good at computer programming. They are good at it, and it just flows out of them. . . .The two percent are the only ones who are really going to make these machines do amazing things. I wish it weren’t so, but that is the way it has always been.”

This book is about a comparative handful of those people with the requisite mental quirks to build amazing things in code. It is intended as a representative – by no means definitive – history of computer programming, told mainly through the stories of some of the remarkable people who made it happen and of the software they built.

2
FORTRAN: The Early “Turning Point”

BY AUGUST 1952, IBM’S SLEEK NEW COMPUTER, the Defense Calculator, was ready for a road test. A half-dozen customers had placed orders – the Los Alamos nuclear weapons laboratory, Douglas Aircraft, Lockheed Aircraft, and a few others – and they were summoned to IBM’s Poughkeepsie plant to get an early glimpse of what the machine could do. Computing was in its infancy, just a step or so beyond a laboratory experiment. Interest in the electronic behemoths came mainly from the Pentagon and its private-sector relation, the emerging aerospace industry. Their interest was primarily in using the giant machines to automate the tedious process of producing scientific calculations by hand – row upon row of office workers cranking away on desktop calculators. Only gradually would it be recognized that computers were capable of being far more than big adding machines – that, when properly programmed, computers could be used as tools for exploring new frontiers of knowledge.

The impetus for the Defense Calculator came from the Korean War. The Korean conflict, begun in 1950, lent urgency to the push for new planes and weapons that would operate at higher speeds, higher temperatures, and with greater precision. Designing and producing them meant another surge in demand for engineering calculations, only five years after the end of World War II. The Pentagon and its corporate suppliers were sophisticated customers with deep pockets, but they were few. And it was not yet clear that there would be a lucrative market for the tireless calculating capacity of electronic computers outside the defense establishment.

Within IBM, there were two disparate schools of thought. The enthusiasts, led by Thomas Watson Jr., the scientists, and younger managers, understood that the demand for computing would spread broadly – and Remington Rand’s UNIVAC computer was showing the way, having sold a machine to the Census Bureau. The skeptics at IBM included the chairman Thomas Watson Sr., and much of the senior management. Customers would be scarce, they worried, and manufacturing such a technically challenging machine would drain the company’s engineering resources. The plan for the new machine was approved in early 1951, but in deference to the in-house skeptics the machine was called the Defense Calculator, suggesting that it was a special project in support of the war effort.

Despite the name, the Defense Calculator was a stored-program computer, and so it was a general-purpose machine, awaiting only programming instructions to tackle all manner of problems. Indeed, by the time the machine was unveiled to the public in April 1953 it had undergone a name change, becoming the IBM 701 – the first of the 700 series which firmly set IBM on its way to being the world’s dominant computer maker. The 701 was compact and stylish by the computing standards of the time. The system was a collection of stand-alone units that looked something like a department-store display of 1950s-vintage kitchen appliances – the pair of tape readers resembling big cabinet-style televisions; the printer, an oven; the cathode-ray storage unit, a refrigerator. Yet it was the speed of the 701 for its day that most impressed the private audience who gathered in Poughkeepsie in the summer of 1952.They brought with them sample programs, encoded and punched onto paper tape. “They each got a shot at the computer,” recalled Cuthbert Hurd, an IBM executive who was there. “They would feed a program into the computer and, bam, you got the result. . . .We all sat there and said, How are we going to keep this machine busy? It’s so tremendously fast. How are we going to do that?”

The mammoth, costly IBM machines of the 1950s, to be sure, possessed a tiny, tiny fraction of the computing firepower of even a handheld computer today. But the 701 was a speed demon in 1952, so IBM found itself facing the digital paradox – the total interdependence of two very different disciplines, computer software and computer hardware, the yin and the yang of computing. The answer to Hurd’s question about how to keep the fast computer busy was simple enough: put more problems on the machine. But there was a bottleneck, and it was programming.

Preparing an engineering or scientific problem so that it could be placed on a computer was an arduous and arcane task that could take weeks and required special skills. Only a small group of people had the mysterious knowledge of how to speak to the machine, as if high priests in a primitive society. Yet there were some heretics in the priesthood, and one of them was a young programmer named John Backus. Frustrated by his experience of “hand-to-hand combat with the machine,” Backus was eager to speed things up and somehow simplify programming. “I figured there had to be a better way,” he recalled nearly five decades later at his San Francisco home, which overlooks the Golden Gate Bridge. “You simply had to make it easier for people to program.”

In late 1953, Backus sent a brief letter to Hurd, asking that he be allowed to search for a “better way” of programming. Hurd gave the nod and thus began a research project that would eventually produce, in 1957, a historic breakthrough in computer programming, a language called FORTRAN. The managerial touch was light and the working environment informal. Backus never made a formal budget, even as the project grew and the timetable for completion slipped again and again. The team that created FORTRAN would build gradually, one by one, until it reached 10 people. It was a young group, all still in their twenties or early thirties when FORTRAN was released. The team was heavy with math training because so much of computing at the time was numerical analysis and mathematics, sorting through all those numbers.

Still, it was an eclectic bunch – a crystallographer, a cryptographer, a chess wizard, an employee loaned from United Aircraft, a researcher from MIT, a young woman who joined the project straight out of Vassar. They worked together in one open room, their desks side by side. They often worked at night because it was the only time they could get valuable time on the machine to test and debug their code. The odd hours and close work bred camaraderie. For relaxation, there were lunch-time chess matches and, in the winter, impromptu snow ball fights. They knew each other, and they knew their code intimately and the machine they were working on, right down to the metal. And they were outsiders to the industry establishment, which regarded their chances of success as slim to nil. “We were the hackers of those days,” Richard Goldberg recalled at the age of 76.

The success of the FORTRAN team was twofold. First, they devised a programming language that resembled a combination of English shorthand and algebra. It was a computing vernacular that was very similar to algebraic formulas that scientists and engineers used daily in their work. So FORTRAN opened up programming to the people whose problems were being put on computers in those days. With some training, they were no longer dependent on the computing priesthood to translate their problems into the language of the machine. FORTRAN moved communication with the computer up a level, closer to the human and away from the machine. That is why FORTRAN is called the first higher-level language.

But the greater achievement of FORTRAN was that it worked so well. That is, FORTRAN generated programs that ran as efficiently, or very nearly as efficiently, as ones hand-coded so painstakingly by the programming elite. Without that leap in programming automation, FORTRAN would have never been adopted. Machine time was a precious, costly resource. If programs written in FORTRAN had run slowly, consuming far more machine time than hand-coded programs, it would have been economically impractical. Matching the run-time efficiency of human programmers was thought to be impossible at the time. Yet the IBM team succeeded because of their masterful design of the FORTRAN compiler. Put simply, a compiler is a program that captures the human intent of a program and recasts it in a way that is understandable – executable, that is – by the machine.

Modern versions of the FORTRAN language are still widely used for some scientific computing tasks – for the numerical analysis work involved in weather prediction, modeling changes in the climate, and in high-energy physics, for example. Yet today, FORTRAN is often mentioned by experienced computer scientists and veteran programmers wistfully, as the first programming language they learned but then abandoned as newer languages developed for new kinds of computing. FORTRAN was something you grew out of. But to point out how quickly programming has moved to generations of new tools in no way lessens the extraordinary advance that FORTRAN gave to the world of software. Other programming languages rose from the foundation that FORTRAN built. J. A. N. Lee, a professor at Virginia Tech and the dean of computer historians, has called FORTRAN “the turning point” in the development of programming languages and its compiler technology – the software equivalent of the transistor. Ken Thompson, who created the Unix operating system at Bell Labs in 1969, observed that “ninety-five percent of the people who programmed in the early years would never have done it without FORTRAN. It was a massive step.” Or, as Jim Gray, a leading software researcher who now works for Microsoft, declared with a certain biblical flourish, “In the beginning, there was FORTRAN.”

John Backus had followed a haphazard path to computer science. He was raised in Wilmington, Delaware, the son of a self-made man, Cecil Backus, who was trained as a chemist but switched careers to become a stockbroker. The elder Backus prospered as a partner in a brokerage house, and the family became wealthy and socially prominent. As a child, Backus enjoyed experimenting with his beloved chemistry set. He recalled with satisfaction the time when he was about 12 when he revived a motorbike that another youngster had given up for dead after it careened into the ocean. “I’ve always liked mechanical stuff,” observed Backus, a rail-thin man with close-cropped gray hair and a self-deprecating manner.

At 76, Backus cheerfully described himself as still “a gadget freak.” He confesses an addiction to his Palm Pilot. “Couldn’t live without it,” he joked. He has rigged up his own automatic remote controls for his front gate and garage door. He had just acquired a television set-top gadget that, using a large computer disk and some clever programming, allows viewers to skip commercials, pause while viewing live broadcasts and record television programs based on database searches. “This is a great invention,” Backus declared with delight. “It’s going to change television.”

Backus had a complicated, difficult relationship with his family, and was a wayward student. His parents sent him to an exclusive private high school, The Hill School in Pottstown, Pennsylvania. His grades were so poor that he was sent every summer to a study camp to allow him to advance with his class the following fall. “I loved the fact that flunking courses meant I did not have to go home,” Backus said. He regarded The Hill School as a problem-solving challenge of sorts. “The delight of that place was all the rules you could break,” he said. His approach to formal education was unchanged in college. He lasted two semesters at the University of Virginia before he flunked out.

His uninspired performance as a student had nothing to do with his intellect, as his military experience soon demonstrated. Backus was drafted in 1943, immediately after he and the University of Virginia parted ways. Stellar scores on Army aptitude tests resulted in Backus being sent first to the University of Pittsburgh for an engineering course, and later to Haverford College for a premed course. Next, Backus attended New York Medical College in Manhattan on a government-funded program, though he found medicine boring. “It seemed to be all memorizing procedures and body parts,” he recalled.

While wondering what to do next, Backus, a classical music enthusiast, decided that what his small Manhattan apartment needed was a good sound system. He began to construct his own high-fidelity set, and soon found himself attending courses at a school for radio technicians. To build an amplifier, Backus had to calculate points on the curve of sound waves. He found wrestling with the mathematics to be difficult but compelling. “It was so awful to do that calculation, but somehow it kind of got me interested in math,” he said. So Backus applied to Columbia University, which admitted him as a probationary student, given his decidedly mixed record as a scholar. He did well at Columbia, completing a bachelor’s degree and earning a masters in mathematics in 1950.

One spring day, shortly before graduating from Columbia, Backus visited IBM’s headquarters on 57th Street and Madison Avenue. He had heard about the massive scientific calculating machine on display there and, given his fascination with mechanical things, he wanted to take a look at it. IBM had installed the computer on the ground floor, so it could be seen from the street as a kind of tourist curiosity. With its thousands of flashing lights, clacking switches, punched cards shuffling and paper tapes whirring, the computer struck many passersby an electronic Rube Goldberg contraption. The passing pedestrian throngs probably did not know what to make of the machine, but they displayed an impulse – one repeated again and again over the years – for giving computers anthropomorphic nicknames. They dubbed the machine “Poppa.”

Eager for a closer look, Backus ventured inside and he was given a brief tour and an explanation of the various parts of the Selective Sequence Electronic Calculator, known by its acronym SSEC. He mentioned to the woman showing him the machine that he was looking for a job, and that he was a graduate student in mathematics at Columbia. At that, she said she would take him straight up to see Robert (Rex) Seeber, co-inventor of the SSEC. Backus protested. “I wasn’t wearing a tie, I had a hole in the sleeve of my jacket, and I didn’t know anything really about computers,” he recalled. No, no, not a problem, the woman insisted, and she ushered him up to see Seeber. After a brief greeting, Seeber proceeded to ask a series of questions that Backus described as “brain teasers” – such as how to handle the alignments and additions when using a 10-digit calculator to multiply a 20-digit number.

Backus recalled it as an informal oral examination, with no recorded score. Seeber hired him on the spot. As what? “As a programmer,” he replied, shrugging. “That was the way it was done in those days.”

Backus joined IBM during a period of rapid transition for the company, the industry, and the technology of computing. For decades, manufacturers like IBM, Remington Rand, Burroughs, and NCR had thrived mostly by producing accounting machines for business. These calculators helped managers track payrolls, inventories, and sales as large companies proliferated – enterprises that evolved in response to the economies of scale made possible by the rise of mass production, modern rail and auto transportation, and the growth of a national telephone system. But World War II had pushed the technology and the calculator makers beyond electromechanical machines for business and toward high-speed electronics for the aerospace and defense markets.

The SSEC, which IBM called the Super Calculator, reflected those trends. It was essentially an IBM science project, a one-of-a-kind machine designed and built to let IBM’s researchers push the limits of electronic calculators and gain experience.

The SSEC was not a stored-program computer, but it was the state of the art when it was completed in 1948, probably the most powerful computational machine at the time. The very name “computer,” however, was regarded with concern by Thomas Watson Sr. The term was still often used to refer to human clerks doing calculations and, Watson worried, might fan popular fears that the new technology would mean lost jobs. The elder Watson’s reluctance to use the term “computer” was understandable. Public anxiety about computers causing unemployment continued for years. In 1957, a popular movie “Desk Set,” starring Spencer Tracy and Katherine Hepburn, tapped that nerve with a romantic comedy about the arrival of a computer in a big company. Bunny Watson (Hepburn) is convinced that workers in her department will be replaced by the EMERAC computer and that Richard Sumner (Tracy) is there not only as Emmy’s minder, but also to slash the work force. Naturally, Bunny’s worries prove unfounded, and the movie ends as movies always did in the 1950s.

Backus got his introduction to programming on the SSEC. The programs he worked on were large scientific calculations, like a program to calculate the position of the moon and nearby planets at any time over years, which required endless crunching of coefficients. “It was pure science,” Backus recalled.

The research may have been lofty, but the programming was the equivalent of trench warfare. For like the wartime ENIAC, the SSEC had to be reconfigured for each assignment it was given. After figuring how to set up the problem mathematically, the researchers then had to put it onto the machine. This involved devising elaborate flow charts of how the calculations should be funneled through the machine in general terms. Next came the arduous chore of mapping out the calculating steps, instruction by instruction, intricately on preprinted sheets of paper. Then, the machine had to be set up by hand for each batch of calculations – which switches to flip and which wires to plug into which circuits, to get the Super Calculator flickering and clacking again.

On the SSEC, a large program could take months to map out, and then run on the machine for six months. It would grind to a halt every three minutes on average, requiring further ministrations from the programmers. “As a programmer, you had to be there the whole time,” Backus said. When problems surfaced, the clues were to be deciphered by reading the binary coded numbers off the machine’s thousands of lights.

Debugging the machine was also done by ear. Circuits were opened and closed by relays – metal bars attached to springs that were raised by the pulling force of electromagnets. The thousands of relays being slapped into position in various sequences made a deafening racket at times, yet it was not merely random industrial noise. To the trained ear of a programmer, the repeated rhythm from one corner of the machine, signifying a program was frozen in some calculating loop, was as dissonant as listening to a broken record. Later, when the next-generation 701 Defense Calculator arrived, with its mute electronic switches instead of mechanical relays, Backus recalled feeling a twinge of panic. “I wondered,‘How are we going to debug this enormous silent monster.’”

Backus spoke of his days wrestling the Super Calculator with a sense of nostalgia for the frontier. “Oh, the machine was so complex. It was. And there was no textbook back then. The constraints were such a challenge. . . . There was so much opportunity for ingenuity. You were inventing all the time.”

In the 1953 letter to his boss proposing his programming project, Backus emphasized the economic dimensions of the problem. At most installations, the cost of programmers’ salaries in computer centers – typically 30 programmers per installation – was at least equal to the cost of the computer (the monthly rental for the 701 was $15,000, the equivalent of nearly $100,000 these days). In addition, Backus noted, one-quarter to one-half of computing time was spent in debugging. Accordingly, programming and debugging represented as much as three-quarters of the cost of operating a computer. With hardware improving rapidly and becoming cheaper, the proportionate cost of programming seemed destined to rise even further. It was a big problem, and getting more so. Cuthbert Hurd read the letter and immediately approved the request to begin the programming research project. “He really understood,” Backus recalled.

In January 1954, Backus got his first conscript, Irving Ziller. A graduate of Brooklyn College, Ziller joined IBM in 1952 and had been put to work programming “plug boards” on electronic calculators. The calculators were made from a series of these plug boards, roughly 81/2 by 11 inches, filled with holes into which wires were connected by hand. It was another form of hard-wired programming. When complete, a plug-board would look like a miniature jungle of wires rising up from the board. Ziller quickly proved to be both bright and extremely adept as a plug board programmer. In his apartment in the Riverdale section of New York, Ziller described his plug-board programming days in animated detail. “This, as you can imagine, was a fairly tedious job,” he said. “Anyone doing plug boards understood the emerging need to simplify the programming process.” So, when asked, Ziller was an eager recruit to Backus’ project.

Soon after, the team got its third member, Harlan Herrick. He was a math major at Iowa State University, and an outstanding chess player, who had won regional tournaments in the Midwest. He was awarded a scholarship to Yale University for graduate studies, but he was unhappy there. After reading an article about IBM’s SSEC machine, he applied for a programming job and was hired. When he joined the FORTRAN team, Herrick had five years of experience programming IBM’s SSEC and 701 machines. That made him a wizened veteran among programmers at the time. Within IBM, Herrick was known as a naturally gifted programmer, and his work was instrumental to the success of FORTRAN. At the start, though, he was the most skeptical because he was the most steeped in the programming practices of the time. Herrick was a member of the priesthood. When Backus first told him about the project, Herrick was incredulous. “I said, ‘John, we can’t possibly simulate a human programmer with a language – this language – that would produce machine code that would even approach the efficiency of a human programmer like me, for example,’” Herrick recalled in 1982. “I’m a great programmer, don’t you know?”

Given the intellectual rigors of their craft, programmers of the day were understandably disbelieving, even disdainful, of a programming language doing their jobs. They had to be conversant in the machine’s tongue, in binary. For a flavor of the simplest numeric translation, 1 is 01 in binary, 2 is 10, and 3 is 11. Then 4 is 100, because it is 2 squared, requiring that a digit be added in the third column. The columns, moving to the left, are “powers,” or multiples, of 2 – so 1000 is 8, which is 2 cubed (2 × 2 × 2). And 256 is 100000000, or 2 to the eighth power. The binary system of 1’s and 0’s is, at first, perplexing to humans, somehow “unnatural.” But, in part, that is because we are so accustomed to the number system based on 10, with the number columns being powers of 10.The base-10 system – called decimal – also feels comfortable because it corresponds to the natural human counting tool of our 10 fingers – our digits.

An early tool to simplify things for programmers staring at a blizzard of binary was the use of octal notation. Octal is a base-8 number system, which uses eight symbols (0, 1, 2, 3, 4, 5, 6 and 7), and its columns moving left were powers of eight. Octal was used because it was relatively easy for humans to read – certainly easier than binary – and yet could be easily translated into the binary format of the machine because, again, eight is a power of two. For early programmers, octal became second nature. “We used to joke that we did our checkbooks in octal,” said Lois Haibt, a member of the FORTRAN team. There was even octal humor. “Why can’t programmers tell the difference between Christmas and Halloween? Because 25 in decimal is 31 in octal.” The joke’s answer, when written, became: Dec(imal) 25 = Oct(al) 31. (That is, 31 in octal, or 3 × 8 plus 1, is 25 in decimal.) Since the 1960s, as computers and software became larger and more complicated, programmers have typically used a base-16 system, called hexadecimal, as a shorthand for binary when they really have to understand things at the machine level. In hexadecimal, the symbols used are 0 through 9 and A through F.

The next step in trying to make the programming process less arduous was the development of “assembler” programs. These allowed programmers to write instructions using mnemonic abbreviations – perhaps LD for “load” or MPY for “multiply,” followed by a number to designate a location in the computer’s memory. A small assembler program then translated, or “assembled,” these symbolic programming instructions into binary so the machine could execute those instructions. The symbolic shorthand – the blend of abbreviations and numbers – was called an assembly language. Each different kind of computer had its own assembly language, as if each machine environment were a medieval fiefdom with its own dialect. Still, the assembly languages with their assembler programs were an essential step on the way toward higher-level languages like FORTRAN and its compiler.

The assembler was pioneered in England, where the first working stored-program computer went into operation, Cambridge University’s EDSAC. The programming innovation in Cambridge was inspired by the same thinking that would motivate the FORTRAN team and generations of software developers afterwards. “The objective from the very early days was to make it easy to use for people without specialized training,” recalled David Wheeler, who was a 21-year-old researcher when he joined the Cambridge group in the fall of 1948.Wheeler wrote the assembler program for the EDSAC, which he called “Initial Orders,” an artful and elegant 30 lines of instructions. The Initial Orders program would translate into binary the instructions written in a simple assembly language. A single line of instruction to tell the computer to “add the number in memory location 123 into the accumulator” would appear:

A 123 F

The Cambridge group described their work in the first programming textbook, The Preparation of Programs for an Electronic Digital Computer, published in 1951.The authors – Maurice Wilkes, David Wheeler, and Stanley Gill – chose to have the book published first in the United States, where there was a larger computing community and their work might have the most impact. The book also described the use of “subroutines” – segments of programs that are frequently used, so they can be kept in “libraries” and reused as needed in many software applications. The Cambridge group thus introduced the concept of reusable code, which remains today one of the principal tools for reducing software bugs and improving the productivity of programmers.

At the insistence of Backus, the FORTRAN team was aiming far higher than the level of an assembly language. Each line of assembly code translated into one instruction of binary machine code. For the assembly programmers of the 1950s, programming was a one-line-at-a-time craft. Backus wanted to break through the one-to-one arithmetic of programming so that one line written by a human might translate into many machine instructions. His plan, if successful, would bring not just a technological advance to computing, but a certain cultural shift as well. His goal, after all, was to automate that fine, handcrafted art of the assembly programmer.

Others were pursuing the same goal, hoping to make computing less dependent on the programming priesthood. Perhaps the most outspoken advocate for change was Grace Hopper, who worked during the 1950s for Remington Rand on the UNIVAC, for Universal Automatic Computer. She defined the “programming problem” in much the same terms as Backus. “I felt that sooner or later our attitude should not be that people should have to learn how to code for the computer,” she explained in 1976. Instead, Hopper said, the computer should “learn how to respond to people because I figured we weren’t going to teach the whole population of the United States how to write computer code. There had to be an interface built that would accept things that were people-oriented and then use the computer to translate to machine code.”

Hopper spoke frequently at computer gatherings to marshal support for what she called “automatic programming.” Under that banner, she grouped several software tools. She wrote an automatic programming system for the UNIVAC that stitched together pieces of code into a single program, and she called it the A-O compiler, and versions A-1 and A-2 would follow. But Hopper, who would later be a leader on the committee that oversaw the creation of COBOL, was always more a technologist, visionary, and industry stateswoman than a programming wizard. Her compiler produced programs that ran far too slowly for most commercial uses. And it was a collection of programming aids rather than software that meets the modern definition of a compiler: a program that translates instructions written in a language familiar to human beings into binary.

The first true compiler in the contemporary sense was probably built for the government-funded Whirlwind project at the Massachusetts Institute of Technology. A pair of MIT researchers, J. Halcombe Laning and Neal Zierler, wrote a program that translated algebraic equations into machine code in early 1954. Backus and Ziller visited MIT in June of that year to observe the compiler firsthand and speak with its creators. “It was pretty good, very nicely done conceptually,” Ziller recalled. “But they took an academic approach. They couldn’t care less about efficiency.” In fact, programs using the MIT compiler took nearly 10 times longer to run than it took for hand-coded programs doing the same calculations.

Undaunted, the original FORTRAN trio – Backus, Ziller, and Herrick – set the ambitious goal for themselves of matching the work of human coders. Despite setbacks, they never wavered. Success or failure, they understood, would hinge on the efficiency of compiler translation far more so than the language itself. “We simply made up the language as we went along,” Backus explained. “We did not regard language design as a difficult problem, merely a simple prelude to the real problem: designing a compiler that could produce efficient programs.”

The approach may have been nonchalant, but the FORTRAN language design certainly left a legacy – especially the seemingly innocuous decision to include the Go To statement as one of its basic commands. In 1968, Edsger Dijkstra, an academic champion for the concept of more disciplined “structured programming,” wrote an impassioned letter to the editor of Communications of the ACM, the journal of the leading professional society in the field, the Association for Computing Machinery. Under the playfully incendiary headline, “Go To Statement Considered Harmful,” Dijkstra observed that the “quality of programmers is a decreasing function of the density of Go To statements in the programs they produce.” The Go To statement, Dijkstra wrote, had had “such disastrous effects” that he was “convinced that the Go To statement should be abolished from all ‘higher level’ languages.” By the late 1960s, when Dijkstra wrote, software programs had grown immensely in size and complexity. The Go To command is an “unconditional jump,” allowing a hop from one place in a software program to anywhere else, altering the flow and control of a program’s execution. In a big, complicated software program of the late 1960s, the Go To looked to Dijkstra as an invitation to disaster, allowing a programmer to write programs that hopped all over the place and make “a mess of one’s code.” Yet that problem was not the big one the FORTRAN team faced in the mid-1950s. The headaches of the 1960s would be created partly by the success of the Backus team in overcoming the big challenge of the 1950s.

The very name FORTRAN was testimony to the group’s obsession with the translator, or compiler – an abbreviation for FORmula TRANslating system, which was later trimmed to FORmula TRANslator, as if to suggest something more substantial, not some amorphous “system.” Backus came up with the name in 1954, to no great enthusiasm from his colleagues. “F-O-O-O-R T-R-R-A-A-N,” said Herrick, slowly mouthing the syllables as if distasteful for an IBM-sponsored documentary film in 1982. “It sounds like something spelled backwards.” Yet FORTRAN accurately described the project, and nobody could come up with a better idea, so the name stuck. So, of course, did the language, in use even today on machines ranging from supercomputers to PCs – something never imagined by Backus and the rest of the FORTRAN team. The initial goal for FORTRAN was to make programming easier on one machine – the successor to the 701 Defense Calculator, the IBM 704.

On 10 November 1954, the FORTRAN group produced a paper that described the FORTRAN language and its goals, “Preliminary Report: Specifications for the IBM Mathematical FORmula TRANslating System.” Irving Ziller had held onto a copy of the original document, which he retrieved from a cardboard box in his basement. The 29-page report presented the math-laden vernacular of the language and its traffic-cop rules for handling operations – Fortran’s DO, IF, GOTO and STOP commands. Despite its dry title, the report was also a shrewd, at times impassioned, marketing document. It was, in the parlance of modern business, a “vision statement,” detailing Backus’ plans and hopes for FORTRAN and his optimistic prediction of its impact. The report reads today as a fascinating mixture of foresight and naïveté. It reiterated the economic arguments about the high and increasing costs of hand-coded programming that Backus made to Hurd in 1953, which got the FORTRAN project started. Then, really warming to the subject, one remarkable paragraph began, “Since FORTRAN will virtually eliminate coding and debugging, . . .” The “coding” referred to was the machine code that FORTRAN compiler would generate automatically, so that was more descriptive than predictive. But eliminate debugging? The blithe prediction strikes the modern reader as quaintly amusing, given that debugging remains the bane of the programmer’s existence.

In retrospect, the most powerful economic argument in the 1954 preliminary report was its theme of empowerment. FORTRAN, the report predicted, would not only increase the efficiency of programming, but also increase the pool of people who could program – a goal of software visionaries ever since.

“The amount of knowledge,” the report declared, “necessary to utilize the 704 effectively by means of FORTRAN is far less than the knowledge required to make effective use of the 704 by direct coding. . . . In fact, a great deal of the information that the programmer needs to know about the FORTRAN system is already embodied in his knowledge of mathematics. Thus it will be possible to make the full capabilities of the 704 available to a much wider range of people than would otherwise be possible without expensive and timeconsuming training programs.”

With their marketing-and-vision document in hand, Backus, Ziller, and Herrick traveled the country, speaking to customers who had ordered a 704. They went to Washington, Los Angeles, Pittsburgh, Albuquerque, and elsewhere, espousing their vision of FORTRAN and the future of programming. They had hoped to stir up interest in the project and solicit useful suggestions from informed users, but their enthusiasm fell on deaf ears. The FORTRAN report struck the customers as wishful thinking, especially coming on the heels of the false hopes raised by “automatic programming,” touted by Grace Hopper and others. Knowledgeable computing customers simply did not believe that FORTRAN – the language and its compiler – could produce machine code that approached the efficiency of hand-coded programs. Recalling those dispiriting trips, Backus observed, “We received almost no suggestions or feedback.” FORTRAN, then, had little to do with the modern business truisms about the necessity of being “customer-driven” and getting users involved in product development. FORTRAN was considered too far over the horizon for customers to take seriously.

Though disappointing, the customer tour had the unintended consequence of motivating the FORTRAN team. “We thought it was a good project, and then everyone told us it couldn’t be done,” Backus recalled. “There was a sense that we really wanted to show them.” Vindication would come, but not quickly. After the preliminary report, Backus recalled, his superiors would periodically ask when FORTRAN would be completed. He always had an answer, the same one. “Six months, come back in six months, I’d say. We honestly always felt that we were going to be done in six months from now. But it became nearly three years.”

In 1955, Backus began adding to the team, and he plucked recruits from various sources. Backus visited MIT, a major center of computing research, which had a close relationship with IBM. He explained the FORTRAN project and asked if the university’s Digital Computer Laboratory might want to send someone to work on FORTRAN. MIT dispatched one of its star programmers, Sheldon Best. Backus was able to exploit the one flicker of interest he got from the industry, from United Aircraft, which lent Roy Nutt to the FORTRAN project. And Nutt was a real catch – an extraordinary programmer who could “execute” a program in his head, as a machine would, and then write error-free code with remarkable frequency. Nutt, Backus marveled, would walk straight to the keypunch when he felt he had solved some software riddle and, without notes, write a flawless program onto the punched cards. Inside IBM, Backus tapped people he spotted or who were recommended. He wanted people who were bright and seemed to have knack for programming. “There was nothing formal about it,” he recalled. “We added one person at a time, and it just sort of happened.”

The experience of the recruits was often slender. Robert Nelson, a former cryptographer for the State Department in Vienna, was a new employee hired by IBM to do the routine work of typing scientific documents. But Backus soon recognized Nelson’s technical talent. “He quickly became an outstanding programmer, absolutely crucial to the FORTRAN project,” Ziller observed.

Richard Goldberg had a Ph.D. in math from New York University, and he had intended to teach. A semester at Dartmouth College convinced Goldberg he was not meant for teaching, so he moved back to New York and got a job at IBM. “I didn’t know anything about computing,” he recalled. But Goldberg excelled in a three-month programming course, and he was sent along to Backus. Lois Haibt went to IBM straight from Vassar College, where she recalled being “good in math and science and terrible in the fuzzy subjects like English.” A scholarship student, she was more than “good” in math and science and her summer jobs were at Bell Labs. When she graduated, however, IBM lured her with a starting salary nearly twice the Bell Labs offer – $5,100 a year, which at the time seemed a lavish sum to her. “They told me it was a job programming computers,” Haibt said. “I had only a vague idea what that was. But I figured it must be something interesting and challenging, if they were going to pay me all that money.” In her programming class, she proved extremely adept and was assigned to the FORTRAN team.

For David Sayre, computing was at first merely a tool which later became a career. In the early 1950s, Sayre was a crystallographer doing biophysics research at the University of Pennsylvania. His research focused on the structure of hydrocarbon carcinogenic molecules. Even then, such study of crystal structures relied on computing assistance. Frustrated by the university computer, Sayre went looking for a faster machine. He had his eye on an IBM 701. He was told time on the machine cost $400 an hour, but that for his scientific research he could get a couple of hours free. The IBM officials had markets in mind, seeing work like Sayre’s as a way to make deep inroads into scientific computing. Sayre went to New York City, wrote his program line by line in octal notation and put it on the 701. He found the process intellectually satisfying and oddly compelling. “You entered a world that kind of ran the way it was supposed to, a world made for working out the logic of something,” Sayre recalled. “When you ran your program the expected thing happened, and if it didn’t there was a logical reason why it didn’t.” Sayre joined IBM, working on scientific applications but also going deeper into pure programming. He wrote a diagnostic program to help find bugs on the IBM 704, for example. So Backus “borrowed” Sayre for the FORTRAN project, and Backus had a way of holding onto the people he borrowed.

In computer science, a big part of the challenge is capturing a human problem in a way that can be worked on by the machine. The way Backus chose to break up the compiler problem, though subtle, was one of the genuine achievements of FORTRAN – and, like so many innovations, it is obvious only in hindsight. Look into most language compilers today, and one sees the same steps or phases that were in the FORTRAN compiler of the 1950s – the same problem-tackling structure Backus adopted.

The FORTRAN compiler – and the work by the team – was divided by operational tasks. The compiler first performed an initial scan, or parsing, of the higher-level language, the algebraic symbols, and English abbreviations. Next, it performed a complex analysis of the program so that the compiler focused most of its energies on automating the working heart of the program – that is, the most frequently repeated operations in the program. Then, the compiler had to figure out how to allocate its compiling instructions to run on the machine in a way that used a minimum of computer time. And, in the last step, the compiled program had to be “assembled” into machine code.

The FORTRAN compiler accomplished all this not with brute force, but with an elegant efficiency that seemed to lend the software a certain life of its own, if not intelligence. By early 1957, when the FORTRAN project was in the home stretch and the team got compiled programs back from the computer, they were often amazed. The compiler had made what Backus called “surprising transformations” in the programs being compiled, altering the programming expressions and the order of computation. As they combed through the changes the compiler had made, they could see that the compiler’s work was efficient. But, Backus said, the compiler took steps that “we would not have thought to make as programmers ourselves.” In fact, the FORTRAN team was mainly observing the work of a well-designed, complex piece of software, following general rules and specific instructions embodied in the programmers’ algorithms to accomplish its appointed task. Still, seeing the FORTRAN compiler’s handiwork struck members of the team as a revelation that software was a special medium. “It was just amazing, the interaction of the programming instructions, almost as if the compiler was a living thing,” Ziller recalled.

It is often said that the best software designers and the best programmers have an uncommon capacity for two different kinds of reasoning – conceptual and procedural thinking, high-level and low-level work. FORTRAN had both, in large doses. The language itself was a high-level, conceptual triumph. It not only made it far easier for people to program, but ensured FORTRAN’s longevity. Though initially intended only for the IBM 704, FORTRAN was wisely designed, at a high enough level, so that it divorced itself from a specific machine environment. “The underlying machine could change to its heart’s content and the programming language could sail along for 50 years,” observed David Sayre.

FORTRAN also convincingly broke through the one-to-one arithmetic of assembly programming. A line written in FORTRAN would translate into several machine instructions, again, simplifying the programming craft. By way of example, below is a rudimentary FORTRAN program for converting temperatures in Fahrenheit to Celsius:

WRITE (*,*) “Please enter Fahrenheit temperature:”
READ (*,*) FAREN CELSIUS = (FAREN – 32) / 1.8
WRITE (*,*) “The Celsius equivalent is:”, CELSIUS
STOP
 END

In an assembly language, the same simple program runs to more than 60 lines of code. The single FORTRAN line with the conversion formula (CELSIUS = (FAREN - 32) / 1.8) becomes five lines of assembly language instructions below, in an assembler for a personal computer:

fld 32real [0001BEC8]
 fchs
fadd 32real [0001E000]
fdiv 32real [0001BEC0]
fstp 32real [ebp-08]

Then, in the binary code understandable to the machine, the single FORTRAN line becomes five lines that look like this:

110110010000010111001000101111100000000100000000
 110010011110000
110110000000010100000000111000000000000100000000
 110110000011010111000000101111000000000100000000
110110010101110111111000

The lower-level labor for the team was the long slog required to make the FORTRAN-compiled programs match the efficiency of human programmers – the goal so many in the industry thought was out of reach. It was difficult, often frustrating work. Years later, when asked about the broad lesson of the FORTRAN experience, Backus articulated a theory of innovation by iteration, a constant process of trial and error. “You need the willingness to fail all the time,” he explained. “You have to generate many ideas and then you have to work very hard only to discover that they don’t work. And you keep doing that over and over until you find one that does work.” Their willingness to persevere in spite of setbacks and doubts owed a lot to the chemistry of the FORTRAN team. They were a young, bright, close-knit group brimming with energy and optimism. They saw themselves somewhat as outsiders to the rest of IBM, trying to do something that had never been done before in a brand-new field with few, if any, established rules. “IBM was really loose for a while in this new part of the business,” Sayre recalled. “We were like a Silicon Valley operation.”

The FORTRAN team was at first called the “Programming Research Group,” and it was ensconced on the 19th floor of an annex to the IBM headquarters building in New York on 590 Madison Avenue. Their office was next to the engine room for the building’s elevator machinery, and their conversations were sometimes interrupted by loud mechanical rumblings next door. Indeed, their offices would remain modest and makeshift over the three-year course of the FORTRAN project, even as the team grew and then moved to the fifth floor of an office building on 56th Street. They were always a bit isolated and separate. Robert Bemer worked on the other side of the big room occupied by the FORTRAN group, and he mostly recalled their work regimen. “They were buried in it,” Bemer said, “day and night.” Irving Ziller recalled a stretch when Sheldon Best was puzzling over a particularly intractable problem. To talk it over, Ziller made a habit of walking with Best to a nearby subway station after work. Frequently, they would keep talking and walk around the block several times, before Ziller finally descended into the subway and Best strolled off to his apartment nearby.

OEBPS/images/logo.jpg

OEBPS/images/cover.jpg
]’I\svsmry of the Math Majors, Bridge Players,
Engineers, Chess Wizards, Maverick Scientists and
Iconoclasts—the Programmers who created the
software revolution

STEVE LOHR

- *Gadlois smooth, creamy, ... delightful.

" 1868 a sorc of lliad for the computer

ages the cpochal story of how the

- ‘Software revolution’ came abour and

i whodid whar.” —David Gelernter,
New York Times

