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			Introduction

			Almost everything

			My four-year-old son loves playing out in the garden. His favourite activity is digging up and inspecting creepy crawlies, especially snails. If he is patient enough, after the initial shock of being uprooted, they will emerge cautiously from the safety of their shells and start to glide over his little hands leaving viscid trails of mucus. Eventually, when he tires of them, he will discard them, somewhat callously, in the compost heap or on the woodpile behind the shed.

			Late last September, after a particularly busy session in which he had unearthed and disposed of five or six large specimens, he came to me as I was sawing up wood for the fire and asked ‘Daddy, how many snails is [sic] there in the garden?’ A deceptively simple question for which I had no good answer. It could have been 100 or it could have been 1000. To be quite honest, he would not have comprehended the difference. Nevertheless, his question piqued an interest in me. How could we figure this out together?

			We decided to conduct an experiment. The next weekend, on Saturday morning, we went out to collect snails. After ten minutes, we had a total of 23 of the gastropods. I took a sharpie from my back pocket and proceeded to place a subtle cross on the back of each one. Once they were all marked up, we tipped up the bucket and released the snails back into the garden.

			A week later we went back out for another round. This time, our ten-minute scavenge brought us just 18 snails. When we inspected them closely we found that three of them had the cross on their shells, while the other 15 were unblemished. This was all the information we needed to make the calculation.

			The idea is as follows: the number of snails we captured on the first day, 23, is a given proportion of the total population of the garden, which we want to get a handle on. If we can work out this proportion then we can scale up the number of snails we caught to find the total population of the garden. So we use a second sample (the one we took the following Saturday). The proportion of marked individuals in this sample, 3/18, should be representative of the proportion of marked individuals in the garden as a whole. When we simplify this proportion, we find that the marked snails make up one in every six individuals in the population at large (you can see this illustrated in Figure 1). Thus we scale up the number of marked individuals caught on the first day, 23, by a factor of 6 to find an estimate for the total number of snails in the garden, which is 138.

			[image: ]

			Figure 1: The ratio (3:18) of the number of snails recaptured (marked OX) to the total number captured on the second day (marked O) should be the same as the ratio (23:138) of the number captured on the first day (marked X) to the total number of snails in the garden (marked and unmarked).

			After finishing this mental calculation I turned to my son, who had been ‘looking after’ the snails we had collected. What did he make of it when I told him that we had roughly 138 snails living in our garden? ‘Daddy,’ he said, looking down at the fragments of shell still clinging to his fingers, ‘I made it dead.’ Make that 137.

			This simple mathematical method, known as capture–recapture, comes from ecology, where it is used to estimate animal population sizes. You can use the technique yourself, by taking two independent samples and comparing the overlap between them. Perhaps you want to estimate the number of raffle tickets that were sold at the local fair or to estimate the attendance at a football match using ticket stubs rather than having to do an arduous head count.

			Capture–recapture is used in serious scientific projects as well. It can, for example, give vital information on the fluctuating numbers of an endangered species. By providing an estimate of the number of fish in a lake,1 it might allow fisheries to determine how many permits to issue. Such is the effectiveness of the technique that its use has evolved beyond ecology to provide accurate estimates on everything from numbers of drug addicts2 in a population to the number of war dead in Kosovo.3 This is the pragmatic power that simple mathematical ideas can wield. These are the sorts of concepts that we will explore throughout this book and that I use routinely in my day job as a mathematical biologist.

			•

			When I tell people I am a mathematical biologist, the reaction I get is usually a polite nodding of the head accompanied by an awkward silence, as if I was about to test them on their recall of the quadratic formula or Pythagoras’ theorem. More than simply being daunted, people struggle to understand how a subject like maths, which they perceive as being abstract, pure and ethereal, can have anything to do with a subject like biology, which is typically thought of as being practical, messy and pragmatic. This artificial dichotomy is often first encountered at school: if you liked science but you weren’t so hot on algebra, then you were pushed down the life sciences route. If, like me, you enjoyed science but you weren’t into cutting dead things up (I fainted once, at the start of a dissection class, when I walked into the lab to see a fish head sitting at my bench space) then you were guided towards the physical sciences. Never the twain shall meet.

			This happened to me. I dropped biology at sixth-form and took A-levels in maths, further maths, physics and chemistry. When it came to university, I had to further streamline my subjects, and felt sad that I had to leave biology behind forever; a subject I thought had incredible power to change lives for the better. I was hugely excited about the opportunity to plunge myself into the world of mathematics, but I couldn’t help worrying that I was taking on a subject that seemed to have very few practical applications. I couldn’t have been more wrong.

			Whilst I plodded through the pure maths we were taught at university, memorising the proof of the intermediate value theorem or the definition of a vector space, I lived for the applied maths courses. I listened to lecturers as they demonstrated the maths that engineers use to build bridges so that they don’t resonate and collapse in the wind, or to design wings that ensure planes don’t fall out of the sky. I learned the quantum mechanics that physicists use to understand the strange goings-on at subatomic scales and the theory of special relativity that explores the strange consequences of the invariance of the speed of light. I took courses explaining the ways in which we use mathematics in chemistry, in finance and in economics. I read about how we use mathematics in sport to enhance the performance of our top athletes and how we use mathematics in the movies to create computer-generated images of scenes that couldn’t exist in reality. In short, I learned that mathematics can be used to describe almost everything.

			In the third year of my degree I was fortunate enough to take a course in mathematical biology. The lecturer was Philip Maini, an engaging Northern Irish professor in his forties. Not only was he the pre-eminent figure in his field (he would later go on to be elected to the Fellowship of the Royal Society), but he clearly loved his subject, and his enthusiasm spread to the students in his lecture theatre.

			More than just mathematical biology, Philip taught me that mathematicians are human beings with feelings, not the one-dimensional automata that they are often portrayed to be. A mathematician is more than just, as the Hungarian probabilist, Alfréd Rényi, once put it, ‘a machine for turning coffee into the­orems’. As I sat in Philip’s office awaiting the start of the interview for a PhD place, I saw, framed on the walls, the numerous rejection letters he had received from the Premier League clubs to whom he had jokingly applied for vacant managerial positions. We ended up talking more about football than we did about maths.

			Crucially at this point in my academic studies, Philip helped me to become fully reacquainted with biology. During my PhD under his supervision, I worked on everything, from understanding the way locusts swarm and how to stop them, to predicting the complex choreography that is the development of the mammalian embryo and the devastating consequences when the steps get out of sync. I built models explaining how birds’ eggs get their beautiful pigmentation patterns and wrote algorithms to track the movement of free-swimming bacteria. I simulated parasites evading our immune systems and modelled the way in which deadly diseases spread through a population. The work I started during my PhD has been the bedrock for the rest of my career. I still work on these fascinating areas of biology, and others, with PhD students of my own, in my current position as an associate professor (senior lecturer) in applied mathematics at the University of Bath.

			•

			As an applied mathematician, I see mathematics as, first and foremost, a practical tool to make sense of our complex world. Mathematical modelling can give us an advantage in everyday situations and it doesn’t have to involve hundreds of tedious equations or lines of computer code to do so. Mathematics, at its most fundamental, is pattern. Every time you look at the world you are building your own model of the patterns you observe. If you spot a motif in the fractal branches of a tree, or in the multi-fold sym­metry of a snowflake, then you are seeing maths. When you tap your foot in time to a piece of music, or when your voice reverberates and resonates as you sing in the shower, you are hearing maths. If you bend a shot into the back of the net or catch a cricket ball on its parabolic trajectory, then you are doing maths. With every new experience, every piece of sensory information, the models you’ve made of your environment are refined, reconfigured and rendered ever more detailed and complex. Building mathematical models, designed to capture our intricate reality, is the best way we have of making sense of the rules that govern the world around us.

			I believe that the simplest, most important models are stories and analogies. The key to exemplifying the influence of the unseen undercurrent of maths is to demonstrate its effects on people’s lives: from the extraordinary to the everyday. When viewed through the correct lens we can start to tease out the hidden mathematical rules that underlie our common experiences.

			The seven chapters of this book explore the true stories of life-changing events in which the application (or misapplication) of mathematics has played a critical role: patients crippled by faulty genes and entrepreneurs bankrupted by faulty algorithms; innocent victims of miscarriages of justice and the unwitting victims of software glitches. We follow stories of investors who have lost fortunes and parents who have lost children, all because of mathematical misunderstanding. We wrestle with ethical dilemmas from screening to statistical subterfuge and examine pertinent societal issues such as political referenda, disease prevention, criminal justice and artificial intelligence. In this book we will see that mathematics has something profound or significant to say on all of these subjects, and more.

			Rather than just pointing out the places in which maths might crop up, throughout these pages I will arm you with simple mathematical rules and tools that can help you in your everyday life: from getting the best seat on the train, to keeping your head when you get an unexpected test result from the doctor. I will suggest simple ways to avoid making numerical mistakes and we will get our hands dirty with newsprint when untangling the figures behind the headlines. We will also get up close and personal with the maths behind consumer genetics and observe maths in action as we highlight the steps we can take to help halt the spread of a deadly disease.

			As you’ll hopefully have worked out by now, this is not a maths book. Nor is it a book for mathematicians. You will not find a single equation in these pages. The point of the book is not to bring back memories of the school mathematics lessons you might have given up years ago. Quite the opposite. If you’ve ever been disenfranchised and made to feel that you can’t take part in mathematics or aren’t good at it, consider this book an emancipation.

			I genuinely believe that maths is for everyone and that we can all appreciate the beautiful mathematics at the heart of the complicated phenomena we experience daily. As we will see in the following chapters, maths is the false alarms that play on our minds and the false confidence that helps us sleep at night; the stories pushed at us on social media and the memes that spread through it. Maths is the loopholes in the law and the needle that closes them; the technology that saves lives and the mistakes that put them at risk; the outbreak of a deadly disease and the strategies to control it. It is the best hope we have of answering the most fundamental questions about the enigmas of the Cosmos and the mysteries of our own species. It leads us on the myriad paths of our lives and lies in wait, just beyond the veil, to stare back at us as we draw our final breaths.

		

	
		
			1

			Thinking Exponentially

			Exploring the Awesome Power and Sobering Limits of Exponential Behaviour

			Darren Caddick is a driving instructor from Caldicot, a small town in South Wales. In 2009 he was approached by a friend with a lucrative offer. By contributing just £3,000 to a local investment syndicate and recruiting two more people to do the same, he would see a return of £23,000 in just a couple of weeks. Initially, thinking it was too good to be true, Caddick resisted the temptation. Eventually though, his friends convinced him that ‘nobody would lose, because the scheme would just keep going and going and going’, so he decided to throw in his lot. He lost everything and, ten years on, is still living with the consequences.

			Unwittingly, Caddick had found himself at the bottom of a pyramid scheme that couldn’t ‘just keep going’. Initiated in 2008, the ‘Give and Take’ scheme ran out of new investors and collapsed in less than a year, but not before sucking in £21 million from over 10,000 investors across the UK, 90% of whom lost their £3,000 stake. Investment schemes that rely on investors recruiting multiple others in order to realise their payout are doomed to failure. The number of new investors needed at each level increases in proportion to the number of people in the scheme. After fifteen rounds of recruitment, there would be over 10,000 people in a pyramid scheme of this sort. Although that sounds like a large number, it was easily achieved by Give and Take. Fifteen rounds further on, however, and one in every seven people on the planet would need to invest to keep the scheme going. This rapid growth phenomenon, which led to an inevitable lack of new recruits and the eventual collapse of the scheme, is known as exponential growth.

			No use crying over spoilt milk

			Something grows exponentially when it increases in proportion to its current size. Imagine, when you open your pint of milk in the morning, a single cell of the bacteria Streptococcus faecalis finds its way into the bottle before you put the lid back on. Strep f. is one of the bacteria responsible for the souring and curdling of milk, but one cell is no big deal, right?4 Maybe it’s more worrying when you find out that, in milk, Strep f. cells can divide to produce two daughter cells every hour.5 At each generation, the number of cells increases in proportion to the current number of cells, so their numbers grow exponentially.

			The curve that describes how an exponentially growing quantity increases is reminiscent of a quarter-pipe ramp used by skaters, skateboarders and BMXers. Initially, the gradient of the ramp is very low – the curve is extremely shallow and gains height only gradually (as you can see from the first curve in Figure 2). After two hours there are four Strep f. cells in your milk and after four hours there are still only 16, which doesn’t sound like too much of a problem. As with the quarter-pipe though, the height of the exponential curve and its steepness rapidly increase. Quantities that grow exponentially might appear to grow slowly at first, but they can take off quickly in a way that seems unexpected. If you leave your milk out on the side for 48 hours, and the exponential increase of Strep f. cells continues, when you come to pouring it on your cereal again there could be almost a thousand trillion cells in the bottle – enough to make your blood curdle, let alone the milk. At this point the cells would outnumber the people on our planet 40,000 to one. Exponential curves are sometimes referred to as ‘J-shaped’ as they almost mimic the letter J’s steep curve. Of course, as the bacteria use up the nutrients in the milk and change its pH, the growth conditions deteriorate and the exponential increase is only sustained for a relatively short period of time. Indeed, in almost every real-world scenario, long-term exponential growth is unsustainable, and in many cases pathological, as the subject of the growth uses up resources in an unviable manner. Sustained exponential growth of cells in the body, for example, is a typical hallmark of cancer.
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			Figure 2: J-shaped exponential growth (left) and decay (right) curves.

			Another example of an exponential curve is a free fall waterslide, so called because the slide is initially so steep that the rider feels the sensation of free fall. This time, as we travel down the slide, we are surfing an exponential decay curve, rather than a growth curve (you can see an example of such a graph in the second image of Figure 2). Exponential decay occurs when a quantity decreases in proportion to its current size. Imagine opening a huge bag of M&Ms, pouring them out onto the table and eating all the sweets that land with the M-side facing upwards. Put the rest back in the bag for tomorrow. The next day, give the bag a shake and pour out the M&Ms. Again, eat the M-up sweets and put the rest back in the bag. Each time you pour the sweets out of the bag you get to eat roughly half of those that remain, irrespective of the number you start with. The number of sweets decreases in proportion to the number left in the bag, leading to exponential decay in the number of sweets. In the same way, the exponential water slide starts high up and almost vertical, so that the height of the rider decreases very rapidly; when we have large numbers of sweets the number we get to eat is also large. But the curve ever-so-gradually gets less and less steep until it is almost horizontal towards the end of the slide; the fewer sweets we have left, the fewer we get to eat each day. Although an individual sweet landing M-up or M-down is random and unforeseeable, the predictable waterslide curve of exponential decay emerges in the number of sweets we have left over time.

			Throughout this chapter we will uncover the hidden connections between exponential behaviour and everyday phenomena: the spread of a disease through a population or a meme through the internet; the rapid growth of an embryo or the all-too-slow growth of money in our bank accounts; the way in which we perceive time and even the explosion of a nuclear bomb. As we progress we will carefully unearth the full tragedy of the Give and Take pyramid scheme. The stories of the people whose money was sucked in and swallowed serve to illustrate just how important it is to be able to think exponentially, which in turn will help us anticipate the sometimes surprising pace of change in the modern world.

			A matter of great interest

			On the all-too-rare occasions when I get to make a deposit into my bank account, I take solace from the fact that no matter how little I have in there, it is always growing exponentially. Indeed, a bank account is one place where there are genuinely no limitations on exponential growth, at least on paper. Provided that the interest is compounded (i.e. interest is added to our initial amount and earns interest itself) then the total amount in the account increases in proportion to its current size – the hallmark of exponential growth. As Benjamin Franklin put it: ‘Money makes money, and the money that money makes, makes more money.’ If you could wait long enough, even the smallest investment would become a fortune. But don’t go and lock up your rainy-day fund just yet. If you invested £100 at 1% per year it would take you over 900 years to become a millionaire. Although exponential growth is often associated with rapid increases, if the rate of growth and the initial investment are small, exponential growth can feel very slow indeed.

			The flip side of this is that, because you are charged a fixed rate of interest on the outstanding amount (often at a large rate), debts on credit cards can also grow exponentially. As with mortgages, the earlier you pay your credit cards off and the more you pay early on, the less you end up paying overall, as exponential growth never gets a chance to take off.

			•

			Paying off mortgages and sorting out other debts was one of the main reasons given by victims of the Give and Take scheme for getting involved in the first place. The temptation of quick and easy money to reduce financial pressures was too much for many to resist, despite the nagging suspicion that something wasn’t quite right. As Caddick admits, ‘The old adage of “If something looks too good to be true, then it probably is” is really, really true here.’

			The scheme’s initiators, pensioners Laura Fox and Carol Chalmers, had been friends since their days at a Catholic convent school. The pair, both pillars of their local community – one vice-president of her local Rotary club, the other a well-respected grandmother – knew exactly what they were doing when they set up their fraudulent investment scheme. Give and Take was cleverly designed to ensnare potential investors, whilst hiding the pitfalls. Unlike the traditional two-level pyramid scheme, in which the person at the top of the chain takes money directly from the investors they have recruited, Give and Take operated as a four-level ‘aeroplane’ scheme. In an aeroplane scheme, the person at the top of the chain is known as the ‘pilot’. The pilot recruits two ‘co-pilots’, who each recruit two ‘crew members’, who finally each recruit two ‘passengers’. In Fox and Chalmers’ scheme, once the hierarchy of fifteen people was complete, the eight passengers paid their £3,000 to the organisers, who passed a huge £23,000 payout to the initial investor with £1,000 skimmed off the top. Part of this money was donated to charity, with letters of thanks from the likes of the NSPCC adding legitimacy to the scheme. Part was kept by the organisers to ensure the continued smooth operation of the scheme.

			Having received their payout, the pilot then drops out of the scheme and the two co-pilots are promoted to pilot, awaiting the recruitment of eight new passengers at the bottom of their trees. Aeroplane schemes are particularly seductive for investors, as new participants need only recruit two other people in order to multiply their investment by a factor of 8 (although, of course, these two are required to recruit two more and so on). Other, flatter, schemes require far more recruitment effort per individual for the same returns. The steep four-level structure of Give and Take meant that crew members never took money directly from the passengers they recruited. Since new recruits are likely to be friends and relatives of the crew members, this ensures that money never travels directly between close acquaintances. This separation of the passengers from the pilots, whose payouts they fund, renders recruitment easier and reprisals less likely, making for a more attractive investment opportunity and thus facilitating the recruitment of thousands of investors to the scheme.

			In the same way, many investors in the Give and Take pyramid scheme were given the confidence to invest by stories of successful payouts that had been made previously, and in some cases, even witnessing these payouts at first hand. The scheme’s organisers, Fox and Chalmers, hosted lavish private parties at the Somerset hotel owned by Chalmers. Flyers handed out at the parties included pictures of the scheme’s members, sprawled on cash-covered beds or waving fists of fifty-pound notes at the camera. To each of these parties the organisers also invited some of the scheme’s ‘brides’ – those people (mainly women) who had made it to the position of pilot of their pyramid cell and were due to receive their payouts. The brides would be asked a series of four simple questions such as ‘What part of Pinocchio grows when he lies?’ in front of an audience of 200 to 300 potential investors.

			This ‘quiz’ aspect of the scheme was supposed to exploit a loophole in the law, which Fox and Chalmers believed allowed for such investments if an element of ‘skill’ was involved. In mobile-phone footage of one such event, Fox can be heard shouting ‘We are gambling in our own homes and that’s what makes it legal.’ She was wrong. Miles Bennet, the lawyer prosecuting the case, explained, ‘The quiz was so easy that there were never any people in the payout position who didn’t get their money. They could even get a friend or a committee member to help with the questions and the committee knew what the answers were!’

			This didn’t stop Fox and Chalmers using these prize-giving parties as inoculants in their low-tech viral marketing campaign. Upon seeing the brides presented with their £23,000 cheques, many of the invited guests would invest and encourage their friends and family to do the same, forming the pyramid beneath them. Providing each new investor passed the baton to two or more others, the scheme would continue indefinitely. When Fox and Chalmers started the scheme, back in the spring of 2008, they were the only two pilots. By recruiting friends to invest and indeed help organise the scheme, the pair quickly brought four more people on board. These four recruited eight more and then 16 and so on. This exponential doubling of the numbers of new recruits in the scheme closely mimics the doubling of the number of cells in a growing embryo.

			The exponential embryo

			When my wife was pregnant with our first child we were obsessed, like many first-time parents-to-be, by trying to find out what was going on inside my wife’s midriff. We borrowed an ultrasound heart monitor in order to listen in to our baby’s heartbeat; we signed up for clinical trials in order to get extra scans; and we read website after website describing what was going on with our daughter as she grew and continued to make my wife sick on a daily basis. Amongst our ‘favourites’ were the ‘How big is your baby?’-type websites, which compare, for each week of gestation, the size of an unborn baby to a common fruit, vegetable or other appropriately sized foodstuff. They give substance to prospective parents’ unborn foetuses with epigrams such as ‘Weighing about one and a half ounces and measuring about three and a half inches, your little angel is roughly the size of a lemon’ or ‘Your precious little turnip now weighs about five ounces and is approximately five inches long from head to bottom’.

			What really struck me about these websites’ comparisons was how quickly the sizes changed from week to week. At week four, your baby is roughly the size of a poppy seed, but by week five, she has ballooned to the size of a sesame seed! This represents an increase in volume of roughly 16 times over the course of a week.

			Perhaps, though, this rapid increase in size shouldn’t be so surprising. When the egg is initially fertilised by the sperm, the resulting zygote undergoes sequential rounds of cell division, called ‘cleavage’, which allow the number of cells in the developing embryo to increase rapidly. First, it divides into two. Eight hours later these two further subdivide into four and, after eight more hours, four become eight, which soon turn into 16, and so on – just like the number of new investors at each level of the pyramid scheme. Subsequent divisions occur almost synchronously every eight hours. Thus, the number of cells grows in proportion to the quantity of cells comprising the embryo at a given moment in time: the more cells there are, the more new cells are created at the subsequent division. In this case, since each cell creates exactly one daughter cell at each division event, the factor by which the number of cells in the embryo increases is two; in other words, the size of the embryo doubles every generation.

			During human gestation the period in which the embryo grows exponentially is, thankfully, relatively short. If the embryo were to carry on growing at the same exponential rate for the whole pregnancy, the 840 synchronous cell divisions would result in a super-baby comprising roughly 10253 cells. To put that into context, if every atom in the universe were itself a copy of our universe then the total number of atoms in all these universes would be roughly equivalent to the number of super-baby’s cells. Naturally, cell division becomes less rapid as more complex events in the life of the embryo are choreographed. In reality the number of cells comprising an average new-born baby can be approximated at a relatively modest two trillion. This number of cells could be achieved in fewer than 41 synchronous division events.

			The destroyer of worlds

			Exponential growth is vital for the rapid expansion in the number of cells necessary for the creation of a new life. However, it was also the astonishing and terrifying power of exponential growth that led nuclear physicist J. Robert Oppenheimer to proclaim ‘Now I am become Death, the destroyer of worlds.’ This growth was not the growth of cells, nor even of individual organisms, but of energy created by the splitting of atomic nuclei.

			During the Second World War, Oppenheimer was the head of the Los Alamos laboratory where the Manhattan Project – to develop the atomic bomb – was based. The splitting of the nucleus (tightly bound protons and neutrons) of a heavy atom into smaller con­stitutive parts had been discovered by German chemists in 1938. It was named ‘nuclear fission’ in analogy to the binary fission, or splitting, of one living cell into two, as occurs to such great effect in the developing embryo. Fission was found either to occur naturally, as the radioactive decay of unstable chemical isotopes, or to be induced artificially by bombarding the nucleus of one atom with subatomic particles in a so-called ‘nuclear reaction’. In either case, the splitting of the nucleus into two smaller nuclei, or fission products, was concurrent with the release of large amounts of energy in the form of electromagnetic radiation, as well as the energy associated with the movement of the fission products. It was quickly recognised that these moving fission products, created by a first nuclear reaction, could be used to impact on further nuclei, splitting more atoms and releasing yet more energy: a so-called ‘nuclear chain reaction’. If each nuclear fission produced, on average, more than one product that could be used to split subsequent atoms, then, in theory, each fission could trigger multiple other splitting events. Continuing this process, the number of reaction events would increase exponentially, producing energy on an unprecedented scale. If a material could be found that would permit this unchecked nuclear chain reaction, the exponential increase in energy emitted over the short timescale of the reactions would potentially allow such a fissile material to be weaponised.

			In April 1939, on the eve of the outbreak of war across Europe, French physicist Frédéric Joliot-Curie (son-in-law of Marie and Pierre and also a Nobel Prize winner in collaboration with his wife), made a crucial discovery. He published in the journal Nature evidence that, upon fission caused by a single neutron, atoms of the uranium isotope, U-235, emitted on average 3.5 (later revised down to 2.5) high energy neutrons.6 This was precisely the material required to drive the exponentially growing chain of nuclear reactions. The ‘race for the bomb’ was on.

			With Nobel Prize winner Werner Heisenberg and other celebrated German physicists working for the Nazis’ parallel bomb project, Oppenheimer knew he had his work cut out at Los Alamos. His main challenge was to create the conditions that would facilitate an exponentially growing nuclear chain reaction allowing the almost instantaneous release of the huge amounts of energy required for an atom bomb. To produce this self-sustaining and sufficiently rapid chain reaction, he needed to ensure that enough of the neutrons emitted by a fissioning U-235 atom were reabsorbed by the nuclei of other U-235 atoms, causing them to split in turn. He found that, in naturally occurring uranium, too many of the emitted neutrons are absorbed by U-238 atoms (the other significant isotope, which makes up 99.3% of naturally occurring uranium)7 meaning that any chain reaction dies out exponentially instead of growing. In order to produce an exponentially growing chain reaction, Oppenheimer needed to refine extremely pure U-235 by removing as much of the U-238 in the ore as possible.

			These considerations gave rise to the idea of the so-called critical mass of the fissile material. The critical mass of uranium is the amount of material required to generate a self-sustaining nuclear chain reaction. It depends on a variety of factors. Perhaps most crucial is the purity of the U-235. Even with 20% U-235 (compared to the naturally occurring 0.7%), the critical mass is still over 400 kilograms, making high purity essential for a feasible bomb. Even when he had refined sufficiently pure uranium to achieve supercriticality, Oppenheimer was left with the challenge of the delivery of the bomb itself. Clearly he couldn’t just package up a critical mass of uranium in a bomb and hope it didn’t explode. A single, naturally occurring, decay in the material would trigger the chain reaction and initiate the exponential explosion.

			With the spectre of the Nazi bomb-developers constantly at their backs, Oppenheimer and his team came up with a hastily developed idea for the delivery of the atomic bomb. The ‘gun-type’ method involved firing one subcritical mass of uranium into another, using conventional explosives, to create a single supercritical mass. The chain reaction would then be kicked off by a spontaneous fission event emitting the initiating neutrons. The separation of the two subcritical masses ensured that the bomb would not detonate until required. The high levels of uranium enrichment achieved (around 80%) meant that only 20 to 25 kilograms were required for criticality. But Oppenheimer couldn’t risk the failure of his project ceding the advantage to his German rivals, so he insisted on much larger quantities.

			In the event, by the time enough pure uranium was finally ready, the war in Europe was already over. However, the war in the Pacific region raged on, with Japan showing little sign of surrender despite significant military disadvantages. Understanding that a land invasion of Japan would significantly increase the Americans’ already heavy casualties, General Leslie Groves, director of the Manhattan Project, issued the directive authorising the use of the atomic bomb on Japan as soon as weather conditions permitted.

			After several days of poor weather, caused by the tail end of a typhoon, on the 6th of August 1945 the sun rose in blue skies above Hiroshima. At 07:09 in the morning an American plane was spotted in the skies above Hiroshima and the air-raid warning sounded loudly across the city. Seventeen-year-old Akiko Takakura had recently taken up a job as a bank clerk. On her way to work as the siren sounded, she took refuge with other commuters in the public air-raid shelters strategically positioned around the city.

			Air-raid warnings were not an uncommon experience in Hiroshima; the city was a strategic military base, housing the headquarters of Japan’s Second General Army. So far, though, Hiroshima had largely been spared from the fire-bombing that rained down on so many other Japanese cities. Little did Akiko and her fellow commuters know that Hiroshima was being artificially preserved in order that the Americans might measure the full scale of the destruction caused by their new weapon.

			At half past seven the all-clear was sounded. The B-29 flying overhead was nothing more sinister than a weather plane. As Akiko emerged from her air-raid shelter, along with many of the others, she breathed a sigh of relief: there would be no air-raid this morning.

			Unbeknownst to Akiko and Hiroshima’s other citizens, as they continued on their journeys to work, the B-29 radioed in reports of clear skies above Hiroshima to the Enola Gay – the plane carrying the gun-type fission bomb known as the ‘Little Boy’. As children made their way to school and workers continued on their everyday routines, heading for offices and factories, Akiko arrived at the bank in central Hiroshima where she worked. Female clerks were supposed to arrive 30 minutes before the men in order to clean their offices ready for the day to begin, so by ten past eight Akiko was already inside the largely empty building and hard at work.

			At 08:14, the cross-hairs of the T-shaped Aioi Bridge came into the sights of Colonel Paul Tibbets, piloting the Enola Gay. The 4400-kilogram Little Boy was released and began its 6-mile descent towards Hiroshima. After free-falling for around 45 seconds, the bomb was triggered at a height of about a mile above the ground. One subcritical mass of uranium was fired into another, creating a supercritical mass ready to explode. Almost instantaneously the spontaneous fissioning of an atom released neutrons, at least one of which was absorbed by a U-235 atom. This atom in turn fissioned and released more neutrons, which were absorbed in their turn by more atoms. The process rapidly accelerated, leading to an exponentially growing chain reaction and the simultaneous release of huge amounts of energy.

			As she wiped the desktops of her male colleagues, Akiko looked out of her window and saw a bright white flash, like a strip of burning magnesium. What she couldn’t know was that exponential growth had allowed the bomb to release energy equivalent to 30 million sticks of dynamite in an instant. The bomb’s temperature increased to several million degrees, hotter than the surface of the sun. A tenth of a second later, ionising radiation reached the ground, causing devastating radiological damage to all living creatures exposed to it. A second further on and a fireball, 300 metres across and with a temperature of thousands of degrees Celsius, ballooned above the city. Eye witnesses describe the sun rising for a second time over Hiroshima that day. The blast wave, travelling at the speed of sound, levelled buildings across the city, throwing Akiko across the room and knocking her unconscious. Infrared radiation burned exposed skin for miles in every direction. People on the ground close to the bomb’s hypocentre were instantly vaporised or charred to cinders.

			Akiko was sheltered from the worst of the bomb’s blast by the bank’s earthquake-proof building. When she regained consciousness, she staggered out onto the street. As she emerged, she found that the clear blue morning skies had gone. The second sun over Hiroshima had set almost as quickly as it had risen. The streets were dark and choked with dust and smoke. Bodies lay where they had fallen for as far as the eye could see. At only 260 metres away, Akiko was one of the closest to the hypocentre of the bomb to survive the terrible exponential blast.

			The bomb itself and the resulting firestorms that spread across the city are estimated to have killed around 70,000 people, 50,000 of whom were civilians. The majority of the city’s buildings were also completely destroyed. Oppenheimer’s prophetic musings had come true. The justification for the bombings of both Hiroshima and, three days later, Nagasaki, in the context of ending the Second World War are still debated to this day.

			The nuclear option

			Whatever the rights and wrongs of the atomic bomb itself, the greater understanding of the exponential chain reactions caused by nuclear fission that was developed as part of the Manhattan Project gave us the technology required to generate clean, safe, low-carbon energy through nuclear power. One kilogram of U-235 can release roughly three million times more energy than burning the same amount of coal.8 Despite evidence to the contrary, nuclear energy suffers from a poor reputation for safety and environmental impact. In part, exponential growth is to blame.

			On the evening of the 25th of April 1986, Alexander Akimov checked in for the night shift at the power plant in which he was shift supervisor. An experiment designed to stress-test the cooling pump system was due to get underway in a couple of hours. As he initiated the experiment, he could have been forgiven for thinking how lucky he was – at a time when the Soviet Union was collapsing and 20% of its citizens were living in poverty – to have a stable job at the Chernobyl nuclear power station.

			At around 11 p.m., in order to reduce the power output to around 20% of normal operating capacity for the purposes of the test, Akimov remotely inserted a number of control rods between the uranium fuel rods in the reactor core. The control rods acted to absorb some of the neutrons released by atomic fission, so that these neutrons couldn’t cause too many other atoms to split. This put a break on the rapid growth of the chain reaction that would be allowed to run exponentially out of control in a nuclear bomb. However, Akimov accidentally inserted too many rods, causing the power output of the plant to drop significantly. He knew that this would cause reactor poisoning – the creation of material, like the control rods, that would further slow the reactor and decrease the temperature, which would lead to more poisoning and further cooling in a self-reinforcing feedback loop. Panicking now, he overrode the safety systems, placing over 90% of the control rods under manual supervision and removing them from the core in order to prevent the debilitating total shutdown of the reactor.

			As he watched the needles on the indicator gauges rise as the power output slowly increased, Akimov’s heart-rate gradually returned to normal. Having averted the crisis, he moved to the next stage of the test, shutting down the pumps. Unbeknownst to Akimov, back-up systems were not pumping coolant water as fast as they should have been. Although initially undetectable, the slow-flowing coolant water had vaporised, impairing its ability both to absorb neutrons and to reduce the heat of the core. Increased heat and power output led to more water flash-boiling into steam, allowing more power to be produced: another, altogether more deadly positive feedback loop. The few remaining control rods that Akimov did not have under his manual supervision were automatically reinserted in order to rein in the increased heat generation, but they weren’t enough. Upon realising the power output was increasing too rapidly, Akimov pressed the emergency shutdown button designed to insert all the control rods and power down the core, but it was too late. As the rods plunged into the reactor they caused a short but significant spike in power output leading to an overheated core, fracturing some of the fuel rods and blocking further insertion of the control rods. As the heat energy rose exponentially, the power output increased to over ten times the usual operating level. Coolant water rapidly turned to steam, causing two massive pressure explosions, destroying the core and spreading the fissile radioactive material far and wide.

			Refusing to believe reports of the core’s explosion, Akimov relayed incorrect information about the reactor’s state, delaying vital containment efforts. Upon eventually realising the full extent of the destruction, he worked, unprotected, with his crew to pump water into the shattered reactor. As they worked, crew members received doses of 200 grays per hour. A typical fatal dose is around ten grays, meaning that these unprotected workers received fatal doses in less than five minutes. Akimov died two weeks after the accident from acute radiation poisoning.

			The official Soviet death toll from the Chernobyl disaster was just 31, although some estimates, including individuals involved in the large-scale clean-up, are significantly higher. This is not to mention the deaths caused by the dispersal of radioactive material outside the immediate vicinity of the power plant. A fire that ignited in the shattered reactor core burned for nine days. The fire drew into the atmosphere hundreds of times more radioactive material than had been released during the bombing of Hiroshima, causing widespread environmental consequences for almost all of Europe.9

			On the weekend of the 2nd of May 1986, for example, unseason­ably heavy rainfall lashed the highlands of the UK. Contained within the falling rain droplets were the radioactive products of the fallout from the explosion – strontium-90, caesium-137 and iodine-131. In total, around 1% of the radiation released from the Chernobyl reactor fell on the UK. These radio-isotopes were absorbed by the soil, incorporated by the growing grass and then eaten by the sheep that grazed the land. The result – radioactive meat.

			The Ministry of Agriculture immediately placed restrictions on the sale and movement of sheep in the affected areas, with implications for nearly 9000 farms and over four million sheep. Lake District sheep farmer, David Elwood, struggled to believe was what happening. The cloud carrying the invisible, almost undetectable, radio-isotopes cast a long shadow over his livelihood. Every time he wanted to sell sheep he had to isolate them and call in a government inspector to check their radiation levels. Each time the inspectors came they would tell him restrictions would only last another year or so. Elwood lived under this cloud for over 25 years until the restrictions were finally lifted in 2012.

			It should, however, have been much easier for the government to inform Elwood and other farmers when radiation levels would be safe enough for them to sell their sheep freely. Radiation levels are remarkably predictable, thanks to the phenomenon of exponential decay.

			The science of dating

			Exponential decay, in direct analogy to exponential growth, describes any quantity that decreases with a rate proportional to its current value – remember the reduction in the number of M&Ms each day and the waterslide curve that described their decline. Exponential decay describes phenomena as diverse as the elimination of drugs in the body10 and the rate of decrease of the head on a pint of beer.11 In particular, it does an excellent job of describing the rate at which the levels of radiation emitted by a radioactive substance decrease over time.12

			Unstable atoms of radioactive materials will spontaneously emit energy in the form of radiation, even without an external trigger, in a process known as radioactive decay. At the level of an individual atom, the decay process is random – quantum theory implies that it is impossible to predict when a given atom will decay. However, at the level of a material comprising huge numbers of atoms, the decrease in radioactivity is a predictable exponential decay. The number of atoms decreases in proportion to the number remaining. Each atom decays independently of the others. The rate of decay can be characterised by the half-life of a material – the time it takes for half of the unstable atoms to decay. Because the decay is exponential, no matter how much of the radioactive material is present to start with, the time for its radioactivity to decrease by half will always be the same. Pouring M&Ms out on the table each day and eating the M-up sweets leads to a half-life of one day – we expect to eat half of the sweets each time we pour them out of the bag.

			The phenomenon of exponential decay of radioactive atoms is the basis of radiometric dating, the method used to date materials by their levels of radioactivity. By comparing the abundance of radioactive atoms to that of their known decay products, we can theoretically establish the age of any material emitting atomic radiation. Radiometric dating has well-known uses, including approximating the age of the Earth and determining the age of ancient artefacts like the Dead Sea Scrolls.13 If you ever wondered how on Earth they knew that archaeopteryx was 150 million years old14 or that Ötzi the iceman died 5300 years ago,15 the chances are that radiometric dating was involved.

			Recently, more accurate measurement techniques have facilitated the use of radiometric dating in ‘forensic archaeology’ – the use of exponential decay of radio-isotopes (amongst other archaeological techniques) to solve crimes. In November 2017, radio-carbon dating was used to expose the world’s most expensive whisky as a fraud. The bottle, labelled as a 130-year-old Macallan single malt, was proved to be a cheap blend from the 1970s, much to the chagrin of the Swiss hotel that sold a single shot of it for $10,000. In December 2018, in a follow-up investigation, the same lab found that over a third of ‘vintage’ Scotch whiskies they tested were also fakes. But perhaps the most high-profile use of radiometric dating concerns verification of the age of historical art works.

			•

			Before the Second World War, only 35 paintings by Dutch Old Master Johannes Vermeer were known to exist. In 1937 a remarkable new work was discovered in France. Lauded by art critics as one of Vermeer’s greatest works, The Supper at Emmaus was quickly procured at great expense for the Museum Boijmans Van Beuningen in Rotterdam. Over the next few years several more, hitherto unknown Vermeers surfaced. These were quickly appro­priated by wealthy Dutchmen, in part in an attempt to prevent the loss of important cultural property to the Nazis. Nevertheless, one of these Vermeers, Christ with the Adulteress, ended up with Hermann Göring, Hitler’s designated successor.

			After the war, when this lost Vermeer was discovered in an Austrian salt mine, along with much of the Nazis’ looted artwork, a great search was undertaken to find out who was responsible for the sale of the paintings. The Vermeer was eventually traced back to Han van Meegeren, himself a failed artist whose work was derided by many art critics as derivative of the Old Masters. Unsurprisingly, immediately after his arrest, Van Meegeren was incredibly unpopular with the Dutch public. Not only was he suspected of selling Dutch cultural property to the Nazis – a crime punishable by death – but he had also made huge sums of money through the sale and lived lavishly in Amsterdam throughout the war, when many of the city’s residents were starving. In a desperate attempt at self-preservation, Van Meegeren claimed that the painting he sold to Göring was not a genuine Vermeer, but one that he himself had forged. He also confessed to the forgeries of the other new ‘Vermeers’, as well as recently discovered works by Frans Hals and Pieter de Hooch.

			A special commission set up to investigate the forgeries appeared to verify Van Meegeren’s claims, in part based on a new forgery, Christ and the Doctors, which the commission had him paint. By the time Van Meegeren’s trial started in 1947, he was hailed a national hero, having tricked the elitist art critics who had so derided him, and fooled the Nazi high command into buying a worthless fake. He was cleared of collaboration with the Nazis and given a sentence of just a year in prison for forgery and fraud, but died of a heart attack before his sentence began. Despite the verdict, many (especially those who had bought the ‘Van Meegeren Vermeers’) still believed the paintings to be genuine and continued to contest the findings.

			In 1967, The Supper at Emmaus was re-examined using lead-210 radiometric dating. Despite Van Meegeren being meticulous in his forgeries, using many of the materials Vermeer would originally have employed, he could not control the method by which these materials were created. For authenticity he used genuine 17th-century canvases and mixed his paints according to original formulae, but the lead he used for his white lead paint was only recently extracted from its ore. Naturally occurring lead contains radioactive isotope lead-210 and its parent radioactive species (from which lead is created by decay), radium-226. When the lead is extracted from its ore, most of the radium-226 is removed, leaving only small amounts, meaning relatively little new lead-210 is created in the extracted material. By comparing the concentration of lead-210 and radium-226 in samples, it is possible to date the lead paint accurately using the fact that the radioactivity of lead-210 decreases exponentially with a known half-life. A far higher proportion of lead-210 was found in The Supper at Emmaus than there would have been there if it were genuinely painted 300 years earlier. This established for certain that Van Meegeren’s forgeries couldn’t have been painted by Vermeer in the 17th century, as the lead which Van Meegeren used for his paints had not yet been mined.16

			Ice bucket flu

			Had Van Meegeren been around today, it’s likely that his work would have been neatly parcelled up into a convenient click-bait article entitled something like ‘Nine paintings you won’t believe aren’t the real thing’, and spread around the internet. Modern-day fakes, such as the doctored photo of multimillionaire presidential candidate Mitt Romney appearing to line up six letter-adorned supporters to read ‘RMONEY’ instead of ‘ROMNEY’, or the Photo­shopped snap of ‘Tourist Guy’ posing on the viewing deck of the South Tower of the World Trade Centre seemingly unaware of the low-flying plane approaching in the background, have achieved the global exposure that viral marketers’ dreams are made of.

			Viral marketing is the phenomenon by which advertising objectives are achieved through a self-replicating process akin to the spread of a viral disease (the mathematics of which we will look into more deeply in Chapter 7). One individual in a network infects others, who in turn infect others. As long as each newly infected individual infects at least one other, the viral message will grow exponentially. Viral marketing is a subfield of an area known as memetics, in which a ‘meme’ – a style, behaviour or, crucially, an idea – spreads between people through a social network, just like a virus. Richard Dawkins coined the word ‘meme’ in his 1976 book, The Selfish Gene, in order to explain the way in which cultural information spreads. He defined memes as units of cultural transmission. In analogy to genes, the units of heritable transmission, he proposed that memes could self-replicate and mutate. The examples he gave of memes included tunes, catch-phrases and, in a wonderfully innocent indication of the times in which he wrote the book, ways of making pots or building arches. Of course, in 1976, Dawkins had not come across the internet in its current form, which has allowed the spread of once unimaginable (and arguably pointless) memes including #thedress, rickrolling and Lolcats.

			One of the most successful, and perhaps genuinely organic, examples of a viral marketing campaign was the ALS ice bucket challenge. During the summer of 2014, videoing yourself having a bucket of cold water thrown over your head and then nominating others to do the same, whilst possibly donating to charity, was the thing to do in the northern hemisphere. Even I caught the bug.

			Adhering to the classic format of the ice bucket challenge, after being thoroughly soaked I nominated two other people in my video, whom I later tagged when I uploaded it to social media. As with the neutrons in a nuclear reactor, as long as, on average, at least one person takes up the challenge for every video posted, the meme becomes self-sustaining, leading to an exponentially increasing chain reaction.

			In some variants of the meme, those nominated could either undertake the challenge and donate a small amount to the amyotrophic lateral sclerosis (ALS) association or another charity of their choice, or choose to shirk the challenge and donate significantly more in reparation. In addition to increasing the pressure on nominated individuals to participate in the meme, the association with charity had the added bonus of making people feel good about themselves by raising awareness, and promoting a positive image of themselves as altruistic. This self-congratulatory aspect acted to increase the infectiousness of the meme. By the start of September 2014, the ALS association reported receiving over 100 million dollars in additional funding from over three million donors. As a result of the funding received during the challenge, researchers discovered a third gene responsible for ALS, demonstrating the viral campaign’s far-reaching impact.17

			In common with some extremely infective viruses like flu, the ice bucket challenge was also highly seasonal (an important phenomenon, in which the rate of disease spread varies throughout the year, and that we will meet again in Chapter 7). As autumn approached and colder weather hit the northern hemisphere, getting doused in ice-cold water suddenly seemed like less fun, even for a good cause. By the time September arrived, the craze had largely died off. Just like the seasonal flu, though, it returned the next summer and the summer after in similar formats, but to a largely saturated population. In 2015, the challenge raised less than 1% of the previous year’s total for the ALS association. People exposed to the virus in 2014 had typically built up a strong immunity, even to slightly mutated strains (different substances in the bucket, for example). Tempered by the immunity of apathy, each new outbreak soon died out as each new participant failed, on average, to pass on the virus to at least one other.

			Is the future exponential?

			There is a parable involving exponential growth that is told to French children to illustrate the dangers of procrastination. One day, it is noted that an extremely small algal colony has formed on the surface of the local lake. Over the next few days, the colony is found to be doubling its coverage of the surface of the lake each day. It will continue to grow like this until it covers the lake, unless something is done. If left unchecked, it will take 60 days to cover the surface of the lake, poisoning its waters. Since the algal coverage is initially so small and there is no immediate threat, it is decided to leave the algae to grow until it covers half the surface of the lake, when it will be more easily removed. The question is then asked, ‘On which day will the algae cover half of the lake?’

			A common answer that many people give to this riddle, without thinking, is 30 days. But, since the colony doubles in size each day, if the lake is half-covered one day it will be completely covered the next day. The perhaps surprising answer, therefore, is that the algae will cover half the surface of the lake on the 59th day, leaving only one day to save the lake. At 30 days the algae take up less than a billionth of the capacity of the lake. If you were an algal cell in the lake, when would you realise you were running out of space? Without understanding exponential growth, if someone told you on the 55th day, when the algae covered only 3% of the surface, that the lake would be completely choked in five days’ time, would you believe them? Probably not.

			This serves to highlight the way in which we, as humans, have been conditioned to think. Typically, for our forebears, the experiences of one generation were very much like the last: they did the same jobs, used the same tools and lived in the same places as their ancestors. They expected their descendants to do the same. However, the growth of technology and social change is now occurring so rapidly that noticeable differences occur within single generations. Some theoreticians believe that the rate of technological advancement is itself increasing exponentially.

			Computer scientist Vernor Vinge encapsulated just such ideas in a series of science-fiction novels and essays,18 in which successive technological advancements arrive with increasing frequency until a point at which new technology outstrips human comprehension. The explosion in artificial intelligence ultimately leads to a ‘technological singularity’ and the emergence of an omnipotent all-powerful superintelligence. American futurist Ray Kurzweil attempted to take Vinge’s ideas out of the realm of science fiction and apply them to the real world. In 1999, in his book The Age of Spiritual Machines, Kurzweil hypothesised the ‘law of accelerating returns’.19 He suggested that the evolution of a wide range of systems – including our own biological evolution – occurs at an exponential pace. He even went so far as to pin the date of Vinge’s ‘technological singularity’ – the point at which we will experience, as Kurzweil describes it, ‘technological change so rapid and profound it represents a rupture in the fabric of human history’ – to around 2045.20 Amongst the implications of the singularity, Kurzweil lists ‘the merger of biological and nonbiological intelligence, immortal software-based humans, and ultra-high levels of intelligence that expand outward in the universe at the speed of light.’ While these extreme, outlandish predictions should probably have been confined to the realms of science fiction, there are examples of technological advances which really have sustained exponential growth over long periods.

			Moore’s law – the observation that the number of components on computer circuits seems to double every two years – is a well-cited example of exponential growth of technology. Unlike Newton’s laws of motion, Moore’s law is not a physical or natural law, so there is no reason to suppose it will continue to hold forever. However, between 1970 and 2016 the law has held remarkably steady. Moore’s law is implicated in the wider acceleration of digital technology, which in turn contributed significantly to economic growth in the years surrounding the turn of the last century.

			In 1990, when scientists undertook to map all three billion letters of the human genome, critics scoffed at the scale of the project, suggesting that it would take thousands of years to complete at the current rate. But sequencing technology improved at an exponential pace. The complete ‘Book of Life’ was delivered in 2003, ahead of schedule and within its one-billion-dollar budget.21 Today, sequencing an individual’s whole genetic code takes under an hour and costs less than a thousand dollars.

			•

			Population explosion

			The story of the algae in the lake highlights that our failure to think exponentially can be responsible for the collapse of ecosystems and populations. One species on the endangered list, despite clear and persistent warning signs, is, of course, our own.

			Between 1346 and 1353, the Black Death, one of the most devastating pandemics in human history (infectious disease spread being a subject which we will investigate in more detail in Chapter 7), swept through Europe, killing 60% of its population. At this point the total population of the world was reduced to around 370 million. Since then the global population has increased constantly without abating. By 1800, the human population had almost reached its first billion. The perceived rapid increase in population at that time prompted the English mathematician, Thomas Malthus, to suggest that the human population grows at a rate that is proportional to its current size.22 As with the cells in the early embryo or the money left untouched in a bank account, this simple rule suggests exponential growth of the human population on an already crowded planet.

			A favoured trope of many science-fiction novels and films (take the recent blockbusters, Interstellar and Passengers, for example), is to solve the problems of the world’s growing population through space exploration. Typically, a suitable Earth-like planet is discovered and prepared for habitation for the overspilling human race. Far from being a purely fictional fix, in 2017 eminent scientist Stephen Hawking gave credibility to the proposition of extraterrestrial colonisation. He warned that humans should start leaving the Earth within the next 30 years, in order to colonise Mars or the Moon, if our species is to survive the threat of extinction presented by overpopulation and associated climate change. Disappointingly, though, if our growth rate continued unchecked, even shipping half of the Earth’s population over to a new Earth-like planet would only buy us another 63 years until the human population doubled again and both planets reached saturation point. Malthus forecast that exponential growth would render the idea of interplanetary colon­isation futile when he wrote: ‘The germs of existence contained in this spot of earth, with ample food, and ample room to expand in, would fill millions of worlds in the course of a few thousand years.’

			However, as we have already found (remember the bacteria Strep f. growing in the milk bottle at the start of this chapter), exponential growth cannot be sustained forever. Typically, as a population increases, the resources of the environment that sustains it become more sparsely distributed and the net rate of growth (the difference between the birth rate and the death rate) naturally drops. The environment is said to have a ‘carrying capacity’ for a particular species – an inherent maximum sustainable population limit. Darwin recognised that environmental limitations would cause a ‘struggle for existence’ as individuals ‘compete for their places in the economy of nature’. The simplest mathematical model to capture the effects of competition for limited resources, within or between species, is known as the logistic growth model.

			In Figure 3, logistic growth looks exponential initially as the population grows freely in proportion to its current size, unrestricted by environmental concerns. However, as the population increases, resource scarcity brings the death rate ever closer to the birth rate. The net population growth rate eventually decreases to zero: new births in the population are only sufficient to replace those that have died and no more, meaning that the numbers plateau at the carrying capacity. Scottish scientist Anderson McKendrick (one of the earliest mathematical biologists, with whom we will become better acquainted in Chapter 7 in the context of his work on modelling the spread of infectious disease) was the first to demonstrate that logistic growth occurred in bacterial populations.23 The logistic model has since been shown to be an excellent representation of a population introduced into a new environment, capturing the growth of animal populations as diverse as sheep,24 seals25 and cranes.26
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			Figure 3: The logistic growth curve increases almost exponentially at first, but then growth slows as resources become a limiting factor and the population approaches the carrying capacity, K.

			The carrying capacities of many animal species remain roughly constant, as they depend on the resources available in their environments. For humans, however, a variety of factors, amongst them the Industrial Revolution, the mechanisation of agriculture and the Green Revolution, have meant that our species has consistently been able to increase its carrying capacity. Although current estimates of the maximum sustainable population of the Earth vary, many figures suggest that it is somewhere between nine and ten billion people. The eminent sociobiologist, E. O. Wilson, believes that there are inherent, hard limits on the size of human population that the Earth’s biosphere can support.27 The constraints include: the availability of fresh water, fossil fuels and other non-renewable resources, environmental conditions (including, most notably, climate change), and living space. One of the more commonly considered factors is food availability. Wilson estimates that, even if everyone were to become vegetarian, eating food produced directly rather than feeding it to livestock (since eating animals is an inefficient way to convert plant energy into food energy), the present 1.4 billion hectares of arable land would only produce enough food to support ten billion people.

			If the (near seven and a half billion) human population con­tinues to grow at its current rate of 1.1% per year, then we will reach ten billion inside 30 years. Malthus expressed his fears of overpopulation way back in 1798, when he warned: ‘The power of population is so superior to the power of the Earth to produce subsistence for man, that premature death must in some shape or other visit the human race.’ In the context of human history, we are now well within the last day left to save the lake.

			There are, however, reasons for optimism. Although the human population is still increasing in number, effective birth control and the reduction in infant mortality (leading to lower reproduction rates) mean we are doing so at a slower rate than in previous generations. Our growth rate reached a peak of around 2% per year in the late 1960s, but is projected to fall below 1% per year by 2023.28 To put that into context, if growth rates had stayed at 1960s rates it would have taken only 35 years for the population size to double. In fact, we only reached the 7.3 billion mark (double the 3.65 billion world population of 1969) in 2016 – nearly 50 years later. At a rate of just 1% per year we can expect the doubling time to increase to 69.7 years, almost twice as long as the doubling period based on 1969 rates. A small drop in the rate of increase makes a huge difference when exponential growth is concerned. It seems that, by slowing our population growth as we head towards the planet’s carrying capacity, we are naturally beginning to buy ourselves some more time. There are, however, reasons why exponential behaviour may make us, as individuals, feel like we have less time left than we think.

			Time flies when you’re getting old

			Do you remember, when you were younger, that summer holidays seemed to last an eternity? For my children, who are four and six, the wait between consecutive Christmases seems like an inconceivable stretch of time. In contrast, as I get older, time appears to pass at an alarming rate, with days blending into weeks and then into months, all disappearing into the bottomless sinkhole of the past. When I chat weekly to my septuagenarian parents, they give me the impression that they barely have time to take my call, so busy are they with the other activities in their packed schedules. When I ask them how they fill their week, however, it often seems like their unrelenting travails might comprise the work of just a single day for me. But then what would I know about competing time pressures: I just have two kids, a full-time job and a book to write.

			I should remember not to be too caustic with my parents, though, because it seems that perceived time really does run more quickly the older we get, fuelling our increasing feelings of overburdened time-poverty.29 In an experiment carried out in 1996, a group of younger people (19–24) and a group of older people (60–80) were asked to count out three minutes in their heads. On average the younger group clocked an almost-perfect three minutes and three seconds of real time, but the older group didn’t call a halt until a staggering three minutes and 40 seconds, on average.30 In other related experiments, participants were asked to estimate the length of a fixed period of time during which they had been undertaking a task.31 Older participants consistently gave shorter estimates for the length of the time period they had experienced than younger groups. For example, by the point at which two minutes of real time had elapsed, the older group, on average, had clocked less than 50 seconds in their heads, leading them to question where the remaining minute and ten seconds had gone.

			This acceleration in our perception of the passage of time has little to do with leaving behind those carefree days of youth and filling our calendars with adult responsibilities. In fact, there are a number of competing ideas that provide explanations for why, as we age, our perception of time accelerates. One theory is related to the fact that our metabolism slows as we get older, matching the slowing of our heartbeats and our breathing.32 Just as with a stop watch that is set to run fast, children’s versions of these ‘biological clocks’ tick more quickly. In a fixed period of time they experience more beats of these biological pacemakers (breaths or heartbeats, for example), making them feel like a longer period of time has elapsed.

			A competing theory suggests that our perception of time’s passage depends upon the amount of new perceptual information we are subjected to from our environment.33 The more novel stimuli there are, the longer our brains take to process the information. The corresponding period of time seems, at least in retrospect, to last longer. This argument can be used to explain the movie-like perception of events playing out in slow-motion in the moments immediately preceding an accident. So unfamiliar is the situation for the accident victim in these scenarios that the amount of novel perceptual information is correspondingly huge. It might be that rather than time actually slowing down during the event, our recollection of the events is decelerated in hindsight, as our brain records more detailed memories based on the flood of data it experiences. Experiments on subjects experiencing the unfamiliar sensation of free fall have demonstrated this to be the case.34

			This theory ties in nicely with the acceleration of perceived time. As we age, we tend to become more familiar with our environments and with life experiences more generally. Our daily commutes, which might initially have appeared long and challenging journeys full of new sights and opportunities for wrong turns, now flash by as we navigate their familiar routes on autopilot.

			It is different for children. Their worlds are often surprising places filled with unfamiliar experiences. Youngsters are constantly reconfiguring their models of the world around them, which takes mental effort and seems to make the sand run more slowly through their hour-glasses than for routine-bound adults. The greater our acquaintance with the routines of everyday life, the quicker we perceive time to pass and, generally, as we age, this familiarity increases. This theory suggests that, in order to make our time last longer, we should fill our lives with new and varied experiences, eschewing the time-sapping routine of the everyday.

			Neither of the above ideas manages to explain the almost perfectly regular rate at which our perception of time seems to accelerate. That the length of a fixed period of time appears to reduce continually as we age suggests an ‘exponential scale’ to time. We employ exponential scales instead of traditional linear scales when measuring quantities that vary over a huge range of different values. The most well-known examples are scales for energy waves like sound (measured in decibels) or seismic activity. On the exponential Richter scale (for earthquakes), an increase from magnitude 10 to magnitude 11 would correspond to a ten-fold increase in ground movement, rather than a 10% increase as it would do on a linear scale. At one end, the Richter scale was able to capture the low-level tremor felt in Mexico City in June 2018 when Mexican football fans in the city celebrated their goal against Germany at the World Cup. At the other extreme, the scale recorded the 1960 Valdivia earthquake in Chile. The magnitude 9.6 quake released energy equivalent to over a quarter of a million of the atomic bombs dropped on Hiroshima.

			If the length of a period of time is judged in proportion to the time we have already been alive, then an exponential model of perceived time makes sense. As a 34-year-old, a year accounts for just under 3% of my life. My birthdays seem to come around all too quickly these days. But to a ten-year-old, waiting 10% of their life for the next round of presents requires almost-saintly patience. To my four-year-old son, the idea of having to wait a quarter of his life until he is the birthday boy again is almost intolerable. Under this exponential model, the proportional increase in age that a four-year-old experiences between birthdays is equivalent to a 40-year-old waiting until they turn 50. When looked at from this relative perspective, it makes sense that time seems only to accelerate as we age.

			It’s not uncommon for us to categorise our lives into decades – our carefree twenties, our serious thirties and so on – which suggests that each period should be afforded an equal weighting. However, if time really does appear to speed up exponentially, chapters of our life spanning different lengths of time might feel like they are of the same duration. Under the exponential model, the ages from 5 to 10, 10 to 20, 20 to 40 and even 40 to 80 might all seem equally long (or short). Not to precipitate the frantic scribbling of too many bucket lists, but under this model the 40-year period between 40 and 80, encompassing much of middle and old age, might flash by as quickly as the five years between your fifth and tenth birthdays.
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