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INTRODUCTION


In recent years, many people have been looking for an answer to a straightforward question: What is the most important element when it comes to ensuring a successful garden or public space? University departments, individuals and organisations, including the Royal Horticultural Society, have asked those involved in creating gardens about their response to this simplest of queries.


It turns out that the consensus answer is colour. Of course, design, ease 


of use and construction are important, as is the role of gardens in health and wellbeing, growing food, as wildlife habitats and social gathering spaces. However, colour is usually top of the list, or very near the top. Colour, it seems, is fundamental to our enjoyment of gardens.


This is good news for all of us who like gardens because we have places that we can fill with colour. Not only that but, unlike most other human spaces, we don’t have to be satisfied with just one colour composition. Gardens are living things and respond to changing light conditions, weather patterns and daily, monthly and seasonal changes. If we know what we are doing, we can have three or more different colour palettes throughout the year. We can select colours that harmonise, or those that clash. We can create soft tonal compositions or bright vibrant displays. We can absorb or extend the colours of our natural surroundings, or introduce new colours to create a wholly new place. 


BELOW


This eye-catching display was created by combining the bold blooms of Dahlia, Helenium (sneezeweed) and Cleome (spider flower) with the colourful foliage


of Hosta, Heuchera, Cotinus and ornamental grasses.
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But isn’t colour very personal? It’s not the intention of this book to 


impart rules or make judgements about which colour or colour combination is better or worse than any other. Rather, it explains which colours work well, individually and in combination, so that you are inspired to copy, adapt or experiment with your own colour choices. A good understanding of colour will help you to create a style, a visual picture, a setting for outdoor living, a place that not only looks beautiful but also attracts wildlife, or a place that tells a visual story or transports you to another world.


HOW THE BOOK WORKS


We have divided the overall colour spectrum into 11 colours. Three of these – white, grey and black – are not colours of the spectrum, but are included to reveal their importance in gardens. From the outset, we acknowledged that colour is a visual phenomenon and one that is explained much better through images than words. Section 1: Colour Basics illustrates the principles of colour and how and why they work in gardens. Section 2: The Colours explores each colour in detail and includes an introduction to how the main colour can be combined with others to create different visual effects. The gallery pages illustrate plants that display key colour characteristics, along with information on their ultimate height and spread, light and moisture preference and flowering period. The RHS Plant Hardiness Ratings, see below, have been used to indicate hardiness. Suggestions for additional plants of the same type are also supplied. If you like a particular colour effect, you can use this information to check its suitability for your own garden, and then mimic the combination.


We have loved putting this book together. It is a treat to have been inspired by some beautiful gardens, designs and planting combinations. We hope this book also inspires you.


RHS PLANT HARDINESS RATINGS 


RATING TEMPERATURE RANGE (°C) CATEGORY USDA ZONES


H1a >15


Heated greenhouse – tropical 13


H1b 10 – 15


Heated greenhouse – subtropical 12


H1c 5 – 10


Heated greenhouse – warm temperate 11


H2 1– 5 


Tender – Cool or frost-free greenhouse 10b


H3 1 – -5


Half hardy – unheated greenhouse/mild winter 9b/10a


H4 -10 – -5


Hardy – average winter


8b/9a


H5 -15 – -10


Hardy – cold winter 


7b/8a


H6 -20 – -15


Hardy – very cold winter 


6b/7a


Very hardy


6a-1


For further information please go to the RHS website
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THE SCIENCE OF COLOUR


Of all our senses, we humans rely principally on vision to find our way around. Our eyes receive light that is reflected off the objects around us, then our brains interpret this light, creating a picture. Colour derives from different wavelengths that make up this light, and our ability to perceive it depends on the structure of the eye. It’s easy to consider the green colour of leaves as an inherent property, but the colour we see is determined by reflection of light and our capacity to decipher it.


ORIGIN OF THE EYE


The human eye works like a camera. Light enters through an aperture and is focused by a lens on to a light-sensitive surface. In cameras, that surface is either an electronic sensor (in digital cameras) or a piece of traditional photographic film. A shutter controls the amount of light entering the camera. In the human eye, the iris replaces the shutter, the pupil is the aperture and the retina forms the light-sensitive surface. Within the retina, photoreceptor cells detect light and generate electrical signals, which are transmitted via the optic nerve to the brain.


The evolution of the eye is complex, but essentially is thought to have occurred in four stages. The earliest eye was not an eye at all, but a simple photoreceptor cell, allowing its owner to determine whether it was light or dark. In stage two, dark pigments shielded part of the photoreceptor, so its owner could also tell from which direction light was coming. Animals could then move away from the shadow of a predator.


In its third iteration, numerous shielded photoreceptors clustered together, allowing an animal to build up a picture of its world in light and dark. Stage four eyes – and now they can be called eyes – have lenses and can focus the light, creating a sharp image. Some scientists believe that the development of the lens allowed animals to hunt one another more effectively, kicking off an evolutionary arms race. Predators and prey evolved increasingly complex eyes to hunt or escape more effectively. Lenses allowed animals to see in much greater detail, but not in colour.


SEEING RED


Colour vision is enabled by photoreceptor cells in the retina. Each human 


eye contains about 126 million of these cells, which can be divided, based on their shape, into rods and cones. Rod cells make up about 95 percent of all photoreceptors and are sensitive to light and dark, shape and motion. They do not, however, detect colour, which is the role of the much less common cone cells. Each cone contains a protein that undergoes a chemical reaction when exposed to certain wavelengths of light. Colour blindness can result from a genetic abnormality whereby the body fails to produce one of the three cone cell pigments. At night, human vision also lacks colour, because only the super-sensitive rod cells can function in low light and they cannot detect colour.


Humans are unusual among mammals in that they have three types of cone cells (trichromatic) and so can detect a range of wavelengths that centre roughly on three colours: red, green and blue. Dogs and most other mammals 
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RIGHT


Plants produce red fruits 


in order to attract birds and other animals, which ultimately distribute their seeds away from the parent plant. Red is a common colour for fruits and this may have driven the evolution of colour vision in primates, including humans.


only have two types of cone (dichromatic) and therefore a more limited colour palette. Many birds and insects have four cone types (tetrachromatic) and are therefore more sensitive to colour than we are. Why the differences? Types of colour vision can correlate with habitat. Marine mammals, such as whales and seals, plus some nocturnal species, such as raccoons, have only one cone type (monochromatic). If you live underwater or only venture out at night, then colour is less relevant.


Trichromatic colour vision in humans and other primates may have its origins in our diet. Most mammals lack the cone cells that are sensitive to red, but they allow us to spot colourful fruits hanging in the forest. A sensitivity to red may also have a social function: many primates express their feelings by flushing their faces (or other parts of their anatomy) with blood. We may have left the forest behind, but people are still extremely sensitive to the colour red, which is why it is used in warning signs, traffic lights, make-up and advertisements.


SEEING RED 
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THE COLOUR SPECTRUM


The plants in our gardens rely on light emitted by the sun to fuel their growth and development. Sunlight is one of several types of radiation that form the electromagnetic spectrum and each has its own characteristic range of wavelengths and frequencies. Most electromagnetic radiation, including microwaves, radio waves, X-rays and gamma rays, is invisible to humans, but a narrow band of wavelengths is perceptible. Known as visible light, it includes all the colours of the rainbow, from violet to red; when the colours are combined, they produce white light.


White light can be made to reveal its constituent colours using a prism, which is typically a glass object with angled sides. When white light travels through the prism, it deviates off course and exits at a different angle. The degree of deviation depends on wavelength; the shorter the wavelength, the more the light deviates. Red has the longest wavelength of the visible colours, so deviates least, while violet deviates most; a single beam of white light enters the prism, but the full colour spectrum exits. Rainbows are formed in this fashion, with raindrops acting as miniature prisms. Raindrops are spherical, so not only does the sunlight split into colours, it also bounces back off the inside wall of the raindrop, reflecting the colours towards the viewer, who sees a rainbow.


ABOVE


The centre of a daisy as seen by the human eye.


ABOVE


The centre of a daisy as seen by an insect.
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REFLECTION AND ABSORPTION


The visible colour of a tomato is determined by how it interacts with light.


When sunlight shines on any object, it can be transmitted, reflected or absorbed. Light is transmitted when the object is transparent, as with a pane of glass, but obviously, no tomatoes are see-through. Rather, the tomato absorbs most of the light, but reflects the red light and so appears to be red. Green leaves reflect green light, while yellow sunflowers reflect yellow light. White flowers reflect all the colours at once, while black flowers absorb all those colours and reflect none.


But what determines which colours are absorbed or reflected? Electrons. These tiny charged particles within atoms vibrate and if the frequency of their vibration matches the frequency of a light wave, then that wave is absorbed. When the frequencies don’t match, the light wave is transmitted or reflected. Naturally occurring pigments within plants determine whether light is absorbed or reflected and therefore what the visible colour of the plant will be. Most plants contain a range of different pigments; some are essential components of photosynthesis, while others give flowers and fruits their eye-catching colours. Photosynthetic pigments tend to absorb red and blue light, reflecting green, and it’s the chemical structure of these pigments that determines how they interact with light waves.


BEYOND THE VISIBLE


For gardeners, the colours of the visible spectrum are our only concern, but some garden visitors can see outside this narrow range of wavelengths. Ultraviolet (UV) lies just beyond violet and is visible to some birds and insects. It can harm living tissues; in humans, it damages DNA in the


skin. The body attempts to reduce this damage by infusing the skin with the pigment melanin, which absorbs UV. This is why we develop a tan when exposed to sunlight. Plants are also at risk of UV injury and likewise produce pigments (mainly a class of compounds called phenolics) that can absorb UV. As they are rooted to the ground and so cannot escape the rays of the sun, this natural sunscreen is essential. Schlumbergera (Christmas cactus) generally has green stems, but when moved out 


of the shade and into the light, it can flush purple. It is protecting itself from the increase in light by producing protective pigments.


Flowers that appear a single colour to the human eye often reveal noticeable patterns when viewed under UV. By altering the distribution of UV-absorbing pigments within the petals, flowers produce distinctive markings that are visible to pollinating insects. A ‘bullseye’ pattern 


is especially common, whereby the centre of the flower absorbs UV, appearing darker than the petal tips, which reflect UV. Scientific studies show that these patterns increase the number of visits to flowers by pollinating insects. Carnivorous plants also take advantage of this phenomenon; some species bear traps adorned with UV-absorbing pigments, thus enticing unfortunate insects.


OPPOSITE


The flowers of many daisies appear quite different 


to pollinating insects than they do to the human eye. The centre of this gerbera reflects ultraviolet (right), so appearing brighter than the rest of the bloom, indicating to insects where the reward lies.
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COLOUR WITHOUT PIGMENT


Chemical pigments are responsible for most of the colours we see, but some plants develop physical structures that influence the way light is reflected. Ranunculus (buttercups) are famous for their glowing yellow flowers; they’ve shone yellow light on to the chins of many generations of children. As in most blooms, the yellow colour is produced by pigments that reflect yellow light, but the outer layer (epidermis) of the petals is structured to magnify the reflection. Not only are epidermal cells extremely flat, so better for reflection, but a thin layer of air below mirrors light, amplifying the overall effect.


When light is reflected by several layers and thus amplified, the effect is known as iridescence. It’s common in animals, generating the metallic sheen on starling feathers and butterfly wings, but less so in plants. Begonia pavonina (peacock begonia) is an exception as its green leaves have a distinctive blue sheen. The colour is not the result of pigments; blue light reflects from highly organised tissue layers within the leaf. These begonias grow in the shade of the rainforest and the arrangement of their leaf tissues allows for more effective light absorption. The reflected blue is a pleasing side effect. Iridescent leaves are often found in shade plants, including Selaginella willdenowii (ferns) and Masdevallia caesia (orchids), but also in some plants that grow at high altitudes, such as Stegolepis.


While iridescence in leaves appears to be a side effect, its appearance 


in flowers is undoubtedly part of the bloom’s attractiveness to pollinators. Ophrys speculum (Mediterranean mirror orchid) gets its name from the reflective blue patch in the centre of the flower. The blooms closely resemble their pollinating insects who visit not to feed, but so they can mate with these doppelgängers. The petals have a fringe of hairs and the shiny surface likely imitates the iridescent pollinator’s body. As in buttercups, the shine is due to smooth epidermal cells that readily reflect light.


Pollia condensata (marble berry) is a tropical herb from Africa and has iridescent berries that rival butterflies with their blue shimmer. Beneath the surface, the fruits contain an array of minute fibres arranged in spirals, which reflect certain wavelengths of light. They also modify light of other wavelengths, adjusting it until it matches the reflected light. This amplifies the berries’ shine. Most fruits owe their colour to pigments, which fade over time, but the colour of marble berries is structural and can last for decades when the berries are preserved.


ON THE SURFACE


Iridescence is caused by structures within and below the surface, but hairs and scales upon the surface can also affect their colour. Many Tillandsia (air plants) are covered in scales that absorb water. When dry, they reflect light and appear silver, but when wet the scales become transparent, transmitting light so 


you can see the green leaf underneath. Air plants use their roots to attach themselves to tree branches and therefore rely on scales to absorb most of their water. Species found in arid habitats appear more silvery than those from humid environments because they are more scaly. Extra scales not only help to absorb more water, but also protect plants from UV radiation.


OPPOSITE, TOP LEFT


Tillandsia (air plants) 


are covered in trichomes, shield-like hairs that can absorb water from rain and mist. This coating gives them a silvery appearance, though when wet the trichomes become transparent and the plants appear green.


OPPOSITE, TOP RIGHT


Many drought-tolerant succulents, such as this Echeveria, are coated in wax, which reflects damaging ultraviolet and reduces evaporative water loss from the leaves. A waxy coating can give such plants a blue or silvery appearance.


OPPOSITE, BOTTOM LEFT


The Selaginella willdenovii (peacock fern) is one of many understorey plants with iridescent foliage.


This effect is created by the reflection of light from layers of highly organised cells within the leaves. Most of the light is absorbed, but some blue wavelengths reflect.


OPPOSITE, BOTTOM RIGHT


The flowers of Ophrys speculum (looking glass orchid) have iridescent patches on the centres of the largest petals. Together with the surrounding fringe of hairs, these flowers resemble wasps and the illusion is sufficient to attract males, who copulate with the blooms, pollinating them.
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Many plants produce wax or hairs on their leaves, which can radically alter their colour and appearance. Both strategies are common in plants subjected to drought and these additions serve several purposes. Pores in plant leaves allow for gas exchange; carbon dioxide is absorbed and oxygen is released 


as part of photosynthesis. Unfortunately, water vapour is also lost, but hairs and waxes reduce evaporation. Waxy and hairy leaves are often white or silver in colour, so can reflect sunlight and harmful UV radiation. This is a useful indicator when choosing plants for the garden as any with hairy or waxy leaves are good choices for dry, sunny locations.


The colours we see in our gardens are the result of complex interactions between sunlight and pigments, but also cells, fibres, hairs and other structures within and on the surface. What’s more, the image we perceive depends upon an intricate array of photoreceptors inside our eyes and the way in which our brain interprets signals it receives. Colour is complex.


ON THE SURFACE
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PLANTS IN COLOUR


From flower petals to juicy berries, peeling bark to autumn foliage, plants use colour in many different ways. By carefully weaving together these components, gardeners can create a landscape that’s rich in tone and texture. Of course, plants don’t produce these colours for our benefit, but to advance their own agendas. Colour attracts pollinating insects, or hungry birds ready to scatter seeds long distance.


GOING GREEN


Leaves are food factories. Utilising energy from the sun, they combine 


water and carbon dioxide to produce carbohydrates and oxygen. This 


is photosynthesis and its importance cannot be overstated. Plants use carbohydrates to live and grow; herbivores feed on the plants and are themselves eaten by carnivores, and so plants lie at the start of almost all food chains. We rely on photosynthesis not only for food, but also for the oxygen we need to breathe. The process is wholly dependent on colourful pigments, mainly chlorophyll, found within minute structures called chloroplasts. These are concentrated within the leaves, but are also found in other green tissues.


As with any other pigment, chlorophyll absorbs or reflects different wavelengths of light. The colours blue and red are most strongly absorbed, while green is reflected, which is why most plants appear green to our eyes. Having absorbed light energy from the sun, chlorophyll molecules pass it on, facilitating the chemical reactions of photosynthesis. Given its crucial role, a lack of chlorophyll is a serious problem for plants. The pigment contains magnesium, a nutrient acquired from the soil, which can be in short supply. Plants lacking magnesium quickly develop an unhealthy yellowing between the leaf veins, known as chlorosis. Genetic abnormalities can also result in a lack of chlorophyll; albino plants lack some or all of this pigment and seldom survive. 


LEFT


The green pigment chlorophyll is essential 


to plants as it facilitates photosynthesis. In autumn, when cooler temperatures presage the end of the growing season, plants reabsorb their chlorophyll. This causes leaves to change colour as the remaining carotenoid pigments are revealed.
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The quantity and type of chlorophyll within a leaf can also vary depending on the amount of light received. Leaves that are shaded tend to be darker than those more fully exposed to light as plants can concentrate their chlorophyll for more efficient photosynthesis.


OTHER COLOURS


Chlorophyll is not the only pigment involved in photosynthesis. Carotenoids also plays a part in light absorption. Named after carotene, originally extracted from carrots, these orange, red and yellow pigments can be found in fruits, flowers and roots. Two other pigment groups produce colour in plants: anthocyanins and betalains, though neither is directly involved in photosynthesis. Anthocyanins are red, purple or blue and can be found in all plant parts, including cherries and red cabbage. Betalains are red and yellow pigments and only occur in the plant order that includes cacti, carnations and beetroot.


While most leaves are green for most of the year, the leaves of deciduous plants will often change colour as winter approaches. Prior to leaf drop, green chlorophyll is reabsorbed by the plant for use the following spring. Once green is gone, the vivid yellows and oranges of existing carotenoid pigments shine through. In some species, anthocyanins are produced in leaves in late summer, adding reds and purples to the autumn leaf palette. Unlike flower colour, which is largely fixed, autumn leaf colour is strongly influenced by environmental factors such as light, temperature and soil acidity. Cool, dry, sunny weather in autumn, plus an acidic soil, can all improve the show. Autumn is not the only season for leaf colour; in plants such as Pieris, spring growth emerges red, gradually changing to green. This could be because immature leaves are soft and vulnerable to predation, but as they lack chlorophyll they are of less nutritional value and may be avoided by herbivores. The red colour is due to anthocyanins. Green may predominate in leaves, but occasionally they can put on a show of colour that outclasses any flower.


RIGHT


Plants contain a range 


of different pigments and one of the most important groups are anthocyanins. These give the red, purple, blue or black colours found in various flowers, fruits and leaves. Meconopsis (Himalayan poppies) rely on anthocyanins to colour their blue petals.


OTHER COLOURS
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FLOWER POWER


No plant part contributes more colour to gardens than the flower. Existing 
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BEYOND THE VISIBLE

For gardeners, the colours of the visible spectrum are our only concern,
but some garden visitors can see outside this narrow range of wavelengths.
Ultraviolet (UV) lies just beyond violet and is visible to some birds and
insects. It can harm living tissues; in humans, it damages DNA in the
skin. The body attempts to reduce this damage by infusing the skin with
the pigment melanin, which absorbs UV. This is why we develop a tan
when exposed to sunlight. Plants are also at risk of UV injury and likewise
produce pigments (mainly a class of compounds called phenolics) that
can absorb UV. As they are rooted to the ground and so cannot escape
the rays of the sun, this natural sunscreen is essential. Schlumbergera

Flowers that appear a single colour to the human eye often reveal
noticeable patterns when viewed under UV. By altering the distribution
of UV-absorbing pigments within the petals, flowers produce distinctive
markings that are visible to pollinating insects. A ‘bullseye’ pattern
is especially common, whereby the centre of the flower absorbs UV,
appearing darker than the petal tips, which reflect UV. Scientific studies
show that these patterns increase the number of visits to flowers by
pollinating insects. Camivorous plants also take advantage of this
phenomenon; some species bear traps adorned with UV-absorbing
pigments, thus enticing unfortunate insects.
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This eye-catching display
was created by combining
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