
		
			[image: 9781913622572.jpg]
		

	
		
			
				[image: How to teach computer science. Parable, practice and pedagogy. Alan J. Harrison. John Catt logo.]
			

		

	
		
			
Copyright

			First published 2021

			by John Catt Educational Ltd,
15 Riduna Park, Station Road, 
Melton, Woodbridge IP12 1QT

			Tel: +44 (0) 1394 389850
Email: enquiries@johncatt.com
Website: www.johncatt.com

			© 2021 Alan J. Harrison

			All rights reserved.

			No part of this publication may be reproduced, stored in a retrieval system, transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publishers.

			Opinions expressed in this publication are those of the contributors and are not necessarily those of the publishers or the editors. We cannot accept responsibility for any errors or omissions.

			Set and designed by John Catt Educational Limited

			Page 155: Extract from Mostly Harmless by Douglas Adams reproduced with permission of Curtis Brown Ltd, London, on behalf of Completely Unexpected Productions. Copyright © Serious Productions Ltd 1992.

		

	
		
			Contents

			Copyright

			Introduction

			Who is this book for?

			What’s in the book?

			How should I use this book?

			What is PCK?

			1. Core concepts

			2. Fertile questions

			3. Higher-order thinking

			4. Analogy and concrete examples

			5. Cross-topic and cross-curricular learning

			6. Unplugged

			7. Physical

			8. Project work

			9. Misconceptions

			General pedagogical principles

			1. Flipped classroom

			2. Using specialist language

			3. Cognitive science approach

			4. Retrieval practice

			Inclusion

			Universal Design for Learning

			Gender balance

			Why did I write this book?

			Why is this book needed?

			Chapter 1. Data representation

			Switzerland, June 1816 

			Meeting Ada

			Numbers for everything

			Early bitmaps

			News travels slow

			Zip code

			Binary: yes or no?

			Number crunching

			The hole truth

			Code of conduct

			Eight bits is not enough

			Just the fax, ma’am

			Family album

			Colouring in

			Long and winding paths

			Data about data

			Sound ideas

			What the hex?

			Codes for things

			TL;DR

			PCK for data representation

			Core concepts

			Fertile questions

			Higher-order thinking

			Create your own character set

			Analogy and concrete examples

			Make your own image filter

			Cross-topic and synoptic

			Cross-topic with programming

			Cross-topic with architecture

			Cross-topic with memory and storage

			Cross-topic with issues

			Cross-curricular

			Cross-curricular with other STEM subjects

			Cross-curricular with geography

			Cross-curricular with art and design

			Unplugged

			Paper bitmaps

			Physical

			Micro:bit LED bitmaps

			Sound engineering

			Misconceptions

			Chapter 2. Programming 

			Massachusetts Institute of Technology, 10 April 2019

			Code book

			Construction time again

			One thing after another

			The ICT years

			It’s not about code…

			It’s all about computational thinking

			No taxation without…

			Concepts, not constructs

			PCK for programming

			Developing CT skills through problem-solving

			One algorithm, many representations

			The notional machine

			Exposure to many examples

			Explicit live coding

			Analogy and concrete examples

			Eliciting explanations

			Cheat sheets

			Pair programming

			Chunking (aka subgoal labelling)

			Parsons problems

			Block coding

			Physical computing

			PRIMM

			The block model

			Assessment 

			Conclusion

			Summer 1968, Massachusetts Institute of Technology 

			20 July 1969, six miles above the moon

			Chapter 3. Robust programs 

			The software crisis

			Mother of invention

			Waterfall goes viral

			More agility needed

			Testing times

			Inevitable bugs

			Software catastrophes

			Therac-25 radiotherapy accidents

			Patriot missile rounding error

			143 million customer records are out there

			What could go wrong?

			Move fast and break things

			TL;DR

			PCK for robust programs

			Core concepts

			Fertile questions

			Higher-order thinking

			Why did it fail?

			Was Dijkstra right?

			Peer testing

			Robotic verification: yes or no?

			Validate everything?

			Cross-topic and synoptic

			Cross-topic with architecture

			Cross-topic with languages

			Cross-topic with issues and impacts

			Cross-curricular 

			Cross-curricular with design and technology

			Cross-curricular with science

			Analogy and concrete

			Vending machine woes

			Impenetrable code

			Unplugged

			Physical

			Project work

			Misconceptions

			Massachusetts Institute of Technology, 1959

			Chapter 4. Languages and translators

			Assembly line

			Coding in English

			The GOTO heresy

			Structured code – it’s the future!

			Wordy number cruncher

			The academic’s choice

			BASIC instinct

			C for miles

			Cookie-cutter coding

			Pure class

			Well, I declare!

			Learn you a Haskell

			Prolog

			Code once, run anywhere

			The web goes interactive

			Joyful coding

			TL;DR

			PCK for languages and translators

			Core concepts

			Fertile questions

			Higher-order thinking

			Choice of language for a purpose

			Specifying syntax, or coding a parser

			Comparing paradigms

			Cross-topic and synoptic

			Cross-topic with system software, programming, issues

			Cross-topic with architecture, memory, networks, issues

			Cross-curricular and analogy

			Cross-topic with languages

			Misconceptions

			Chapter 5. Algorithms

			Abstractions all the way down

			Too clever by half 

			One bite at a time

			Sum of its parts

			Tiling with Euclid

			The House of Wisdom

			The first programmer

			Drawing an algorithm

			Mock code

			The last place you look

			Order, order

			Lost without a trace

			TL;DR

			PCK for algorithms

			Core concepts

			Fertile questions

			Higher-order thinking

			Making computational thinking explicit

			Matching the algorithm to the data structure 

			Seeing the complexity in the code 

			Complexity, exponents and logarithms 

			Analogy and concrete examples

			Visualisation websites

			YouTube resources

			Cross-topic and synoptic

			Cross topic with architecture 

			Cross-topic with data and networks

			Cross-topic with issues and impacts

			Cross-curricular

			Cross-curricular with science

			Unplugged

			Physical

			Misconceptions

			Chapter 6. Architecture 

			Friends, series 2, episode 8, ‘The One With the List’ (1995)

			The ‘think animal’

			Baby steps

			Mark 1

			Evergreen design

			Bottle openers

			The three Cs

			Remembering stuff

			Random thoughts

			Never let me go

			Forget me not 

			The right to bear ARMs

			Plus ça change

			TL;DR

			PCK for architecture

			Core concepts

			Fertile questions

			Higher-order thinking

			Design a computer

			Analogy and concrete examples

			Window shopping

			Evaporating RAM

			Remember Venn

			Little Minion

			Cross-topic and synoptic

			Cross-topic with languages and programming

			Cross-topic with issues and impacts

			Cross-topic with system software

			Cross-topic with data representation 

			Cross-curricular

			Cross-curricular with history

			Cross-curricular with geography

			Unplugged

			Physical

			Project work

			Misconceptions

			Chapter 7. Logic

			Little lightbulbs

			An old joke about logic… 

			Not the iotatron

			On and off

			Making choices

			The schoolmaster who classified thought

			Algebra of truth

			Switch hitter

			Back to gates

			It all adds up 

			Below zero

			Returning complements 

			Go forth and…

			TL;DR 

			PCK for logic

			Core concepts

			Fertile questions

			Higher-order thinking

			Analogy and concrete examples

			Cross-topic and synoptic

			Cross-topic with programming

			Cross-topic with networks

			Cross-curricular

			Cross-curricular with maths

			Unplugged

			Physical

			Project work

			Misconceptions

			Chapter 8. System software

			Palo Alto, California, 1982 

			Why’s it all in hardware?

			Battle of the North Atlantic

			The 360-degree all-rounder

			Got the power

			Penguins on everything

			Quick and dirty

			Pronounced ‘gooey’ 

			Wow, it confirms DOS!

			Pinch me

			Type, click, wave or talk?

			In real life

			Tuning up

			TL;DR 

			PCK for system software

			Core concepts

			Fertile questions

			Higher-order thinking

			System software use in context

			Comparing Atlas to modern systems

			Exploring human-computer interaction

			Analogy and concrete examples

			Pizza metaphor for OS role

			Queueing metaphors for process scheduling

			Hands-on with Linux in the browser

			Exploring Android versions

			Cross-topic and synoptic

			Cross-topic with architecture, system software, languages and more

			Cross-topic with security

			Cross-topic with networks 

			Cross-curricular

			Cross-curricular with design

			Unplugged

			Physical

			Project work

			Misconceptions

			Chapter 9. Networks 

			Los Angeles, California, 29 October 1969

			Pearl Harbor II

			Lick’s vision

			Getting the message 

			It’s good to talk

			IP on everything

			Internet comes home

			Remember your netiquette

			Eternal September

			You called it WWWhat now?

			This machine is a server

			TL;DR

			PCK for networks

			Core concepts

			Fertile questions

			Analogy and concrete

			The postal service protocol stack

			Back up the semantic wave: the TCP/IP protocol stack in action

			Post-it packet switching

			Physical

			Raspberry Pi web server

			Cross-topic

			Build a network for a scenario

			Misconceptions

			Chapter 10. Security

			Royal Institution Lecture Theatre, London, June 1903

			Eavesdropping

			Ciphers down the ages 

			The real imitation game 

			Bombshell

			Secret weapons

			Phreaks and geeks

			War games

			Repelling the wily hacker

			Worms and viruses

			Not everything is a virus

			Holes everywhere

			Blocking the information highway 

			SQL Injection

			Bug-free by design?

			Protecting the CIA

			TL;DR

			PCK for security

			Core concepts

			Fertile questions

			Higher-order thinking

			Black hat or white hat?

			Analogy and concrete examples

			Exploring a real-life hacking example

			Peer instruction: choosing countermeasures

			Password strength checker 

			Symmetric versus asymmetric

			Trying out SQL Injection

			Spot the phish

			Cross-topic, cross-curricular and synoptic

			Cross topic with CT and programming

			Physical

			Unplugged

			Project work

			Misconceptions

			Chapter 11. Issues and impacts

			Beitar Illit, Israeli-occupied West Bank, October 2017

			Racist algorithms

			Privacy

			Old boys’ (neural) network

			With great power…

			Autopilot overpromises

			Inside the black box

			The social dilemma

			Energy

			Our rare earth

			Lawmakers and lawbreakers

			What now?

			TL;DR

			PCK for issues and impacts

			Core concepts

			Fertile questions

			Higher-order thinking

			Legislation brain dump

			Gaps in legislation

			Analogy and concrete examples

			List the issues

			The Moral Machine

			Which law has been broken?

			Live mock question

			Cross-topic, cross-curricular and synoptic

			Cross topic with networks

			Unplugged

			Debate lessons

			Unplugged AI activities

			Physical

			Machine learning for kids and micro:bit cybersecurity

			Project work

			Misconceptions

			Conclusion

			Aims for this book

			Further reading

			Acknowledgements

			Image credits

			About the author

		

	
		
			List of illustrations

			Figure 1.1: Venn diagram illustrating the intersection between PCK and TPCK.

			Figure 1.2: Ada, Countess of Lovelace, sometimes considered the first computer programmer.

			Figure 1.3: The Jacquard loom was fed with binary data on punched cards.

			Figure 1.4: The Morse code table for the basic English alphabet.

			Figure 1.5: The Braille code.

			Figure 1.6: IBM’s 80-column punched card, invented in 1928 and used right up to the 1980s.

			Figure 1.7: This digital image of Russell Kirsch’s son, Walden, contained just 30,000 pixels.

			Figure 1.8: Atari’s 1980 arcade game Battlezone featured vector-scanned white lines under a green and red overlay.

			Figure 2.1: The moment of discovery: the world’s first image of a black hole appears on Katie Bouman’s laptop screen.

			Figure 2.2: Computational thinking is the largest part of the programming process.

			Figure 2.3: A Parsons problem.

			Figure 2.4: The block model provides a framework for program comprehension tasks.

			Figure 3.1: Margaret Hamilton pioneered the discipline of software engineering while working on the Apollo moon missions.

			Figure 3.2: The waterfall method of software development was rigorous but inflexible.

			Figure 3.3: Decimals must be approximated in binary, leading to rounding errors.

			Figure 3.4: An exercise in code maintainability from the Craig’n’Dave premium resources.

			Figure 4.1: Peter Samson and Dan Edwards in 1962 playing Spacewar!, often considered the first computer game.

			Figure 4.2: Using GOTO indiscriminately leads to “spaghetti code”.

			Figure 5.1: Euclid was a master of algorithmic thinking. The procedure that bears his name finds the highest common factor.

			Figure 5.2: Muhammad ibn Musa al-Khwarizmi gave the world algorithms and algebra.

			Figure 5.3: An early flowchart created by Lillian and Frank Gilbreth.

			Figure 6.1: The Manchester Baby was the first fully electronic, stored-program, general purpose computer.

			Figure 6.2: Baby’s architecture is strikingly similar to that of modern computers.

			Figure 6.3: The architecture of a modern computer.

			Figure 6.4: Pulses of sound bounced back and forth in the UNIVAC’s “mumble-tub” mercury delay line memory.

			Figure 6.5: Core rope memory was used in NASA’s Mariner and Apollo programmes.

			Figure 6.6: The ARM processor, seen here in an early test rig, was designed by Sophie Wilson and Steve Furber in Cambridge, UK.

			Figure 7.1: An AND logic gate made from two transistors.

			Figure 7.2: The Boolean logic circuit for “party = (tidy_room OR wash_car) AND homework”.

			Figure 7.3: The four rules of binary addition.

			Figure 7.4: A truth table for binary addition. Sum and Carry are the two outputs.

			Figure 7.5: This circuit, called a “half-adder”, can add two binary digits.

			Figure 7.6: A “half-adder” using just two gates, XOR and AND.

			Figure 7.7: A car’s odometer run in reverse would flip back to 999999, meaning “–1 miles driven”.

			Figure 7.8: The four-bit binary number 1111 means “–1” in two’s complement.

			Figure 7.9: The Unilab Decisions module, part of a discontinued series of teaching equipment but still circulating on auction sites.

			Figure 8.2: Ken Thompson (seated) and Dennis Ritchie at a PDP-11 circa 1970.

			Figure 8.3: Windows 1.0 added GUI features to DOS in 1985 but didn’t yet allow overlapping windows or true multitasking.

			Figure 8.4: Irina Blok, designer of the Android logo.

			Figure 9.1: The ARPANET in March 1972 had fewer than 30 nodes.

			Figure 9.2: Tim Berners-Lee at his workstation at CERN, where he invented the World Wide Web.

			Figure 9.3: The first ever web server, complete with warning sticker.

			Figure 9.4: The postal system is a good analogy for the internet protocol stack.

			Figure 10.1: The stage magician Nevil Maskelyne, who hacked a demonstration by the radio pioneer Guglielmo Marconi.

			Figure 10.2: The substitution cipher used in the Babington Plot was easily broken by Queen Elizabeth I’s spymaster.

			Figure 10.3: Servicewomen in the Women’s Royal Naval Service, known as the Wrens, operating a Colossus Mark 2.

			Figure 10.4: The Creeper worm was just a proof of concept, but it was so successful on the ARPANET that the author had to write the Reaper worm to get rid of it.

			Figure 10.5: WannaCry ransomware ripped through NHS computers that were running obsolete or unpatched Windows operating systems.

			Figure 11.1: Big technology companies have paused sales of facial recognition software, citing the technology’s potential for abuse or misuse.

			Figure 11.2: Low-income Ghanaians endure harsh conditions to recover metal from electronic waste in the Agbogbloshie suburb of Accra.

		

	
		
			
Introduction

			
Who is this book for?

			How To Teach Computer Science is for new or aspiring teachers wishing to improve their subject knowledge and gain confidence in the classroom. It’s also for experienced computer science teachers who wish to hone their practice, especially in the areas of explicit instruction, tackling misconceptions and exploring pedagogical content knowledge.

			Trainee teachers, NQTs and early-career teachers will find this book invaluable. Experienced teachers will find it inspiring. And all will benefit from a fresh look at the hinterland and pedagogy that makes computer science a fascinating subject to teach.

			
What’s in the book?

			We will explore some of the backstory to our subject, the “hinterland” – those fascinating journeys into history that make computer science come alive and place it in historical context. These stories will help you to enrich your lessons, cement core knowledge, develop cultural capital and excite a lifelong love for the subject. We will go beyond the mark scheme to explore the subject knowledge behind the answers, giving you the confidence to discuss the field in greater depth and enabling you to use explicit instruction methods. 

			We will consider the misconceptions that arise when teaching computer science, so you can head them off at the pass. And we will look at pedagogical content knowledge (PCK) – teaching ideas that can be lifted and dropped straight into the classroom to immediately enhance your teaching. 

			
How should I use this book?

			There are three ways in which How To Teach Computer Science could be useful:

			
					
Subject knowledge enhancement. Read this book from start to finish if you’re on an initial teacher training course, in your NQT year, or switching to computer science from another subject. The book is organised into chapters by England’s typical GCSE specification, so the content should map easily on to existing textbooks and CPD courses, and enhance your learning.

					
Pedagogy primer. Because it takes a look at all the current research findings and what they mean for the classroom, this book should get you started in considering how to teach computer science – going beyond subject knowledge to the PCK that gets results. This content should be valuable to new and experienced teachers alike. 

					
Resource index. Dip into the book for inspiration when planning lessons, with or without reading the whole thing. Each chapter covers a typical GCSE topic to make finding inspiration simple, while footnotes contain links to online resources and there are more at the companion website, httcs.online. The website will be updated regularly, so check back often! 

			

			
What is PCK?

			Lee Shulman defined PCK as “knowledge of the most regularly taught topics in one’s subject area, the most useful forms of representation of those ideas, the most powerful analogies, illustrations, examples, explanations, and demonstrations ... [it] also includes an understanding of what makes the learning of specific topics easy or difficult”.1 Punya Mishra and Matthew Koehler extended Shulman’s model to include a focus on teaching with technology and gave us “technological pedagogical content knowledge”, or TPCK:

			“TPCK is the basis of good teaching with technology and requires an understanding of the representation of concepts using technologies; pedagogical techniques that use technologies in constructive ways to teach content; knowledge of what makes concepts difficult or easy to learn and how technology can help redress some of the problems that students face.”2

			
				[image: A Venn diagram that illustrates the intersection between PCK and TPCK. There are three circles labelled knowledge, pedagogy and technology. An arrow labelled PCK points to the area where knowledge and pedagogy intersect. An arrow labelled TPCK points to the area where knowledge, pedagogy and technology intersect.]
			

			Figure 1.1: Venn diagram illustrating the intersection between PCK and TPCK.

			This book explores both PCK and TPCK through the lens of a typical GCSE computer science curriculum. The National Centre for Computing Education (NCCE) has published a series of “quick reads” on the Teach Computing blog,3 explaining some of the pedagogical techniques that work, and I have included examples of these in the PCK section of the relevant chapters. The PCK section of each chapter is organised under the following nine headings.

			
1. Core concepts

			It seems obvious, but you can’t teach a subject without first deciding what the learners need to know. Unfortunately, exam board specifications are often assessment-focused, not learning-focused, so aren’t organised around concepts. This section will summarise the core concepts that learners need to grasp. For more clarity and an idea of how to sequence your teaching of these concepts, you may wish to refer to the NCCE “concept maps” on the Teach Computing curriculum website.4

			
2. Fertile questions

			Fertile questions – you may know them as “big questions” or “enquiry questions” – are intriguing questions that the teaching tries to answer, and they help to tie all the lessons in a topic together. Mark Enser explains further in an article for TES:

			“This sense of intrigue sparks my pupils’ natural curiosity. The subject itself becomes engaging rather than an activity designed to hook them. By phrasing each topic as a fertile question to be answered, I have been able to think more carefully about the disciplinary knowledge that a geographer would need in order to answer it. I find myself asking, what propositional and procedural knowledge will they have to bring to the question? Rather than, what can I teach to fill up the lessons this half-term?”5

			To work towards answering the fertile questions, you may devise lesson objectives or, better still, more specific “lesson questions”. William Lau, in his book Teaching Computing in Secondary Schools, gives an excellent explanation of lesson questions, relating them to the computing curriculum:

			“Linked to the Fertile Question should be a lesson question that provides a clearly defined context and encourages higher-order thinking. By having a clearly defined context we reduce demand on working memory.”6

			Lau gives a detailed example of a set of fertile questions and example lesson questions in his book, and I’ve paraphrased the first set in the table below to illustrate the idea. This would be an excellent fertile question for the topic of architecture (see chapter 6).

			
				
					
					
				
				
					
							
							Fertile question

						
							
							Lesson questions

						
					

					
							
							How can we design the fastest computer system in the world?

						
							
							
									Why does my phone get hot, and why does cooling it speed it up?

									Why do my phone and tablet boot in seconds, while my desktop takes a minute?

									Why are some manufacturers’ computers more expensive than others?

									Why did chip manufacturers stop increasing clock speeds and instead add extra cores?

									Why does magnetic storage still exist if solid state drives are quicker?

							

						
					

				
			

			
3. Higher-order thinking

			We all know about Bloom’s taxonomy of thinking skills: remembering, understanding, applying, analysing, evaluating, creating. As teachers, our job is first to ensure learners are secure in the topic: they can remember, understand and apply the new knowledge. Then we should aim to increase a learner’s time spent thinking at the higher levels of the taxonomy: analysing, evaluating and creating. Once learners are ready for the higher-order thinking skills, you can use some of my suggested activities for the topic.

			
4. Analogy and concrete examples

			Analogies help to explain abstract ideas using a similar idea in a familiar concept. Concrete examples exist in the real world and put the learning into context, connecting new computing ideas to other subjects, which helps pupils to assimilate them into their existing understanding. 

			Analogies can be used as part of a “semantic wave”. Also described as “unplug-unpack-repack”, a semantic wave is explained best by James Robinson on the Teach Computing blog: 

			“You take the terminology used by experts, which is often rich in meanings, and you unpack those meanings. You make them simpler, more relevant to the learners, and more concrete. Pupils explore this new concept using a familiar context and simple terminology, making it easier for them to understand and apply. Following this, the pupils can repack those simple meanings into the expert terminology, ensuring that they understand its nuances and can use it appropriately. By following this wave from the original meaning down to something familiar and then back up, you can build pupils’ understanding and prevent them misunderstanding key terms or being limited to overly simplistic language.”7

			
5. Cross-topic and cross-curricular learning

			Computer science should not be taught as a series of discrete units that exist independently of each other. Learners understand the subject much better if the links between concepts are made explicit, and they are encouraged to make their own links either within the subject or across the curriculum. This section will suggest some links that you can make, and activities that make these links explicit.

			
6. Unplugged

			Getting away from the computer is a very useful strategy for making abstract concepts clear. We lose any distractions or technical issues, and can teach computing even without computers. We can make topics real for students using analogies, similes, metaphors, role play, games, puzzles, magic tricks and storytelling. 

			
7. Physical

			Getting hands-on can make a computing lesson engaging and inclusive, with sensory and creative experiences. There is also some evidence that girls engage more with physical computing, as a physical project may have more immediate real-world applications.8 In this section we will discuss ideas for use with Raspberry Pi, micro:bit and other equipment, and if you don’t have these to hand you can borrow them from your local Computing at School hub (England only). 

			
8. Project work

			The upper levels of Bloom’s taxonomy can also be accessed through project work, as pupils apply their knowledge and create products. Projects give pupils a goal, an audience and a brief to fulfil, for which they need to make autonomous decisions about the skills, knowledge and tools they will need. 

			
9. Misconceptions

			Misconceptions can seriously hinder learners’ progress, and studies have shown that teachers who are aware of common misconceptions and actively seek to address them are more effective.9 Each chapter in this book ends with a table of common misconceptions, either from computer science education research, crowdsourced from my personal learning network, or taken from Project Quantum.10 It’s not meant to be an exhaustive list, but those I’ve chosen should help you become misconception-aware.

			
General pedagogical principles

			While the PCK section of each chapter covers topic-specific pedagogy, there are some teaching and learning principles that cut across topics. The following three sections detail these general principles. I recommend you adopt some or all of these in the computing classroom to improve your practice.

			
1. Flipped classroom

			A flipped classroom or flipped learning approach allows for more powerful learning experiences in the classroom. In a flipped classroom, the students do some learning before the lesson, usually set as the previous lesson’s homework. This frees the teacher from delivering some of the core knowledge, so they can instead focus the lesson on practical application of that knowledge. 

			The Learning Foundation website explains the flipped classroom approach,11 while Alan O’Donohoe, long-running host of Preston’s “Raspberry Jam” and provider of computer science teacher training, explains how to use the exa.foundation’s GCSE computer science MOOC12 to facilitate flipped learning on his YouTube channel.13

			The exa MOOC contains many links to online sources that can be used in a flipped approach, including the Craig’n’Dave video playlists. I often set an exa MOOC topic or a Craig’n’Dave video as flipped homework, requiring my students to make notes on the content before the lesson, either in Sketchnote form or in Cornell style for older students. You can read more about Craig’n’Dave’s flipped approach on their website.14

			
2. Using specialist language

			This book’s clear descriptions of each topic and deep exploration of the hinterland should enable teachers to explain topics in great depth, suitable for a direct-instruction approach to teaching. Pedagogical approaches such as Talk for Writing from Pie Corbett15 have shown that children internalise the key terms and language structures needed to write knowledgeably about the subject when teachers “talk the text” confidently, model their thought processes and explicitly teach the specialist language of the subject.

			
3. Cognitive science approach

			I use the techniques described in this book as part of a wider strategy of research-informed teaching. I take an approach that follows Barak Rosenshine’s Principles of Instruction,16 explored by Tom Sherrington in his book Rosenshine’s Principles in Action.17 You can read more on the introduction of Rosenshine’s principles to my classroom on my blog.18

			Much of the PCK advice in each chapter is aimed at increasing what Doug Lemov calls ratios, explained in a blog post by Adam Boxer:

			
					“Participation ratio: how many of your students are participating and how often?

					
Think ratio: when they are participating, how hard are they thinking?”19


			

			Increasing these ratios is important because “memory is the residue of thought”, as Daniel Willingham explains in his book Why Don’t Students Like School? 20 The PCK ideas in each chapter offer many ways to get students thinking hard about the subject knowledge that matters.

			Every teacher should have at least a passing understanding of cognitive load and how to ensure learners’ working memory is not overloaded. We will see in this book how techniques like PRIMM, pair programming, worked examples and Parsons problems can all reduce cognitive load. You can read more about cognitive load theory in the computing classroom in Phil Bagge’s article for Hello World magazine.21

			
4. Retrieval practice

			Another key finding from psychology is the Ebbinghaus forgetting curve and the role of retrieval practice in overcoming it. From 1880 to 1885, the German psychologist Hermann Ebbinghaus tested his own recall of nonsense three-letter words such as “wid” and “zof”. He found that memory declines rapidly at first, then more slowly, but crucially can be boosted by what Ebbinghaus called “overlearning”.22 We can achieve this boost through retrieval practice, using techniques such as self-quizzing and frequent, low-stakes review quizzes. 

			Doug Lemov describes the forgetting curve and how to defeat it in Teach Like a Champion23 and you can read more on his blog.24 Lemov recommends a “do now” activity to review previous learning at the start of every lesson. William Lau describes on his blog how he runs a “quick fire five” low-stakes quiz at the start of every lesson,25 and he’s published a large set of suitable questions at mrlaulearning.com.

			Learners should be encouraged to do their own retrieval practice, using techniques such as look-say-cover-write-check26 and digital retrieval practice tools such as Quizlet, Memrise, Cram and GoConqr. The founder of the CogSciSci discussion group,27 Adam Boxer, has created a website dedicated to retrieval practice called Carousel Learning.28

			
Inclusion

			There is no subheading for inclusion in each chapter. That’s because adopting some or all of the suggested PCK techniques would inherently make your classroom more inclusive. The suggested activities mostly have “a low floor, wide walls and a high ceiling” – a phrase coined by Seymour Papert that guided the development of Scratch at MIT.29

			Reducing cognitive load can also support SEND learners. As Catherine Elliott explains in her discussion of PRIMM for Hello World magazine, “A young person with SEND can thus learn about the same computer science concepts as their peers, without the fear of failure, or the demand on working memory and recall that writing a program from first principles involves.”30

			As Beverly Clarke writes, also for Hello World, equitable computing would mean “experiences that are high quality in terms of pedagogy and robust in terms of nature and scope of learning goals, taking students beyond the curriculum”.31 And unplugged activities, physical computing and project work offer multiple means of engagement, representation, action and expression, as recommended in the Universal Design for Learning (UDL) framework discussed in Hello World.32

			
Universal Design for Learning

			In Computer Science in K-12: an A to Z handbook on teaching programming, Maya Israel and Todd Lash explain that the UDL framework “maximises students’ strengths and reduces instructional barriers”.33 These might include accessibility barriers such as visual impairment, which might suggest a screen-reader-compatible programming environment. Cognitive load barriers would benefit from explicit instruction, modelling and scaffolding, using the techniques described in this book. 

			Israel and Lash explain the UDL Instructional Planning Process, which has four steps posed as questions:

			
					What are my instructional goals?

					What barriers could interfere with students achieving those goals?

					What methods and materials can I use to address the instructional barriers in this activity?

					How might I assess learning in a flexible manner?

			

			When answering question 3, we might decide to scaffold a learning activity. Scaffolding might take the form of several stages of explicit instruction: modelling, guided practice, then independent practice with support. This is what P. David Pearson and Margaret Gallagher called “gradual release of responsibility”, or the “I do, we do, you do” model.34 This model aims to keep the learner in what Lev Vygotsky called the “zone of proximal development”.35 Thus we reduce what John Sweller called “extraneous cognitive load”36 so the learners can focus just on what they need to learn at each stage. 

			You can read more about UDL at udlguidelines.cast.org.

				
					As an aside, once I understood cognitive load theory, I realised that one problem my learners faced was extraneous load from the plethora of languages and platforms in my curriculum. I inherited a KS3 plan that included Scratch, Small Basic, Code Lab (JavaScript), App Inventor (Java) and Python. With just one lesson per week, my poor students spent most of their time learning new coding environments and syntaxes, so there was very little room for “germane cognitive load”, i.e. computational thinking.

				

			
Gender balance

			Teachers should also be aware of current research around gender balance in computing, with women accounting for just 17% of IT specialists in the UK.37 The advice in this book can be augmented by an approach that encourages girls to study the subject at GCSE and beyond. Computing at School (CAS), in collaboration with the University of Manchester, produced a helpful booklet that includes advice such as these tips:

			
					
“Tip 1: women can change the world. Make links to the big picture and real-world computing roles that have an ethical remit – for example, designing assistive technologies to enable people to overcome a disability, or highlight technology’s role in medicine, humanitarian work, science, fashion, communications, art, journalism or sport. Mainstream media representations of people working in computing are largely white males writing computer code. It’s important to provide a more realistic, balanced and aspirational viewpoint.”


					
“Tip 2: role models. Discuss female role models and put up displays of women in technology. Many young women do not identify STEM careers as interesting, relevant or appropriate for their gender.”


					
“Tip 3: out and about. Plan trips where girls can see female role models working in technology that isn’t just coding, such as Jodrell Bank, Cadbury World or local employers.”


					
“Tip 8: encourage and praise. Ensure that praise addresses all aspects of learning computing, including creative solutions, planning and conceptual understanding, as well as technical knowledge and skills.”38


			

			Many of the other tips in the CAS booklet reinforce the need for a range of activities in computing lessons, including unplugged, physical and project work that allows for collaboration and freedom of expression. 

			By employing some of these strategies, I have aimed to foster a powerful, inclusive learning environment in my computing classroom. The results so far have been promising, with the proportion of girls in my Year 10 classes rising from 5% in 2016-7 to 30% in 2020-21. But like the IT industry and society more generally, I still have a long way to go!

			
Why did I write this book?

			The germ of an idea for this book was planted by a blog post by Tom Sherrington called “Signposting the hinterland: practical ways to enrich your core curriculum”. Sherrington explains that curriculum can be divided into “core” and “hinterland”, where the hinterland is as important as the core and serves the purpose of:

			
					“Increasing depth: niche details about a particular area of study that deepen and enrich the core.

					
Increasing breath: wider surveys across the domain of any curriculum area that help to locate any specific core element within a wider frame.”39


			

			Sherrington quotes from an earlier blog post by Christine Counsell that explains why the hinterland is important: 

			“The core is like a residue – the things that stay, the things that can be captured as proposition. Often, such things need to be committed to memory. But if, in certain subjects, for the purposes of teaching, we reduce it to those propositions, we may make it harder to teach, and at worst, we kill it.” 40

			The original aim of this book was to assist computer science teachers in sharing some of that hinterland with their students, in order to enrich their studies, cement core knowledge in a wider context, and engender an appreciation for the subject that goes beyond what’s required to pass exams and, in many learners, excites a lifelong love for the subject. Once I started to write the book, I realised that the pedagogy of our subject is underappreciated in the classroom practitioner community. So I decided to enhance the book with insights into some of the current research, making the concepts accessible to teachers with concrete, practical ideas.

			
Why is this book needed?

			Computer science is a young subject, taught in schools only since the early 1980s and – after a hiatus in which “ICT” took over in UK schools – re-established as a core subject only in 2014, as part of the national curriculum subject of “computing”. Computer science graduate teachers are scarce, and many schools employ non-specialists to teach our hugely important subject. Pedagogy specific to computing is therefore underdeveloped and – by many teachers – largely overlooked. Computing teacher forums and social media groups are awash with requests for “lessons on network protocols” and “schemes of work for network security”. Much rarer are conversations around questions such as “Should we do protocols before network security?”, “What is a good analogy for teaching protocols?” and “What misconceptions do students develop when learning about networks?” Questions like these are seen regularly in online communities dedicated to more mature subjects such as English and history.

			In How To Teach Computer Science, we will explore pedagogy, such as the best way to teach sorting algorithms. We’ll see how more emphasis on reading code before writing it and working in pairs as “driver and navigator” is getting results in programming lessons. We’ll look at techniques to explain networking, including “Post-it note packet switching”, and we’ll ponder the question “Are we spending too long making topologies out of string, and not enough on how the internet works?”

			Reading this book should improve your performance as a computer science teacher. That is my primary aim. I also hope it improves your confidence and allows you to enjoy teaching our wonderful subject as much as I do. 

			In the introduction to his important book A Discipline of Programming, Edsger Dijkstra wrote: “My original idea was to publish a number of beautiful algorithms in such a way that the reader could appreciate their beauty.”41 If this book reveals only a tiny fragment of the beauty of computer science and gives you the confidence to share it with young learners, then I will have achieved my goal. 

			

			
				
					1 Shulman, L.S. (1986) “Those who understand: knowledge growth in teaching”, Educational Researcher, 15, 4-14

				

				
					2 Mishra, P. & Koehler, M.J. (2006) “Technological pedagogical content knowledge: a framework for teacher knowledge”, Teachers College Record, 108(6), 1017-1054

				

				
					3 blog.teachcomputing.org/tag/quickread

				

				
					4 teachcomputing.org/curriculum

				

				
					5 Enser, M. (2020) “Are you asking fertile questions? If not, you should be”, TES, link.httcs.online/fertile

				

				
					6 Lau, W. (2017) Teaching Computing in Secondary Schools: a practical handbook, Routledge

				

				
					7 Robinson, J. (2020) “How we teach computing”, Teach Computing, blog.teachcomputing.org/how-we-teach-computing

				

				
					8 Franks, R. (2021) “A journey into physical computing”, Hello World, link.httcs.online/hw15physical

				

				
					9 Sadler, P.M., Sonnert, G., Coyle, H.P., Cook-Smith, N. & Miller J.M. (2013) “The influence of teachers’ knowledge on student learning in middle school physical science classrooms”, American Education Research Journal, 50(5)

				

				
					10 diagnosticquestions.com/quantum

				

				
					11 learningfoundation.org.uk/the-flipped-classroom

				

				
					12 courses.exa.foundation

				

				
					13 O’Donohoe, A. (2016) “Basic introduction to J276 MOOC and flipped learning” (video), YouTube, link.httcs.online/exaflipped

				

				
					14 craigndave.org/our-pedagogy

				

				
					15 talk4writing.com

				

				
					16 Rosenshine, B. (2010) “Principles of Instruction”, International Academy of Education, link.httcs.online/rosenshine

				

				
					17 Sherrington, T. (2019) Rosenshine’s Principles in Action, John Catt

				

				
					18 httcs.online/rosenshine

				

				
					19 Boxer, A. (2020) “Ratio”, A Chemical Orthodoxy (blog), link.httcs.online/ratio

				

				
					20 Willingham, D.T. (2010) Why Don’t Students Like School?, Jossey-Bass

				

				
					21 Bagge, P. (2020) “Cognitive load theory in the computing classroom”, Hello World, 8, link.httcs.online/hw8cog

				

				
					22 Ebbinghaus, H. (1885) Memory: a contribution to experimental psychology

				

				
					23 Lemov, D. (2014) Teach Like a Champion 2.0, John Wiley & Sons

				

				
					24 Lemov, D. (2021) “An annotated forgetting curve”, Doug Lemov’s Field Notes (blog), link.httcs.online/tlacforget

				

				
					25 Lau, W. (2019) “Quick fire five”, Look Who’s Learning Too (blog), link.httcs.online/lauqff

				

				
					26 link.httcs.online/bbclook

				

				
					27 link.httcs.online/cogscisci

				

				
					28 link.httcs.online/carousel

				

				
					29 Resnick, M. (2008) “Mindstorms over time: reflections on Seymour Papert’s contributions to education research”, presented at a special session of the 2008 American Educational Research Association annual meeting, link.httcs.online/lowfloor

				

				
					30 Elliott, C. (2020) “The inclusive computing classroom”, Hello World, 12, link.httcs.online/hw12inc

				

				
					31 Clarke, B. (2020) “Encouraging an inclusive computer science environment”, Hello World, 11, link.httcs.online/hw11inc

				

				
					32 Leonard, H. (2021) “Universal Design for Learning in computing”, Hello World, 15, helloworld.raspberrypi.org/issues/15

				

				
					33 Israel, M. & Lash, T. (2020) “Universal Design: reaching all students” in Grover, S. (ed.) Computer Science in K-12: an A to Z handbook on teaching programming, Edfinity

				

				
					34 Pearson, P.D. & Gallagher, M.C. (1983) “The instruction of reading comprehension”, Contemporary Educational Psychology, 8(3), 317-344

				

				
					35 Vygotsky, L.S. (1978) Mind in Society: the development of higher psychological processes, Harvard University Press

				

				
					36 Sweller, J., van Merrienboer, J.J.G. & Paas, F.G.W.C. (1998) “Cognitive architecture and instructional design”, Educational Psychology Review, 10, 251-296

				

				
					37 Little, J. (2020) “Ten years on, why are there still so few women in tech?”, The Guardian, link.httcs.online/womeninIT

				

				
					38 Rydeheard, D. et al. (2018) Girls Into Computing: top tips for schools, University of Manchester. PDF available at: link.httcs.online/uomgirls (free CAS registration required)

				

				
					39 Sherrington, T. (2019) “Signposting the hinterland: practical ways to enrich your core curriculum”, Teacherhead (blog), link.httcs.online/sherrington

				

				
					40 Counsell, C. (2018) “Senior Curriculum Leadership 1: The indirect manifestation of knowledge: (A) curriculum as narrative”, The Dignity of the Thing (blog), link.httcs.online/counsell

				

				
					41 Dijkstra, E. (1976) A Discipline of Programming, Pearson

				

			

		

	
		
			
Chapter 1. Data representation

			 

				
					
Switzerland, June 1816 

					George Gordon, Lord Byron, has fled England and settled in Switzerland, with his fellow poet Percy Bysshe Shelley and Shelley’s future wife, Mary. During days of incessant rain, which keeps the party indoors, Byron suggests a competition to write the best ghost story. Mary imagines a mad professor who reanimates a corpse with tragic consequences. She names the scientist Victor Frankenstein and publishes the story anonymously on her return to England in 1818.

					Byron, meanwhile, having left behind scandal, a doomed marriage, his beloved homeland and his first child – his infant daughter Augusta Ada – pens these lines:

					Is thy face like thy mother’s, my fair child!

					Ada! sole daughter of my house and heart?

					When last I saw thy young blue eyes, they smiled,

					And then we parted, — not as now we part,

					But with a hope. — Awaking with a start,

					The waters heave around me; and on high

					The winds lift up their voices: I depart,

					Whither I know not; but the hour’s gone by,

					When Albion’s lessening shores could grieve or glad mine eye.

				

			
Meeting Ada

			Augusta Ada, known as Ada, was raised by her mother, the highly educated mathematician Annabella Milbanke. Byron, famously described by one of his many lovers as “mad, bad and dangerous to know”, had been an ill match for the devoutly religious Annabella and the Byrons had separated after only a year of marriage. Byron never saw Ada or Annabella again. He travelled on through Italy to Greece, where he helped the Greeks fight for independence from the Ottoman Empire, ultimately earning Greek national hero status. He died of a fever in 1824, when Ada was eight years old. 

			Fearing Ada might inherit what she called Byron’s “insanity”, Lady Byron schooled her daughter in science and mathematics and discouraged literary study. Ada was a diligent pupil, studying under Mary Somerville and Augustus De Morgan; her studies and social exploits brought her together with the greatest minds of the age, including Michael Faraday, Charles Dickens and one Charles Babbage. Ada went on to marry William King, who was later made Earl of Lovelace, whereupon she became Countess of Lovelace.

			
				[image: A portrait of Ada Lovelace (circa 1840) believed to be by Alfred Edward Chalon. The portrait has been superimposed on a digital code background inside a picture frame.
]
			

			Figure 1.2: Ada, Countess of Lovelace, sometimes considered the first computer programmer.

			In her adolescence, Ada was fascinated by the mechanics of flight, studying birds and documenting her thoughts on human flight in a book she called Flyology, written at the age of 12. Ada showed a knack for using mathematics to understand nature. Her maths tutor, Mary Somerville, was one of the first female members of the Astronomical Society and the first person to be described in print as a scientist. Somerville introduced the 17-year-old Ada to the inventor and mathematician Charles Babbage at a party, where Babbage was demonstrating his Difference Engine, a mechanical calculator designed to speed up the computation of scientific tables. Ada was fascinated by the machine and became a friend, student and assistant to Babbage for the rest of her life.

			
Numbers for everything

			Ada Lovelace was 100 years ahead of her time in her ability to imagine what might be accomplished by computers. She saw only an unfinished prototype of the Difference Engine within her lifetime; she died of cancer in 1852, at the age of 36, while Babbage worked on an improved design for the machine. Despite having only physical experience of the number-crunching machine, Lovelace was able to describe the concept of a general-purpose computer that would be able to manipulate sounds and images. In 1843, she wrote:

			“[The Analytical Engine] might act upon other things besides number, were objects found whose mutual fundamental relations could be expressed by those of the abstract science of operations, and which should be also susceptible of adaptations to the action of the operating notation and mechanism of the engine. Supposing, for instance, that the fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent.” 1

			
Early bitmaps

			Lovelace didn’t limit her imaginary computers to music. Inspired by the images woven into rich brocades, she also suggested that Babbage’s machine might be capable of creating graphics. The Analytical Engine, she wrote, “weaves algebraic patterns just as the Jacquard loom weaves flowers and leaves”.

			The French textile merchant Joseph-Marie Jacquard had patented his automated weaving loom in 1804; by the 1840s, when Lovelace wrote that line, Jacquard looms were common across the UK. Rolls of punched cards drove the raising and lowering of warp threads – a difficult job previously performed by a “draw boy” – thus automating the production of patterned cloth. The presence of a hole meant that a warp was raised; no hole meant that it remained lowered. The cards thus carried a binary code that was interpreted by the loom as a pattern. More than 100 years before digital computer monitors, we see a binary code that represents a two-dimensional image. 

			Babbage would adopt the idea of punched cards in his design for the Analytical Engine, which sadly remained unfinished. But the program that Lovelace designed for it, to calculate Bernoulli numbers, survived and we will look at it in chapter 5.


				[image: A photograph of a Jacquard loom at the Musée des Arts et Métiers in Paris.]
			

			Figure 1.3: The Jacquard loom was fed with binary data on punched cards.

			
News travels slow

			On the other side of the Atlantic, the problem of transcontinental communications was to drive the invention of more codes for data representation. The Gold Rush had swelled California’s population to nearly 400,000 people by 1860. But they were largely cut off from the rest of the Union, with stagecoaches taking a month to make the arduous journey from east to west. With a civil war looming and local businesses demanding faster communications, a group of Missouri-based entrepreneurs founded the original Pony Express. Using a string of 200 relief stations and lone horsemen riding in relays, the service slashed the Missouri-California mail-delivery time; in March 1861, the inaugural address of Abraham Lincoln arrived in the California capital, Sacramento, in a record seven days. But the Pony Express was a flop, folding after 18 months without ever turning a profit.


OEBPS/font/CenturyGothicPro.otf


OEBPS/image/1.jpg
HOW TO TEACH
COMPUTER
SCIENCE

Parable, practice
and pedagogy

Alan J. Harrison

JOHN
CATT






OEBPS/font/CenturyGothicPro-Bold.otf


OEBPS/image/1.2.jpg





OEBPS/font/CourierNewPSMT.ttf


OEBPS/font/CenturyGothicPro-BoldItalic.otf



OEBPS/image/1.1.png





OEBPS/font/MinionPro-It.otf


OEBPS/image/1.3.jpg





OEBPS/image/9781913622572.jpg
HOW TO TEACH
COMPUTER
SCIENCE

Parable, practice

and pedagogy ,
=N ﬂ
,!

@@‘}'“
'r 12






OEBPS/font/CenturyGothicPro-Italic.otf



OEBPS/font/CourierNewPS-BoldMT.ttf


