

[image: image]

[image:]

Acknowledgements

Dedication

To Craig and Laura.

To Helen, Peter John, Mary, Sarah, Siobhan and Cecilia.

Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked, the Publishers will be pleased to make the necessary arrangements at the first opportunity.

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Gibson cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE. Telephone: (44) 01235 827827. Fax: (44) 01235 400401. Email education@bookpoint.co.uk Lines are open from 9 a.m. to 5 p.m., Monday to Saturday, with a 24-hour message answering service. Visit our website at www.hoddereducation.co.uk. Hodder Gibson can also be contacted directly at hoddergibson@hodder.co.uk

© Jane Paterson and John Walsh 2019
First published in 2019 by
Hodder Gibson, an imprint of Hodder Education
An Hachette UK Company
211 St Vincent Street
Glasgow, G2 5QY

	Impression number

	5

	4

	3

	2

	1

	Year

	2023

	2022

	2021

	2020

	2019

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © blackboard/stock.adobe.com Typeset in 12.5 on 15pt Bembo regular by Integra Software Services Pvt. Ltd., Pondicherry, India Printed in Slovenia

A catalogue record for this title is available from the British Library.

ISBN: 978 1 5104 2694 8

eISBN: 978 1 5104 2685 6

[image:]

Preface

This book is based upon the National 5 statements of knowledge and understanding set out in Skills, knowledge and understanding for the course assessment section of the National 5 Course Specification version 2.0 dated September 2017.

It should be noted that this book is the authors’ own interpretation of the content of this document.

The chapters match the grouping of the content as described in the above document with the exception of the Computer Systems Unit, which is contained in Chapters 21 to 24. Hence, Chapters 1 to 8 cover the Software Design and Development Unit, 9 to 13 cover the Database Design and Development Unit and 14 to 20, the Web Design and Development Unit.

Short revision questions designed to focus the student’s learning have been placed at the end of each chapter, together with some suggested practical activities.

An extensive glossary and a comprehensive index of terms are included.

The programming languages Scratch®, LiveCode®, C, Visual Basic™, True BASIC®, Java™, JavaScript® and Python® are used to illustrate computational constructs. Other languages used in the book include HTML, JavaScript® and AppleScript®. Screenshots from Access®, FileMaker® Pro and MySQL™ database applications are provided.

Note that this book is not an instruction manual for any particular package. Your teacher or lecturer will provide support material tailored to the programming languages and application packages that you will use in your centre.

The order of the chapters does not constitute a recommended teaching order.

Jane Paterson and John Walsh

2 January 2019

Unit 1

Software Design and Development

[image:]

This chapter and the eight that follow each form part of the Software Design and Development Unit.

Each chapter is designed to cover the contents statements as they are grouped within the Course Specification document for National 5, namely: Development Methodologies; Analysis; Design; Implementation (data types and structures); Implementation (computational constructs); Implementation (algorithm specification); Testing and Evaluation. The examples given in each chapter are based upon a range of hardware and software current at the time of writing.

The unifying themes across all units in National 5 Computing Science are:

• apply computational-thinking skills across a range of contemporary contexts

• apply knowledge and understanding of key concepts and processes in computing science

• apply skills and knowledge in analysis, design, implementation, testing and evaluation to a range of digital solutions

• communicate computing concepts and explain computational behaviour clearly and concisely using appropriate terminology

• develop an understanding of the role and impact of computing science in changing and influencing our environment and society.

[image:]

CHAPTER 1

Development methodologies

This chapter discusses the iterative development process in various forms. The following topics are covered

• describe and implement the phases of an iterative development process: analysis, design, implementation, testing, documentation and evaluation, within general programming problem-solving.

Let’s begin by considering the ways in which a problem can be solved by using a computer. In order to do this, we should use computational thinking.

What is computational thinking?

Computational thinking is thinking of a problem in such a way that makes it possible to solve it by using a computer system. We have to do the thinking for the computer because it cannot think for itself; it can only carry out the instructions programmed into it. We use computational thinking when we are able to look at and understand a problem and then work out a series of steps to solve it. This is called an algorithm.

Looking at and understanding a problem is called analysis. Working out a series of steps to solve a problem is called design. Once a solution to a problem has been worked out, it needs to be turned into instructions for the computer (a program). This is implementation. The program must then undergo testing to make sure that it does not contain any mistakes that would prevent it from working properly. A description of what each part of the program does, or documentation, should also be included. Evaluation is the process that measures how well the solution fulfils the original requirements. This sequence of steps, beginning with analysis, is known as the software development process. It is iterative in nature, meaning that any of the steps can be revisited at any point in the life cycle of the development process (multiple times if necessary) if new information becomes available and changes need to be made.

This particular design methodology is known as the Waterfall development methodology, Waterfall life cycle or Waterfall model.

You can find out more about each of the stages and the documentation produced in the software development process in the following chapters in this unit.

[image:]

Documentation is produced at every stage of this methodology, not just at the documentation stage. Table 1.1 shows the documentation that is produced at the end of each of these stages.

	Stage

	Documentation produced

	Analysis

	Software specification (see Chapter 2)

	Design

	The design for the solution in design notation (see Chapter 3)

	Implementation

	The program listing in the chosen programming language (see Chapters 4 to 6)

	Testing

	The test plan with results of each test carried out (see Chapter 7)

	Documentation

	The user guide (how to use the software) and a technical guide (how to install the software)

	Evaluation

	A review of the software against the initial software specification (see Chapter 8)

Table 1.1 Documentation produced at each stage

One advantage of the Waterfall method is the fact that it is simple to understand and use. Another is that each stage is done and completed one at a time, which makes it easy to allocate different stages to different teams. It also makes it ideal for smaller software development projects.

However, the Waterfall method has its disadvantages. It is not good for developing large projects because working software is not produced until later in the life cycle. This makes it difficult to go back and change something from the analysis stage that may only be discovered at the testing stage. One final disadvantage, if a project is likely to take a long time to complete, is that the software may already be out of date when it is finally released.

The Waterfall method is by no means the only methodology. Agile development methodology and Rapid Application Development methodology are two other ways of developing software.

Agile development involves breaking down the work that needs to be achieved into smaller parts that are developed quickly in cycles known as sprints. This means that there are frequent, small software releases with each of these enhancing or building on the previous one. There is much more communication within the development team and with the client during the project, as compared to the Waterfall method.

Agile development also has some disadvantages. The documentation for Agile is far less detailed than for the Waterfall method. There is often very little time between requirements being clarified and the start of software development. It can also be quite easy to be caught in a cycle of ever-changing client requirements, particularly if the client’s requirements are not clear in the first place.

You can find out more about Agile development by visiting: www.agilealliance.org/agile101/agile-glossary/.

In Rapid Application Development an early prototype of software is created for the client. The advantage is that the client can test early designs of the software and provide feedback quickly. This allows software developers the chance to make updates without having to start the software development process from the beginning and means that development time is short.

However, because of the speed of development, it means that teams working on the software are generally small in size and Rapid Application Development is really only suitable for projects whose development time is short as it can be complex to manage.

For your National 5 course, you need only know about one example of an iterative development process, such as the Waterfall development methodology described above.

[image:]

[image:]

Check Your Learning

Now answer questions 1–4 (on page 5).

[image:]

[image:]

Questions

1 What is computational thinking?

2 What is an algorithm?

3 State the term used for

 a) looking at and understanding a problem

 b) working out a series of steps to solve a problem

 c) changing a design into a program

 d) checking to find whether a program contains mistakes

 e) describing what each part of a program does

 f) ensuring that the software fulfils the original requirements.

4 Name two software development methodologies.

[image:]

[image:]

Key Points

• Computational thinking is thinking of a problem in such a way that makes it possible to solve it by using a computer system.

• A series of steps to solve a problem is called an algorithm.

• Analysis is looking at and understanding a problem.

• Design is working out a series of steps to solve a problem.

• Implementation is turning a design into a computer program.

• Testing makes sure that a computer program does not contain any mistakes.

• Documentation is a description of what each part of the program does.

• Evaluation ensures that the software fulfils the original software specification.

[image:]

CHAPTER 2

Software analysis

This chapter describes the analysis stage of the development process. The following topics are covered

• identify the purpose and functional requirements of a problem that relates to the design and implementation at this level, in terms of

 • inputs

 • processes

 • outputs.

The term ‘software developer’ is used in this chapter and includes any person involved in the software development process, such as the programmer. The term ‘client’ is used to refer to the person or organisation for which the software is being developed.

Analysis

The analysis stage is the start of the software development process. During the analysis stage the client and software developer will have several meetings to find out what the client would like the software to do. At the end of the analysis stage documentation should be produced to show the purpose and functional requirements of the software. The document produced is known as the software specification. It is signed by both client and software developer and is a legally binding document.

The purpose of the software is what it should do when it is being used by the client.

The functional requirements should define inputs, processes and outputs to the program.

Data that is to be processed by a computer program must first be input or taken into that program. Inputs should state clearly what data must be provided for the program to function. Processes should determine what has to be done with the data entered. Finally, the data should be output so that the results can be seen.

Let’s look at an example that will help you understand what is meant by purpose and functional requirements with inputs, processes and outputs.

[image:]

Example

Average problem

Write a program that takes in up to ten integers (or whole numbers), ranging in value from 0 to 100, and then calculates the average correct to two decimal places.

Purpose

The software to be created should allow the user to enter ten integers. Each time an integer is entered it should be validated to ensure that it is between 0 and 100, inclusive. The program should keep a running total until the tenth integer has been entered. It should then calculate the average to two decimal places and display the result.

Functional requirements

	Inputs

	Processes

	Outputs

	Ten integers

	Validate input is an integer between 0 and 100, inclusive

	Display the average to two decimal places

	Add each integer to a running total

	Calculate the average

Assumptions

If there is any part of the problem that the client has not made clear to the software developer, then the software developer should make assumptions.

Assumptions may include

• the type of data to be entered

• the hardware on which the software should run or the operating system requirements

• the level of expertise of the user of the software.

With respect to the Average problem shown above, the assumptions could be

• the user only requires the average of ten numbers

• the output has to be a real (float) number.

[image:]

[image:]

[image:]

Check Your Learning

Now answer questions 1–3 (on page 8).

[image:]

[image:]

Questions

Analyse the following problems and produce the purpose and functional requirements for each. You should include the inputs, outputs and processes for each problem and also any assumptions made.

1 A program is to be written to simulate the basic arithmetic functions of a calculator. The user should be asked to input two numbers and the sum (+), difference (−), product (*) and quotient (/) should be displayed.

2 A program is needed to calculate the speed at which an arrow is travelling as it passes two sensors. It measures the time it takes the arrow to travel a marked distance between the two sensors and then calculates the speed of the arrow. The program should show the speed at which the arrow was travelling.

3 A school needs a program to grade students’ marks after an exam. The program should take in an integer between 0 and 100 and output a grade.

[image:]

[image:]

Key Points

• The purpose of the software is what it should do when it is being used by the client.

• The functional requirements should define inputs, processes and outputs to the program.

• Inputs should state clearly what data must be provided for the program to function.

• Processes should determine what has to be done with the data entered.

• Outputs should show the results of the program when it is run.

[image:]

CHAPTER 3

Software design

This chapter describes different design methodologies, data types and user interface design. The following topics are covered

• identify the data types and structures required for a problem that relates to the implementation at this level, as listed below

• describe, identify and be able to read and understand

 • structure diagrams

 • flowcharts

 • pseudocode

• exemplify and implement one of the above design techniques to design efficient solutions to a problem

• describe, exemplify and implement user interface design, in terms of input and output, using a wireframe.

Design

Data types and structures

When designing the solution to a problem, the data types and structures to be used in the solution should be identified so that the software developer knows the type of data each variable will store.

Table 3.1 contains a list of all the data types you will encounter at National 5 level with a short description and an example of each.

	Data type

	Description

	Example

	Character

	A character, number or symbol

	‘R’, ‘1’ or ‘$’

	String

	A list of characters

	‘Spaghetti knitting’

	Numeric: integer

	Whole positive or negative numbers

	−65 or 123

	Numeric: real (or float)

	All numbers both whole and fractional

	6.022

	Boolean

	Can only contain two values

	True or false

Table 3.1 Data types

What is design?

Program design is the process of planning the solution. The design of the program is very important for its success. Time spent at this stage is very worthwhile and can reduce the chance of errors appearing later on in the solution. What the software developer is trying to achieve is to produce an algorithm, which is the name given to a set of instructions used to solve a problem. Design is the second step in the software development process, following analysis.

What is design notation?

The way of representing the program design or algorithm is called the design notation. The software developer has a choice of design notations.

We will use the Average problem from Chapter 2 to provide examples of design notation. Here is a quick reminder:

Write a program that takes in up to ten integers (or whole numbers), ranging in value from 0 to 100 and then calculates the average correct to two decimal places.

What is graphical design notation?

Graphical design notations (GDN) use shapes to describe a design. Graphical design notations include flowcharts, structure diagrams and storyboards. You can see some examples of selection and iteration/ repetition on the following page. Note that repetition and iteration are terms that are both used to refer to a loop in programming. This book makes no distinction between repetition and iteration.

Structure diagrams

Structure diagrams use linked boxes to represent the different sub-problems within a program. The boxes in a structure diagram are organised to show the level of each sub-problem within the solution.

[image:]

	Symbol

	Name

	Description

	[image:]

	Process

	This represents an action to be taken, a function to run or a process to be carried out, e.g. a calculation.

	[image:]

	Loop

	The loop symbol indicates that a process has to be repeated either a fixed number of times or until a condition is met.

	[image:]

	Predefined process

	This symbol describes a process that contains a series of steps. It is most commonly used to indicate a sub-process or a sub-routine but could also indicate a predefined function like the random number function.

	[image:]

	Selection

	This symbol shows that there may be different outcomes depending on user input or the result of an earlier process.

Table 3.2 The different elements of a structure diagram

Flowcharts

A flowchart may be used to represent a program or a system. Flowcharts use diagrams made up of differently shaped boxes connected with arrows to show each step in a program.

The flowchart given in Figure 3.2 uses a graphical design notation to show selection and iteration. In this case, the program keeps taking in a number until the number is within a range. If the number is outwith the range, an error message is displayed.

[image:]

Flowcharts use a series of standard symbols for different structures as shown here.

	Symbol

	Name

	Description

	[image:]

	Start/End

	This is also known as a terminator symbol. It represents the start or end of a problem.

	[image:]

	Process

	This is also known as an action symbol. It represents an action to be taken, a function to run or a process to be carried out, e.g. a calculation.

	[image:]

	Flow line

	This symbol indicates the direction of flow in the problem.

	[image:]

	Predefined process

	This symbol describes a process that contains a series of steps. It is most commonly used to indicate a sub-process or sub-routine but could also indicate a predefined function like the random number function.

	[image:]

	
Initialisation

	This is also known as a preparation symbol. This is used to set up variables or arrays with a starting value.

	[image:]

	Input/Output

	This is also known as the data symbol. This is used for input to the program and outputs from any process.

	[image:]

	Decision

	This symbol shows that there may be different outcomes depending on user input or the result of an earlier process.

	[image:]

	Connector

	This is used when a large, complex chart is created and connects separate parts sometimes across several pages.

Table 3.3 The different elements of a flowchart

Pseudocode

Pseudocode is the name given to the language used to define problems and sub-problems before they are changed into code in a high-level computer language. Pseudocode uses ordinary English terms rather than the special programming language keywords used in high-level languages. Pseudocode is a form of textual design notation (TDN).

Here is some pseudocode showing part of the design of one possible solution to the Average problem. Compare this pseudocode with the structure diagram in Figure 3.1, which shows the design of a solution to the same problem.

Algorithm or main steps

[image:]

Refine sub-problem 2

[image:]

Refine sub-problem 2.4

[image:]

Pseudocode is very useful when you are programming in languages like True BASIC®, Python® or LiveCode®, because it fits in neatly with the structure of the code. The main steps in the algorithm relate directly to (in fact become) the main program and the refinements of each sub-problem become the code in the procedures.

Designing efficient solutions to a problem

When writing algorithms it is sensible to ensure that the design is efficient. This involves checking to make sure that any repeating patterns in the design are identified and any redundant parts are removed before implementation.

The algorithm below, written in pseudocode, checks the temperature of jam to see if it will set when cooled.

[image:]

This design will work but it is very inefficient.

One way of writing this algorithm more efficiently could be to use conditional loops.

[image:]

Or alternatively.

[image:]

You should ensure that your design makes use of the most efficient constructs where possible. An efficient program will require less resources when it is implemented and be quicker to write since fewer lines of code are required.

Wireframe

In programming, a wireframe is a diagram or sketch of the input and output screens with which the user will interact. The wireframe design should contain placeholders where data is to be input and output. The wireframe should also include prompts and labels next to where data is to be displayed and any buttons that may be required.

[image:]

[image:]

You can read more about wireframes in Chapter 15 where they are used to design the appearance and function of a website.

[image:]

Check Your Learning

Now answer questions 1–14 (on pages 17–18).

[image:]

[image:]

Practical Tasks

1 Using a graphical design notation of your own choice, write algorithms for the following problem outlines, showing refinements as appropriate:

 a) Calculate the square root of a number between 1 and 20.

 b) Calculate the circumference of a circle given the radius as input (2πr).

 c) Input validation for days 1–31 with a suitable message.

 d) A quiz with four questions and a second chance to get the correct answer after a hint is given.

2 Investigate online tools for creating design notations. Here are some URLs to get you started: https://cacoo.com/ and https://creately.com.

3 Have a look at www.wirify.com/ that uses a bookmark to turn any web page into a wireframe.

[image:]

[image:]

Questions

1 What is design?

2 What is an algorithm?

3 What is design notation?

4 Name and describe one design notation with which you are familiar.

5 What is graphical design notation?

6 a) Identify the type of design notation shown in Figure 3.5.

 b) Copy the design shown in Figure 3.5 and

 i) complete the empty box with a suitable message

 ii) amend the design to include a score (of correct answers).

[image:]

7 If you were asked to design a software application, which design notation would you choose? Explain why you chose this design notation.

8 Figure 3.6 shows the incomplete flowchart for an automated potato planting machine. It will plant a seed potato in a field every 25 cm and will keep planting until it gets to the edge of the field where it will stop.

 a) Change the flowchart to make the design more efficient.

 b) The farmer likes the improved design, but tells the software developer that the machine must plant a second row of potatoes in parallel to the first row. The rows should be planted 50 cm apart. Amend your new flowchart to take account of this.

[image:]

 9 What is pseudocode?

10 What language is used in pseudocode?

11 What makes pseudocode so useful when describing the design of a program?

12 In programming, what is a wireframe?

13 In programming, what details may be contained in a wireframe?

14 Using a wireframe, design user interfaces for the following programs.

 a) A simple program is to be designed to calculate the volume of a room given the length, breadth and height.

 b) CardsCo Inc.™ need a program that will print invitations to parties. The input to the program should include date, time, place and event.

 c) The superhero league finals need a system to rank their members. Each superhero is given a ranking based on their good deeds. A program is to be designed to allow the user to input a superhero name and a ranking to be output.

[image:]

[image:]

Key Points

• Program design is the process of planning the solution.

• Data types used are character, string, numeric (integer and real) and Boolean.

• The way of representing the program design or algorithm is called the design notation.

• Graphical design notations (GDN) use shapes to describe a design.

• Graphical design notations include flowcharts and structure diagrams.

• Structure diagrams, like flowcharts, use linked boxes to represent the different sub-problems within a program.

• The boxes in a structure diagram are organised to show the level of each sub-problem within the solution.

• Flowcharts use diagrams made up of differently shaped boxes connected with arrows to show each step in a program.

• Pseudocode is the name given to the language used to define problems and sub-problems before they are changed into code in a high-level computer language.

• Pseudocode fits neatly with the structure of the code.

• The main steps in the algorithm become the main program and the refinements of each sub-problem become the code in the procedures.

• Check that design is efficient by making sure that any repeating patterns in the design are identified and any redundant parts are removed before implementation.

• A wireframe is a diagram or sketch used to represent the input and output screens with which the user will interact when using the program.

[image:]

CHAPTER 4

Software implementation (data types and structures)

This chapter describes the basic data types and structures used for programming in any language. The following topics are covered

• describe, exemplify, and implement appropriately the following data types and structures

 • character

 • string

 • numeric (integer and real)

 • Boolean

 • 1-D arrays.

Remember that this book is not a programming manual. Your teacher or lecturer will provide you with material to suit your chosen software development environment(s).

Data types and structures

What is a variable?

Data is stored in a computer’s memory in storage locations. Each storage location in the computer’s memory has a unique address (see Chapter 22). A variable is the name that a software developer uses to identify the contents of a storage location. (This is much more convenient than using a memory address – compare number with 90987325.) By using a variable name, a software developer can store, retrieve and handle data without knowing what the data will be.

Data types

The data types stored by a program may be a number, a character, a string, a date, an array, a sound sample, a video clip or, indeed, any kind of data. Characters, strings, integer numbers and graphical objects data are described below.

Real numbers and Boolean data are also described below.

The (1-D) array data structure is explained later in this chapter.

Character data

A character is a symbol, letter or number on the computer keyboard. Some languages allow single characters to be declared, for instance, in Visual Basic™:

[image:]

In Java™ or JavaScript®:

[image:]

String data

String data is a list of characters, for example, a word in a sentence. Depending upon the programming language in use, it may or may not be necessary to state or declare the type of variable at the start of the program, for example, in Visual Basic or Python:

[image:]

In True BASIC®, a dollar ($) sign is added to the end of the variable name to denote a string, like this:

[image:]

Numeric (integer) data

Numeric (integer) data includes just whole numbers. In Visual Basic:

[image:]

is used at the beginning of the program to show that the variable score is to be used for holding a whole number or integer.

Numeric (real) data

Numeric (real) data includes all numbers, both whole and fractional. In some programming languages this is known as a float type. Again, in Visual Basic:

[image:]

is used at the beginning of the program to show that the variable price is to be used for holding a real number.

Boolean data

Boolean data has only two values, TRUE and FALSE. Again, in Visual Basic:

[image:]

is used at the beginning of the program to show that the variable found is to be used for holding a Boolean value. Boolean values are sometimes represented by numbers, for instance False = 0 and True = –1 (in Visual Basic and +1 in some languages).

[image:]

Check Your Learning

Now answer questions 1–7 (on page 24).

[image:]

Graphical objects data

A graphical object is an image that is displayed on the screen as part of a computer program. Another name for a graphical object is a sprite. Sprites are commonly used for characters and other animated objects in games. Figure 4.1 shows some sprites in the Scratch® programming language.

[image:]

[image:]

[image:]

[image:]

Note: Knowledge of graphical objects is not required for National 5.

1-D arrays (one-dimensional arrays)

An array is a list of data items of the same type grouped together using a single variable name. Each part of an array is called an element. Each element in an array is identified by the variable name and a subscript (element number or index), which identifies the position of the element in the array. Indexing may start from 0 (zero) depending upon the language in use, but this explanation will start from 1 to make it easier to understand. An array is an example of a structured data type. Note that a string is an array of character data.

An array of names might look like this:

name (1) – John – this is the first element of the name array

name (2) – Helen – this is element number 2 of the name array

name (3) – Peter – this element has the subscript 3

name (4) – Mary – this element has the index 4

This array has four parts. Element number 3 of this array is the name ‘Peter’.

Arrays that have one number as their subscript are called one-dimensional arrays.

When programming using arrays, it is always necessary to declare the name of the array and its size at the start of the program, so that the computer may set aside the correct amount of memory space for the array.

Here is the code to set aside space for an array called apples with a size of 15, in five different programming languages:

[image:]

[image:]

Check Your Learning

Now answer questions 8–11 (on page 24).

[image:]

[image:]

Questions

 1 What is a variable?

 2 Name two data types.

 3 What is string data?

 4 What is numeric (integer) data?

 5 What is character data?

 6 What is numeric (real) data?

 7 What is Boolean data?

 8 What is an array?

 9 Each part of an array is called an element. Explain how each element in an array may be identified.

10 Explain how you could tell if an array is one-dimensional (1-D).

11 Why is it necessary to declare the use of an array at the start of a program?

[image:]

[image:]

Key Points

• A variable is the name that a programmer uses to identify the contents of a storage location.

• A character is a symbol, letter or number on the computer keyboard.

• String data is a list of characters, for example a word in a sentence, or someone’s name.

• Numeric (real) data – includes all numbers, both whole and fractional.

• Integer data includes only whole numbers.

• Boolean data has only two values, TRUE and FALSE.

• A 1-D (one-dimensional) array is a structure that stores multiple values of the same data type using a single variable name.

• Each part of an array is called an element.

• Each element in an array is identified by the variable name and a subscript.

• Arrays that have one number as their subscript are called one-dimensional arrays.

[image:]

CHAPTER 5

Software implementation (computational constructs)

This chapter describes basic computational constructs required for programming in any language. The following topics are covered

• describe, exemplify and implement the appropriate constructs in a high-level (textual) language

 • expressions to assign values

 • expressions to return values using arithmetic operations (addition, subtraction, multiplication, division and exponentiation)

 • expressions to concatenate strings

 • selection constructs using simple conditional statements with <, >, ≤, ≥, =, ≠ operators

 • logical operators (AND, OR, NOT)

 • selection constructs using complex conditional statements

 • iteration and repetition using fixed and conditional loops

 • predefined functions (with parameters)

 • random

 • round

 • length

• read and explain code that makes use of the above constructs.

Remember that this book is not a programming manual. Your teacher or lecturer will provide you with material to suit your chosen software development environment(s).

Computational constructs

A computer can carry out any process if it is given a set of instructions to tell it what to do. The set of instructions that control how a computer works is called a program. Programs are written in computer languages. Two types of computer language are machine code and high-level language. Machine code is the computer’s own language. Machine code is written in binary using only the numbers 1 and 0. A computer language that uses normal or everyday language is called a high-level language. The examples that we will look at in this chapter are all written in high-level languages.

What are computational constructs?

Computational means using computers. To construct something is to build it or put it together out of a set of parts. Computational constructs are therefore the parts of a programming language that are used to create a computer program.

Expressions to assign values to variables

Assignment

An assignment statement is used to give a value to a variable. Assignment statements are often used at the beginning of a program to give an initial value to a variable, for example 0.

[image:]

This means that the variable number is given the value 0, and the variable name$ is given the text ‘Mark’. Later on in the program, another assignment statement may be used to update the value of the variable number to contain a different value, for example:

[image:]

What value does the variable number now contain?

Figure 5.1 shows an example of assignment from Scratch®.

[image:]

Expressions to return values using arithmetic operations

Objects and operations

What is an operation?

An operation is a process that is carried out on an item of data. There are several types of operations used in programming. These include arithmetical, relational and logical operations.

What is an object?

An object is the item of data that is involved in the process.

Arithmetical operations

Arithmetical operations are calculations involving numbers. The set of arithmetic operators includes add, subtract, multiply, divide and exponent (power of). These operators are represented in many programming languages by using the symbols +, -, *, / ,^ and **.

Examples of arithmetical operations

[image:]

Expressions to concatenate strings

String operations can process string data. String operations include joining strings, known as concatenation, and selecting parts of strings, known as substrings.

Examples of string operations

[image:]

*Note that some languages use ‘&’ instead of ‘+’ for concatenation.

Some other string operations include

• changing strings to numbers and numbers to strings

• changing characters into their ASCII values and ASCII values into characters

• changing case – ‘j’ to ‘J’ and vice versa

• removing blank spaces from a string.

(Some languages may not contain specific keywords for all of these operations.)

Relational operations

Relational operations use relational operators to compare data and produce an answer of true or false. The set of relational operators includes

	=

	equals

	==

	compared to

	>

	greater than

	<

	less than

	> =

	greater than or equal to

	< =

	less than or equal to

	≠ or <> or !=

	is not equal to.

Relational operators may be used in program control structures such as selection and repetition.

[image:]

Reminder

• Remember: When entering a relational operator like > = into a program, there is no space between the two characters > and =.

[image:]

Examples of relational operations

[image:]

Logical operations

The set of logical operators includes AND, OR and NOT. Logical operations are usually combined with relational operations in program control structures, like those involving an IF condition.

Examples of logical operations

[image:]

[image:]

Check Your Learning

Now answer questions 1–7 (on page 76) on Computational constructs and data types

[image:]

[image:]

Control structures

The control structures used in programming are sequence, selection and repetition (iteration). Examples of the use of these control structures are given here.

Sequence

Sequence means the order in which things are done. For example, remove clothes, take shower, dry off, put on clothes, is a sequence of operations. Putting these operations into the wrong order could cause a few problems. Just so with programming; the sequence or order in which you give instructions to the computer is important.

[image:]

The purpose of sequence is to ensure that instructions given to the computer in the form of a computer program are carried out (or executed) in the correct order.

Consider the following example algorithm, given in pseudocode:

[image:]

This example will work correctly if, and only if, the steps are followed in the correct sequence, and none of the steps is missed out.

What would happen if the following algorithm were used?

[image:]

Selection constructs using simple and complex conditional statements

Selection means making a choice or deciding something. Selection is based on one or more conditions, used together with a control structure such as IF. Conditions have values; they may be either true or false. The control structure IF is also known as a conditional statement.

[image:]

Examples of conditions

[image:]

These conditions may be used together with a suitable control structure, like an IF statement, in order to carry out selection, like this:

[image:]

This is an example of a simple condition.

[image:]

This is an example of a complex condition.

In each case, the condition is tested and if true, then the appropriate action is carried out. Selection allows the sequence of execution of program statements to be changed. This has the effect of increasing the number of possible pathways that may be followed through a program.

The control structure commonly used to allow selection is IF … THEN … ELSE … END IF.

The IF structure is suitable for use when a single selection (or a limited number of selections) is to be made.

The general form of the IF structure is:

[image:]

Example of an algorithm that uses the IF structure

[image:]

Iteration and repetition using fixed and conditional loops

A loop is a programming construct that is used to allow a process to take place over and over again. Loops may be either fixed or conditional. Repetition and iteration are terms that are both used to refer to a loop in programming. This book makes no distinction between repetition and iteration.

[image:]

Fixed loops

The purpose of a fixed loop is to repeat a set of program statements for a predetermined number of times. Fixed loops are controlled by a variable called a loop counter. The purpose of a loop counter is to count up the number of times the loop structure is to be repeated between the two limits set at the start of the loop. The loop counter may also be used for calculations inside the loop or be displayed in order to count entries, for example.

The general form of a fixed loop is:

[image:]

*Note ………… stands for lines of program code inside the loop.

Examples of algorithms that use fixed loops

[image:]

[image:]

One feature of fixed loops in some programming languages is that they can increase or decrease in steps other than one. The keyword STEP is used for this. The purpose of the next example is to display all the even numbers from 2 to 30.

[image:]

Loops may occur inside other loops: these are called nested loops.

[image:]

One form of fixed loop is particular to structured data types or arrays (see later in this chapter for more detail). This is the FOR … EACH loop.

[image:]

Only some high-level languages use the keywords FOR … EACH. One such language is LiveCode. An example implementation is shown in that section.

[image:]

Conditional loops

The purpose of a conditional loop is to manage the situation where the number of times repetition must take place is not known in advance. Statements inside this type of loop may be carried out once, many times or not at all, depending upon one or more test conditions that are attached to the control structure of the loop.

The difference between a fixed loop and a conditional loop is that a fixed loop always repeats the same number of times, but a conditional loop could repeat any number of times, or not at all.

The following are advantages of using conditional loops:

• The amount of data to be processed need not be known in advance.

• A mathematical calculation can continue until an answer is found.

• More than one exit condition may be used, for example the loop could continue until the result is obtained or an error is found.

There are two types of conditional loop, each taking its name from the position of the test condition, either at the start or at the end of the loop. These are called test at start and test at end.

The program statement(s) inside a conditional loop with test at start may not be run at all if the test condition is not met. The program statement(s) inside a conditional loop with test at end is always run at least once. When this type of loop (conditional with test at end) is used for repeated data entry, like taking in a list of names or numbers, a terminating value or sentinel value is often used. The terminating value should be carefully chosen to be different from the actual data that is being entered.

The general form of a conditional loop with test at start is:

[image:]

The general form of a conditional loop with test at end is:

[image:]

*Note: ………… stands for lines of program code inside the loops.

Examples of algorithms that use conditional loops

[image:]

[image:]

[image:]

[image:]

Check Your Learning

Now answer questions 8–25 (on pages 76–77) on Control structures.

[image:]

Procedures and functions

When a program is designed and written, it is divided into smaller sections called subprograms. Subprograms may be called in any order in a program, and they may be reused many times over. Each subprogram performs a particular task within the program. Subprograms may be written at the same time as the rest of the program or they may be prewritten. High-level procedural languages use two types of subprograms. These are procedures and functions.

Procedures

Before a procedure may be used in a program, it must be defined. Defining a procedure gives it a name. Using a procedure in a program is known as calling the procedure. A procedure produces an effect in a program. An example of a procedure definition and a procedure call are shown below. Note that in some programming languages, a procedure definition must be placed first in the code before it is called.

Example of a procedure definition

[image:]

Example of a procedure call in a program

[image:]

Functions

A function is similar to a procedure, but returns one or more values to a program. Like a procedure, a function must be defined and given a name before it can be used in a program.

Pre-defined functions (with parameters)

The functions described in this unit are already written as part of the programming language. These are known as pre-defined functions. A pre-defined function is a calculation that is built in to, or part of, a programming language. A parameter is information about a data item being supplied to a subprogram (function or procedure) when it is called into use. When the subprogram is used, the calling program must pass parameters to it. This is called parameter passing.

Example of a pre-defined function

The random function generates a random number between two numbers that are specified.

[image:]

Note: in Python, pre-saved modules sometimes need to be imported into a program in order for certain functions to be used. Random and math are two such modules. A module is a section of pre-written and pre-tested code that can be used in any program.

The round function returns a real or float number to the number of decimal places stated after the decimal point.

OEBPS/OEBPS/images/13-1.jpg

OEBPS/OEBPS/images/13-2.jpg

OEBPS/OEBPS/images/18-1.gif
“
No

e
[
=
[
=
@

Figure 3.6 Planting flowchart

OEBPS/OEBPS/images/21-7.gif
Dim found As Boolean
found = False

OEBPS/OEBPS/images/29-1.gif
WHY ARE YOU SENDING
ME TO TEACH COBOL TO
THE ELBONIANS?

WALLY CAN'T YOU
SAID RESCHEDULE
HE'S BUSY || THE CLASS?
THAT DAY.

KAy YOU'RE

DOES

TOMORROW SOLWVING

(WORK THE WRONG|

FoR you?) PROBLEM!
NV

.
-

WALLY IS THE ONE WHO

W dilbert com _seottadams@aol.com

OEBPS/OEBPS/images/33-1.gif
SOMEWHERE. IN ELBONIA

T'VE BEEN SENT TO
TEACH YOU COBOL.

scottadams@aol.com

www.dilbert.com

WE DONT
HAVE ANY

COMPUTERS.

1998 United

(... AND IF YOU HAD A
| KEYBOARD, YOU WOULD

... HOW

Figure 5.6

OEBPS/OEBPS/images/21-6.gif
Dim price As Single

OEBPS/OEBPS/images/29-3.gif
algorithm to add two numbers

Calculate total as first number + second number ¢— PROCESS
Display the total «— OUTPUT

s Ask for the first number

% Get the first number 4= INPUT
o Ask for the second number

4. Get the second number +— INPUT
5o

6.

OEBPS/OEBPS/images/34-1.gif
REPEAT

UNTIL condition is true

OEBPS/OEBPS/images/29-2.jpg
Figure 5.3 Sequence is important!

OEBPS/OEBPS/images/33-2.gif
WHILE condition is true DO

END WHILE

OEBPS/OEBPS/images/21-5.gif
Dim score As Integer

OEBPS/OEBPS/images/17-1.gif
Quiz problem

l_l_l

Display
instructions

QFEAT 5 mh

————

Figure 3.5 One type of design notation

s IF the
Display a G answer is
question answer e

Display
“Congratulations”

OEBPS/OEBPS/images/35-3.gif
from random import *
print (randint(1,100))

@ Sample Output
66

OEBPS/OEBPS/images/35-2.gif
#main steps
setup ()
sum ()

OEBPS/OEBPS/images/34-3.gif
Press space bar to continue algorithm
1. REPEAT

2 Ask for the space bar to be pressed
3. Get a character

4 UNTIL character = " "

OEBPS/OEBPS/images/34-2.gif
Take in a word algorithm with test at end
1. REPEAT
Ask for a word to be entered
Get the word
UNTIL word = "end"

oW

OEBPS/OEBPS/images/35-1.gif
def sum():
total = numberOne+numberTwo
print(total)

OEBPS/OEBPS/images/34-4.gif
algorithm with test at start

Ask for a word

Get a word

WHILE NOT ((word = "end") OR (word = "END")) DO
Ask for a word
Get a word

END WHILE

AU W e

OEBPS/OEBPS/images/11-1.gif
Aversge

program
Take in Calculate Display
Initalee H H numbers average average value

REPEAT UNTIL
counter=numnars
raquirea

Ask the user to

Add number to
running total

o courter | Geta rumbar
Addie =ty entera rumber

/7 mepEAT UNTIL N

[s ;

/' tFnumber
is outwith
range

Geta number

Display error
message

Figure 3.1 Structure diagram examples

OEBPS/OEBPS/images/13-8.jpg

OEBPS/OEBPS/images/13-6.jpg

OEBPS/OEBPS/images/13-7.jpg

OEBPS/OEBPS/images/13-4.jpg

OEBPS/OEBPS/images/16-2.gif
CUSTOMERS ARE
COMPLAINING BECAUSE
OUR USER INTERFACE
1S CONFUSING.

FOR EXAMPLE, OUR OUR HELP

MENU CHOICE FOR MENU IS

DELETING A FILE LABELED

1S LABELED "SAVE "REFORMAT
L

@SCCTTAOANSSAYS

5

User interface

OEBPS/OEBPS/images/13-5.jpg

OEBPS/OEBPS/images/13-3.jpg

OEBPS/OEBPS/images/16-1.gif
INPUT SCREEN

How many numbers would you
like to enter?

Numbers required

Enter a number

Number

OUTPUT SCREEN

The average of the numbers i

Figure 3.3 Wireframe example

OEBPS/OEBPS/images/27-2.gif
print(*house" + "boat") would produce the result ‘houseboat’.
This is concatenation.

word = "mousetrap" would produce the result ‘mouse’.
print (word[:5]) This is selecting a substring.
print len (word$) would produce the result 9 (the

length of the string “mousetrap”).

OEBPS/OEBPS/images/31-1.gif
IF condition is true THEN
do something
ELSE
do something different
END IF

OEBPS/OEBPS/images/22-1.gif
QL
Crab Starfish
e
Robot1 Dinosaur3
Diver1 Diver2

Figure 4.1 Sprites (graphical objects) in the Scratch programming lanqguage

OEBPS/OEBPS/images/5-1.gif
THAT MEANS NO MORE
PLANNING AND NO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

. THAT
Ml was Yo
NAME, .~ TRAINING.

“scottadams @aol.com.

12607 ©2007 Scott Adams, Inc./DIst by UFS, Inc.

www.dilbert.com

Figure 1.2

OEBPS/OEBPS/images/27-1.gif
number_one + number_two

profit = sale_price - cost_price

storage_space = number_of_pixels

Kilobytes = bytes / 1024

area_of_circle = PI * radius"2
or
area_of_circle = 3.14 * radius **

colour_depth

2

the objects are number_one and
number_two, the operation is add

the objects are profit, sale_price and
cost_price, the operation is subtract

the objects are storage_space, number_
of_pixels and colour_depth, the
operation is multiply (times)

the objects are kilobytes and bytes,
the operation is divide

the objects are area_of_circle and
radius, the operation is exponent
(power of)

OEBPS/OEBPS/images/22-2.jpg
DL @) | e | o]

= an:
= o) <
-l
| =
.
O/Q.' L
*
g
a/em &

N a=a

Bunap ose

oy
oaionn =

Figure 4.2 It is easy to create a new sprite in Scratch

OEBPS/OEBPS/images/31-3.jpg
Figure 5.5 Repetition

OEBPS/OEBPS/images/31-2.gif
pass or fail algorithm

1

2
3
4
5

. IF pupil's test mark is greater than or equal to 50 THEN
Display a pass message

. ELSE
Display a fail message

. END IF

OEBPS/OEBPS/images/14-2.gif
[N}

ISR
G s W

N}

REPEAT
Add one to a counter
Ask the user to enter a number
Get a number
Add number to running total
UNTIL counter = numbers required

OEBPS/OEBPS/images/14-3.gif
[

(SIS}

.1 REPEAT

2 Get a number

.3 IF number is outwith range THEN display error message
.4 UNTIL number is within range

OEBPS/OEBPS/images/31-4.gif
FOR counter FROM start number TO finish number ... DO

END FOR

OEBPS/OEBPS/images/14-1.gif
s w o e

initialise
take in numbers
calculate average value
display average value

OEBPS/OEBPS/images/cover.jpg
COMPUTING
SCIENCE

SECOND EDITION

Jane Paterson
& John Walsh

ﬂ / -~ .‘- ' ‘ HODDER

OEBPS/OEBPS/images/32-1.gif
algorithm to display a name five times
1. FOR counter from 1 TO 5 DO

2. Display the word "name"

3. END FOR

OEBPS/OEBPS/images/23-1.jpg
Graphical objects in the Alice programming language

OEBPS/OEBPS/images/23-2.jpg
=

Figure 4.4 Graphical objects in the Greenfoot programming language

OEBPS/OEBPS/images/32-2.gif
algorithm to display one name a number of times

1. Ask how many times the word ‘name® should be
displayed

. Get the number of times

. FOR counter FROM 1 TO the number of times DO
Display the word "name"

. END FOR

Qo w

OEBPS/OEBPS/images/3-1.gif
Analysis

Implementation

Testing

Documentation

Evaluation

Figure 1.1 An iterative development methodology (the Waterfall model)

OEBPS/OEBPS/images/12-1.gif
Yes

6 No
Yes

i
-

Figure 3.2 Flowchart example

OEBPS/OEBPS/images/11-5.jpg

OEBPS/OEBPS/images/15-2.gif
REPEAT
Get the temperature of the jam
IF the temperature is greater than or equal to 105°C THEN
Switch off the heat
ELSE
Switch on the heat
END IF
UNTIL temperature is greater than or equal to 105°C

OEBPS/OEBPS/images/28-2.gif
number > 3 AND number < 10
answer = "N" OR answer = "n"
while NOT(passcode == 1234)

OEBPS/OEBPS/images/ii-1.gif
MIX

Paper from
responsible sources

EMSS FSC™ C104740

OEBPS/OEBPS/images/15-3.gif
Get the temperature of the jam
WHILE temperature is less than 105°C DO
Switch on the heat
Get the temperature of the jam
ENDWHILE
Switch off the heat

OEBPS/OEBPS/images/28-1.gif
if value >= 7:
while month < 12:

OEBPS/OEBPS/images/30-5.gif
IF Month >= 1 AND Month <= 12
Process the date
ELSE
Display an error message
END IF

THEN

OEBPS/OEBPS/images/11-3.jpg

OEBPS/OEBPS/images/32-4.gif
tab algorithm showing nested loops
1. FOR down FROM 1 TO 5 DO

2. FOR across FROM 10 TO 20 DO
3. Display * at tab (across, down)
4. END FOR

5. END FOR

OEBPS/OEBPS/images/tp.gif
SECOND EDITION

Jane Paterson
& John Walsh

DYNAMIC
LEARNING

OEBPS/OEBPS/images/11-4.jpg

OEBPS/OEBPS/images/15-1.gif
Get the temperature of the jam

IF the temperature is greater than
Switch off the heat

ELSE
Switch on the heat

END IF

Get the temperature of the jam

IF the temperature is greater than
Switch off the heat

ELSE
Switch on the heat

END IF

Get the temperature of the jam

IF the temperature is greater than
Switch off the heat

ELSE
Switch on the heat

END IF

Get the temperature of the jam

IF the temperature is greater than
Switch off the heat

ELSE
Switch on the heat

or

or

or

or

equal

equal

equal

equal

to

to

to

to

105°C

105°C

105°C

105°C

THEN

THEN

THEN

THEN

OEBPS/OEBPS/images/32-3.gif
algorithm showing a fixed loop with steps
1. FOR counter FROM 2 TO 30 STEP 2 DO

2. Display the counter

3. END FOR

OEBPS/OEBPS/images/rules.jpg

OEBPS/OEBPS/images/30-2.gif
Figure 5.4 Ballot box

OEBPS/OEBPS/images/11-2.jpg

OEBPS/OEBPS/images/30-1.gif
QoW e

Ask for the first number

Get the first number

Calculate total as first number
Ask for the second number
Display the total

+ second number

OEBPS/OEBPS/images/30-4.gif
IF age >= 18 THEN

Display "I can vote"
ELSE

Display "I can't vote"
END IF

OEBPS/OEBPS/images/30-3.gif
age = 18 is a simple condition

month>=1 AND month <=12 is a complex condition (two or
more simple conditions linked by the
logical operators AND, OR, NOT)

OEBPS/OEBPS/images/21-4.gif
name$
word$

OEBPS/OEBPS/images/21-3.gif
Dim name As String

name = ""

OEBPS/OEBPS/images/24-1.gif
DIM apples% (15)
apples = [0]*15

VAR apples : array [1..15] of integer;
int apples [15];

Dim apples(15) As Integer

OEBPS/OEBPS/images/26-2.gif
number = 10
number = number + 1

OEBPS/OEBPS/images/26-1.gif
number = 0

name$ = 'Mark"

OEBPS/OEBPS/images/32-5.gif
1. FOR EACH element FROM the array DO
2. Display element
3. END FOR EACH

OEBPS/OEBPS/images/21-2.gif
char capitald = 'J';

OEBPS/OEBPS/images/7-1.gif
YOUR PROTECT
SUMMARY NEEDS
MORE JARGON AND
ACRONYMS.

THE GOAL IS TO MAKE CHATL Dl
OURSELVES LOOK SMART ABOUT b
WHILE MAKING THE CRARTT AR NOTROCE

FRIEND ON
READERS FEEL DUMB. THIS ONE.

:
§
g

OrLeERTCOM

Figure 2.1

OEBPS/OEBPS/images/21-1.gif
Dim ThisCharacter As Char

OEBPS/OEBPS/images/26-3.jpg
timesinloop |

Figure 5.1 Assignment in Scratch

(o]

11]

