

[image: Cover Image]

[image:]

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE. Telephone: +44 (0)1235 827827. Fax: +44 (0)1235 400401. Email education@bookpoint.co.uk Lines are open from 9 a.m. to 5 p.m., Monday to Saturday, with a 24-hour message answering service. You can also order through our website: www.hoddereducation.co.uk

ISBN: 978 1 5104 8430 6
eISBN: 978 1 5104 8436 8

© George Rouse, Lorne Pearcey and Gavin Craddock 2020

First published in 2020 by

Hodder Education,
An Hachette UK Company
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ

www.hoddereducation.co.uk

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2024 2023 2022 2021 2020

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover illustration © By ToheyVector – stock.adobe.com

Illustrations by Integra Software Services Pvt. Ltd., Pondicherry, India.

Typeset in Integra Software Services Pvt. Ltd., Pondicherry, India.

Printed in Italy

A catalogue record for this title is available from the British Library.

[image:]

CONTENTS

How to use this book

1 FUNDAMENTALS OF ALGORITHMS

1.1 Representing algorithms

1.2 Efficiency of simple algorithms

1.3 Sorting and searching algorithms

2 PROGRAMMING

2.1 Data types

2.2 Programming concepts

2.3 Arithmetic operations

2.4 Relational operations

2.5 Boolean operations

2.6 Data structures

2.7 Input and output

2.8 String-handling operations

2.9 Random number generation

2.10 Structured programming and subroutines

2.11 Robust and secure programming

3 FUNDAMENTALS OF DATA REPRESENTATION

3.1 Number bases

3.2 Converting between number bases

3.3 Units of information

3.4 Binary arithmetic

3.5 Character encoding

3.6 Representing images

3.7 Representing sound

3.8 Data compression

4 COMPUTER SYSTEMS

4.1 Hardware and software

4.2 Boolean logic

4.3 Software classification

4.4 Classification of programming languages and translators

4.5 Systems architecture

5 FUNDAMENTALS OF COMPUTER NETWORKS

5.1 Computer networks

6 CYBER SECURITY

6.1 Fundamentals of cyber security

6.2 Cyber security threats

6.3 Methods to detect and prevent cyber security threats

7 RELATIONAL DATABASES AND STRUCTURED QUERY LANGUAGE (SQL)

7.1 Relational databases

7.2 Structured Query Language (SQL)

8 ETHICAL, LEGAL AND ENVIRONMENTAL IMPACTS OF DIGITAL TECHNOLOGY ON WIDER SOCIETY

8.1 Ethical, legal and environmental impacts and risks of digital technology

GLOSSARY

KNOWLEDGE CHECK ANSWERS

QUESTION PRACTICE ANSWERS

ACKNOWLEDGEMENTS

HOW TO USE THIS BOOK

To help you get the most out of it, this textbook uses the following learning features:

Important words

Highlighted in green, these are terms that you will be expected to know and understand in your exams.

[image:]

Important words

You will need to know and understand the following terms:

algorithm

decomposition

abstraction

[image:]

Tech terms

Jargon or technical definitions in blue that you may find useful.

[image:]

Tech terms

Inverter An alternative name for a NOT gate, because the output inverts the input.

[image:]

Key point

An important idea or concept.

[image:]

Key point

A computer program is an implementation of an algorithm – an algorithm is not a computer program!

[image:]

Worked examples

Used to illustrate an idea or a concept, these will guide you through the reasoning behind each step of a calculation or process.

[image:]

Worked example

[image:]

[image:]

Beyond the spec

Information that you will not be expected to know or state in an exam but will aid understanding or add some useful context..

[image:]

Beyond the spec

Computer Scientists use ‘Big O notation’ to measure mathematically how efficient algorithms are. Big O attempts to measure the change in efficiency as the size of the data input increases. This is covered fully in the A-level Computer Science specification.

[image:]

Knowledge check

Quick check-ins that help you to recap and consolidate your understanding of the previous section.

[image:]

Knowledge check

	 1 Define the following terms:

	
(a) Decomposition

	
(b) Abstraction

	 2 A programmer is creating software to send and receive encrypted messages via email. Describe how decomposition can be used to allow this problem to be solved.

[image:]

Recap and review

A targeted summary of everything you have learned in the chapter. Use this to help you recap as you work through your course.

Question practice

More formal questions to help you to prepare for both examination papers.

Answers

Answers to all of the Knowledge check and Question practice questions are at the back of the book and also at www.hoddereducation.co.uk/AQAGCSEComputerScience.

1 FUNDAMENTALS OF ALGORITHMS

[image:]

CHAPTER INTRODUCTION

In this chapter you will learn about:

1.1 Representing algorithms

	
• Understand and explain the term algorithm

	
• Understand and explain the terms decomposition and abstraction

	
• Explain algorithms in terms of their inputs, outputs and processing

	
• Use a systematic approach to problem solving including pseudo-code, program code and flowcharts

	
• Determine the purpose of simple algorithms using trace tables and visual inspection

1.2 Efficiency of simple algorithms

	
• Understand that more than one algorithm can be used to solve the same problem

	
• Compare the efficiency of algorithms

1.3 Sorting and searching algorithms

	
• Understand and explain how linear search and binary search algorithms work

	
• Understand and explain how merge sort and bubble sort algorithms work

[image:]

1.1 Representing algorithms

Computers are simply electronic machines that carry out instructions given by human programmers; although a computer can solve many complex problems, it can only do so if it is given instructions to tell it how to do so. Writing these instructions in a form that is suitable for a computer to carry out can be a challenging task!

An algorithm is a step-by-step sequence of instructions that are used to solve a problem or complete a task. Each instruction in an algorithm must be precise enough to be understood independently. An algorithm must also clearly show the order in which instructions are carried out and where decisions are made or sections repeated.

[image:]

Key point

A computer program is an implementation of an algorithm – an algorithm is not a computer program!

[image:]

Decomposition and abstraction

In order to define algorithms effectively, decomposition and abstraction are often used.

	
• Decomposition is breaking a problem down into smaller sub-problems that each accomplish an identifiable task, which might itself be further subdivided.

	
• Abstraction is removing or hiding unnecessary details from a problem so that the important details can be focused on or more easily understood.

For example, imagine a programmer wishes to create a system to sell T-shirts. This could be a relatively large problem. Where would they start? By using decomposition and abstraction, the programmer can begin to work out how to tackle the problem.

	Decomposition

	Abstraction

	

How can the T-shirt sales system be split up?

It perhaps involves:

	
• A login system for users

	
• A search function to find particular T-shirt

	
• A system to allow users to buy a T-shirt.

	
• A reordering system

	

What can we focus on and what can we ignore?

Let’s consider the login and search functions:

	
• The login system could focus on a customer’s email address and password but ignore everything else.

	
• The search function could focus only on certain T-shirt details (for example colour, size, material, price, how many in stock).

A particularly powerful example of abstraction is Harry Beck’s well-known London underground map. The map focuses on the connections between stations and how lines intersect. It is a useful tool for anyone who wants to plan a journey in London. However, it ignores details such as tunnels, distances between stations and which streets pass overhead. These details are not important for underground travellers and would make the map more confusing if included. To see Harry Beck’s original design, go to the Transport for London website, at https://tfl.gov.uk/corporate/about-tfl/culture-and-heritage/art-and-design/harry-becks-tube-map.

[image:]

Figure 1.1 A modern interpretation of a transport system map

[image:]

Knowledge check

	
1 Define the following terms:

	
(a) Decomposition

	
(b) Abstraction

	
2 A programmer is creating software to send and receive encrypted messages via email. Describe how decomposition can be used to allow this problem to be solved.

	
3 A chess club develops a system to store details about games played. For each game, the winner’s and loser’s names are stored alongside the date that the game was played. Explain how abstraction has been used in the development of this system.

[image:]

Explain simple algorithms in terms of their inputs, processing and outputs

An algorithm can be represented by the diagram below:

[image:]

Figure 1.2 Input–Process–Output

Input refers to data that is given to the algorithm by the user. This may be typed in via the keyboard, entered with another input device such as a microphone or read in from an external data file.

Output is the data that is given back to the user by the algorithm. This may be done with a message on the screen, using another output device such as a printer or by writing to an external data file.

Processing describes the steps that the algorithm takes in order to solve the problem. This stage involves processing the given input in order to produce the desired output.

Going back to the example of the system to sell T-shirts, what are the inputs, outputs and processes for the section of the system that allows the user to search for suitable T-shirts?

The inputs include everything that the system requires the user to enter: for example, the size, colour and style of T-shirt that they require. Another input would be an external file containing details of all the T-shirts available.

With these inputs, the system will then carry out processes to find T-shirts to match the user’s search criteria, such as only selecting those in the correct size and colour and excluding any that are out of stock.

Once this has been completed, a list of matching T-shirts will be produced as an output to the user.

[image:]

Figure 1.3 Example of Input–Process–Output

Problem solving and algorithm creation

Algorithms can be created using flowcharts, pseudo-code or program code.

Flowcharts

The inputs, processes and outputs can be put together into an algorithm by using a flowchart. This is a graphical representation of an algorithm and uses symbols to denote each step, with arrows showing how to move between each step.

A flowchart may use any of the following symbols:

[image:]

Figure 1.4 Flow diagram symbols

All flowcharts begin and end with the terminal shape, indicating the start and end of the flowchart.

Inputs and outputs are represented by a parallelogram, with decisions using a diamond shape.

Decision boxes must have two possible outputs: True/False or Yes/No.

All other processes are shown as a rectangle.

Where algorithms are decomposed into separate subroutines, a rectangle with two additional vertical lines is used to show a call to a different subroutine.

The following flowchart shows part of an algorithm for the T-shirt system that deals with re-ordering T-shirts when stock runs low.

[image:]

Figure 1.5 Flow diagram for T-shirt reordering system

Pseudo-code

Alternatively, an algorithm may be represented using pseudo-code. Pseudo-code is a textual, English-like method of describing an algorithm. It is much less strict than high-level programming languages, although it may look a little like a program that could be entered directly into a computer. The same T-shirt reordering system that was described in a flowchart could also be represented in pseudo-code as follows:

[image:]

[image:]

Key point

In general, pseudo-code is not strictly defined so many variations would be acceptable. For example, the keyword OUTPUT could instead be replaced with PRINT, or even DISPLAY – as long as the steps to be taken are clear, that is sufficient.

[image:]

[image:]

Key point

Questions in the exam use AQA Pseudo-code to define the algorithm. This has a particular syntax – an AQA Pseudo-code guide is available on the AQA website. All examples in this book will also be written using AQA Pseudo-code.

[image:]

Program code

Program code refers to instructions given in a high-level language. For the AQA GCSE Computer Science specification, you must choose to use either Python, VB.Net or C#; each of these languages has a separate examination paper.

Where answers are requested as program code, it is important that you are as precise with the syntax as when you are actually coding. Your code answers should work if they were typed into your computer.

The following shows the T-shirt ordering algorithm written in each of these high-level languages:

[image:]

Determine the purpose of simple algorithms

Trace tables

If an algorithm has been given, its purpose can be found by checking what it does.

Very simple algorithms can be visually inspected to check their purpose – for instance, it might follow the same pattern as an algorithm you are familiar with, or it might be so simple that you can clearly see what the algorithm is doing.

For more complex algorithms visual inspection becomes very difficult. In these cases, a trace table can be used to follow each line of an algorithm through, step by step. The trace table will list each line of code, all of the variables and the outputs. By filling in the table you can track the contents of each variable and the outputs after each line has been carried out. By manually following through an algorithm in this way, you can check the purpose of each line of the algorithm and the algorithm as a whole.

For example, we can trace through the pseudo-code T-shirt reordering algorithm shown previously when considering stock item 009. Let’s assume we currently have eight items in stock and it has a reorder level of three.

	Line

	ItemCode

	StockLevel

	ReorderLevel

	Output

	Comments

	01: ItemCode ← USERINPUT

	009

	

	

	

	Item code 009 entered by user

	02: StockLevel ← USERINPUT

	009

	8

	

	

	Stock level of 8 entered by user

	03: ReorderLevel ← USERINPUT

	009

	8

	3

	

	Reorder level of 3 entered by user

	04: IF StockLevel ≤ ReorderLevel THEN

	009

	8

	3

	

	8 is NOT smaller than or equal to 3, so line 7 executed next

	07: OUTPUT "Stock not ordered"

	009

	8

	3

	'Stock not ordered'

	Correct output printed

By tracing this algorithm using a trace table, we can see that it makes the choice of whether to reorder the stock based on whether the current stock level falls below the reorder level.

We could also have traced through with stock values that were just equal to the reorder level, and with another item that was out of stock, to be sure that this algorithm works perfectly in every scenario. (We will consider this more thoroughly when discussing testing in Chapter 2.)

[image:]

Key point

A trace table shows the values of each variable after each step has been executed. Although the item code is only entered on line 1, it still holds the same value throughout the rest of the program and so its value is repeated in later lines of the trace table.

[image:]

[image:]

Knowledge check

	
4 The following algorithm has been designed to decide which of two numbers is the largest. Complete the trace table to check that the algorithm works correctly when the values 8 and 5 are entered by the user.

[image:]

	Line

	NumOne

	NumTwo

	Output

	Comments

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

[image:]

1.2 Efficiency of simple algorithms

An important point in computer science is that there are usually many ways of solving the same problem. For example, even to print out the numbers one to five could be done in any of the following ways:

[image:]

Each of the algorithms above will produce exactly the same output. If we changed the algorithm to print out the numbers 1 to 100 000, it is perhaps obvious that the first example would be more time-consuming to write out whereas the others would be simpler to change. However, this does not in itself make the first algorithm any less efficient than the other two.

The efficiency of an algorithm is the time taken for a computer to complete that algorithm. Because computers all run at different speeds, we count up the number of steps in an algorithm as a rough guide to its efficiency.

The following two algorithms complete the same task, of finding the greatest common divisor of two numbers:

[image:]

Algorithm 1 does this using a special mathematical technique (called the Euclidian algorithm) that works by subtracting one number from the other, depending on which is larger, until zero is reached.

Algorithm 2 simply divides both numbers by every possible integer. Both will produce the same result but algorithm 2 will take many more steps to find the answer. We can therefore say that algorithm 1 is more efficient.

The efficiencies of these two algorithms also depend on the input values. Running the algorithm with numbers such as 10 and 50 will show a small difference in efficiency between them, but if numbers in the millions were used algorithm 1 would be much more efficient than algorithm 2.

[image:]

Beyond the spec

Computer Scientists use ‘Big O notation’ to measure mathematically how efficient algorithms are. Big O attempts to measure the change in efficiency as the size of the data input increases. This is covered fully in the A-level Computer Science specification.

[image:]

1.3 Sorting and searching algorithms

One of the great things about an algorithm is that it can be reused. Once a computer scientist has written down a clever set of instructions for how to do something, other people can simply follow those instructions to solve the same problem.

A sorting algorithm is a set of instructions used to put a list of values into order. A searching algorithm is used to find a value within a list, or to confirm that value is not present in the list.

[image:]

Beyond the spec

The GCSE Computer Science specification covers two sorting algorithms and two searching algorithms, but there are many, many more that each work in different ways. Why not investigate how quick sort, insertion sort, shell sort or even bogo sort work?

[image:]

Sorting algorithms

Bubble sort

The bubble sort algorithm works by comparing pairs of values. If the two values are in the wrong order with respect to each other, they are swapped around. This is repeated for each adjacent pair of values. When the last pair of values has been compared, the first pass of the bubble sort algorithm is complete.

The algorithm then repeats the whole process again in a second pass, then a third pass and so on. It will continue to repeat until a pass has been completed with no swaps occurring. Once this happens, the list is guaranteed to be in order.

[image:]

Worked example

The following list of numbers will be sorted into ascending order using the bubble sort algorithm.

	7

	2

	9

	4

	3

The first two values in the list, 7 and 2, are compared as the first two values in the list. These are in the wrong order, so they are swapped over.

	2

	7

	9

	4

	3

Now 7 and 9 are compared. These are in the correct order and so no swap is necessary.

	2

	7

	9

	4

	3

On the next step, 9 and 4 are compared. These are in the wrong order and so are swapped.

	2

	7

	4

	9

	3

Finally, 9 and 3 are compared, which are in the wrong order and so are swapped.

	2

	7

	4

	3

	9

The first pass of the bubble sort algorithm has been completed. However, at least one swap has taken place and so the algorithm is repeated. After this second pass, the numbers will be in the following order, with two swaps having taken place:

	2

	4

	3

	7

	9

Again, because swaps have taken place, the algorithm must repeat. This time, only one swap is needed, giving the following list:

	2

	3

	4

	7

	9

[image:]

Key point

The list now appears to be in numerical order. However, the algorithm only stops when a pass is completed without any swaps taking place. This is not yet the case.

[image:]

The final pass of the algorithm compares each pair of numbers and finds no numbers that need to be swapped. The algorithm is therefore complete and the values are in order.

The bubble sort algorithm gets its name because numbers ‘bubble’ to the top after every pass.

[image:]

We can write out the bubble sort algorithm in very informal pseudo-code as follows:

[image:]

[image:]

Key point

At GCSE level, you will not be expected to remember the sorting and searching algorithms in pseudo-code, but you are expected to understand how they work.

[image:]

[image:]

Key point

You will be expected to know how to perform a merge sort on a list with an even or odd number of elements. With an odd number of elements there are two choices of where to divide lists – you can choose either but you must apply your choice consistently. Each of the merge stages must resemble the divide stages, just with elements in a different order.

[image:]

Merge sort

The merge sort algorithm uses a ‘divide and conquer’ approach to split data up into individual lists and then merge them back together in order. The way that the lists are merged back together is key to understanding how this algorithm works. For example, we have a list like this one below and we want to sort it in ascending order (from lowest to highest):

	7

	2

	9

	4

	3

	8

	5

	1

First, in the ‘divide’ stage the list of values is split into two separate sublists. Each sublist is repeatedly split in half until we have individual lists of size 1 each.

[image:]

Then each pair of lists are merged together into new lists in the ‘conquer’ stage. Where there is an uneven number of lists, the odd list will simply remain unmerged until the next step in the process.

When two lists are merged together, the first two numbers in each of the lists are compared and whichever should be first is taken to be first in the new list. This process is repeated until all numbers have been inserted into the new list.

[image:]

Here, 7 and 2 are compared, with 2 being inserted into a new list before 7. Similarly, 4 is inserted before 9 in the next merged list. This continues for the other pairs of lists, merging them together into four new lists.

The merging process is repeated again to merge pairs of lists together. This time the first list is made of 2 and 7, and the second list is made of 4 and 9. The algorithm compares the first numbers in each list, 2 and 4, to decide which value will be first in the new list. 2 is inserted into the new list. Next, 7 and 4 are then compared, with 4 being inserted. Then, 7 and 9 are compared, with 7 being inserted before 9 into the first new list.

The same process is then repeated for the lists made of 3 and 8, and 1 and 5, leaving two new lists in order, each made of four numbers.

[image:]

The merging process is again repeated with the final two lists. The first numbers in each list (2 and 1) are compared to decide which value will be first in the merged list, with 1 being inserted. 2 is then compared against 3, with 2 being inserted into the new list next. This continues until all numbers have been merged from the two lists into the final list. This final list is now in order.

[image:]

[image:]

Key point

At any point in the merging stage of this algorithm, each merged list is always in order. This means that it is only the first numbers from each list that need to be considered when deciding on how to merge them.

[image:]

We can write out the merge sort algorithm in very informal pseudo-code as follows:

[image:]

When all numbers are split up into separate lists, the merge stage can begin. This uses the following steps in very informal pseudo-code:

[image:]

If at any stage an odd number of lists are present, the odd list can simply be ignored until the next iteration.

Comparison of sorting algorithms

Both of the above algorithms will result in a sorted list, but they do it in very different ways. As previously discussed, an algorithm’s efficiency depends on the number of steps it takes to execute – the more steps, the lower the efficiency. A bubble sort is generally thought of as a simple but slow algorithm – as the size of the list of values increases, it slows down significantly because it requires multiple passes over the same data. A merge sort is much more efficient, especially with large lists of values.

[image:]

Knowledge check

	
5 Explain how a bubble sort would sort the values [6, 9, 2, 5, 8] into order.

	
6 A merge sort is an example of a divide and conquer algorithm. State what happens during the divide stage.

[image:]

Searching algorithms

A searching algorithm is used to find an item of data in a list, or to confirm that it is not in the list. The simplest searching algorithm is a linear search.

Linear search

A linear search is carried out by inspecting each item of the list in turn to check if it is the desired value. If it is, we have found the item; if it is not, the next item in the list must be checked.

If the algorithm gets to the end of the list without finding the item, then it is not in the list.

	7

	2

	9

	4

	3

To find the value 9 in this list, the algorithm would first check 7 and then check 2 before finally finding 9. To find the value 8, the algorithm would check every item in the list (7, 2, 9, 4 and 3). Only after checking the last value can we can be sure that 8 is not in the list.

A linear search is simple but inefficient. If we have a list of a million values, the algorithm would have to check all one million of them before being sure that that a particular value was not in the list.

We can write out the linear search algorithm in very informal pseudo-code as follows:

[image:]

Binary search

A much more efficient algorithm to find values in a list is a binary search. However, this algorithm has the pre-requisite that the list it searches must be in order. A binary search on an unsorted list will not work.

The binary search algorithm picks the middle value in the sorted list. ‘Middle’ means there are equal numbers of values either side of it. If there are an even number of values in the list then there isn’t an exact middle value – however, generally the value to the left of the middle is chosen. (Either side can be picked as long as we are consistent.)

If the middle value is the one that we are searching for then the algorithm finishes. However, if not, then the algorithm can discard half of the list because the value we are looking for cannot be in it. It can discard the lower half of the list if the middle value is smaller than the one we are searching for (as all of the values in the lower half will be smaller than the middle value); or it can discard the upper half of the list if the middle number is larger than the one we are searching for (as all of the values in the upper half will be larger than the middle value). Either way, we always also discard the middle value.

If we get to a situation where the list only has one item and it is not the one that we are searching for, then the value is not in the list.

[image:]

Worked example

The list below is in alphabetical order and so can be used in a binary search. We will look for the value Q in this list.

	A

	C

	D

	F

	H

	K

	P

	Q

	S

	T

	V

	W

	Z

We first take the middle value P. This is not the value that we are looking for and is smaller than Q alphabetically, so we can discard the lower half of the list, up to and including P.

	

	Q

	S

	T

	V

	W

	Z

	

We now have a list of six values. As there is no middle value, we pick the value to the left of the middle, which is T. This is the not the value that we are looking and T is larger than Q alphabetically, so the upper half of the list (including T) can be discarded.

	Q

	S

We now have a list of two values. Again, there is no middle value so we pick the value to the left of the middle which is Q. This is the value that we are searching for and so the algorithm stops.

[image:]

We can write out the binary search algorithm in very informal pseudo-code as follows:

[image:]

Comparison of searching algorithms

A linear search and a binary search will both find a value in a list, but will do so in very different ways. As previously discussed, an algorithm’s efficiency depends on the number of steps it takes to execute – the more steps, the lower the efficiency. A linear search will work with any list of values, but may be very slow as it checks every value in the list.

A binary search will be much more efficient, but requires the list to be sorted into order. A binary search halves the size of the list to be searched on every comparison.

Imagine searching for a value in a list of one million numbers sorted in order. In the worst-case scenario, a linear search will need to compare against each and every one of these million numbers. A binary search, however, needs only to make a maximum of 21 comparisons before it has completed its search. This is because the number of values in the list halves on every comparison. So, by the second comparison the number has halved from one million to 500 000. After three comparisons it has halved again to 250 000. After 21 comparisons the original list has been reduced to a single number. This means we can be sure that if a binary search of a million items cannot find the value being searched for in 21 comparisons, then the number is not in the list.

[image:]

Knowledge check

	
7 Explain how a linear search would find the value 18 in the list [1, 8, 6, 2, 18, 14, 7].

	
8 Which value would be the first to be compared in a binary search through the list [A, B, C, D, E]?

	
9 How does a linear search determine that a value does not appear in a list?

[image:]

[image:]

RECAP AND REVIEW

1 FUNDAMENTALS OF ALGORITHMS

[image:]

Important words

You will need to know and understand the following terms:

algorithm

decomposition

abstraction

input

process

output

flowchart

pseudo-code

program code

trace table

efficiency

sorting algorithm

bubble sort

merge sort

searching algorithm

linear search

binary search

[image:]

[image:]

1.1 Representing algorithms

Decomposition and abstraction

An algorithm is a step-by-step sequence of instructions that are used to solve a problem.

	
• Each instruction in an algorithm must be precise enough to be understood independently.

	
• An algorithm must also clearly show the order that each instruction is carried out in.

Decomposition breaks a problem into smaller sub-problems that can each be tackled individually. Each stage can be further decomposed if needed.

Abstraction means focusing on what is important in a problem and ignoring or hiding the irrelevant details.

Explain simple algorithms in terms of their inputs, processing and outputs

An algorithm:

	
• accepts inputs from a user (or from sensors or data files)

	
• processes this data, and then

	
• outputs the result back to the user in some format.

Identifying the inputs and the required outputs for a system enable us to decide how to map between the two. Programmers write code that processes the inputs in order to provide the required outputs.

[image:]

Problem solving and algorithm creation

Algorithms can be created using flowcharts, pseudo-code or program code.

Flowcharts

A flowchart is a graphical representation of an algorithm. It can be followed from top to bottom, making decisions as appropriate.

	
• Decisions are represented by diamond shapes and must have two output lines corresponding to Yes/No or True/False.

	
• Inputs and outputs are represented by parallelograms.

	
• Processes are represented by rectangles.

	
• Start/Stop instructions are represented by rounded rectangles.

	
• Each flowchart must begin and end with a Start and Stop instruction.

[image:]

As an example, the algorithm in the figure below will decide whether a positive number entered is odd or even using repeated subtraction.

[image:]

Figure 1.6 Flow diagram of odd/even number checking code

Pseudo-code

	
• Pseudo-code is a textual representation of an algorithm.

	
• Pseudo-code enables programmers to communicate algorithms to other programmers, showing the steps used without worrying about which language they are using.

The pseudo-code algorithm below carries out the same algorithm as the flowchart shown previously – finding whether a positive number is odd or even through repeated subtraction.

[image:]

Program code

Program code is code that is written in a high-level language. As you are studying AQA’s GCSE Computer Science specification, this will be either Python, VB.net or C#.

Program code in answers must be precise.

Determine the purpose of simple algorithms

Trace tables

	
• Very simple algorithms can be visually inspected to check their purpose.

	
• Trace tables are used to follow each line of a more complex algorithm from start to finish. At each point, the value of each variable and any outputs are recorded.

A table such as the one shown below is used. More columns are added if more variables are used.

	
Line

	Variable1

	Variable2

	Variable3

	Output

	Comments

	

	

	

	

	

	

If the program repeats certain lines, this is reflected in the trace table. Each row shows one line that is executed and lines of code can be repeated as many times as required.

The completed trace table below shows the previous algorithm running to check whether 5 is an odd or even number.

	Line

	Number

	Output

	Comments

	01: number ← USERINPUT

	5

	

	Number inputted by user

	02: WHILE number ≥ 0

	5

	

	Number is ≥ 0, continue

	03: IF number = 1

	5

	

	Number is not equal to 1

	05: ELSE IF number = 0

	5

	

	Number is not equal to 0

	07: ENDIF

	5

	

	End of IF statement

	08: number ← number - 2

	3

	

	2 subtracted from number

	09 ENDWHILE

	3

	

	End of loop, repeat again

	02: WHILE number ≥ 0

	3

	

	Number is ≥ 0, continue

	03: IF number = 1

	3

	

	Number is not equal to 1

	05: ELSE IF number = 0

	3

	

	Number is not equal to 0

	07: ENDIF

	3

	

	End of IF statement

	08: number ← number - 2

	1

	

	2 subtracted from number

	09 ENDWHILE

	1

	

	End of loop, repeat again

	02: WHILE number ≥ 0

	1

	

	Number is ≥ 0, continue

	03: IF number = 1

	1

	

	Number does equal 1

	04: OUTPUT 'odd'

	1

	'odd'

	'odd' printed

	07: ENDIF

	1

	

	End of IF statement

	08: number ← number - 2

	-1

	

	2 subtracted from number

	09 ENDWHILE

	-1

	

	End of loop, repeat again

	02: WHILE number ≥ 0

	-1

	

	Number is NOT ≥ 0, WHILE loop and program ends.

1.2 Efficiency of simple algorithms

	
• An algorithm’s efficiency depends on the time it takes to execute.

	
• As computers vary in speed, the number of steps taken is counted as an estimate of this.

	
• The more steps a computer takes to complete a process, the lower the efficiency of the algorithm.

1.3 Sorting and searching algorithms

Sorting algorithms

Bubble sort

The bubble sort algorithm uses the following steps in very informal pseudo-code:

[image:]

Bubble sort is a relatively simple algorithm.

However, it is quite inefficient and may take much longer to complete than other sorting algorithms on very large lists.

Merge sort

The merge sort is a divide and conquer algorithm. The divide stage uses the following steps in very informal pseudo-code:

[image:]

When all numbers are split up into separate lists, the merge stage can begin. This uses the following steps in very informal pseudo-code:

[image:]

If at any stage an odd number of lists are present, then one list can simply be ignored until the next iteration.

	
• The merge sort is much more efficient than the bubble sort.

	
• It will sort a large list of random values into order in a quicker time than a bubble sort.

Searching algorithms

Linear search

A linear search uses the following steps:

[image:]

The linear search is relatively inefficient, but it works on any list, regardless of whether it is in any particular order.

Every single value in the list needs to be checked before you can be certain that a value is not present in a list.

Binary search

A binary search requires the list of values to be in order. It uses the following steps:

[image:]

	
• A binary search is highly efficient. If an ordered list of one million numbers is used, the binary search could find a number in the list with no more than 21 comparisons. The linear search by contrast could take up to one million comparisons.

	
• However, the binary search will only work if the list of values is ordered. Therefore, it cannot always be used.

[image:]

[image:]

QUESTION PRACTICE

1 Fundamentals of algorithms

	
01 State two computational thinking principles and describe how they could be used when developing a computerised solution to a problem.

[6 marks]

	
02 Draw a flowchart to describe a solution to the following problem.

A menu offers four options:

	
• A Add a name

	
• B Delete a name

	
• C Change a name

	
• D End

The program should ask for an input repeatedly until option D is selected, at which point it ends.

If option A, B or C is selected, the program should pass control to a procedure depending on which option is selected:

	
• A: Add

	
• B: Delete

	
• C: Change

[10 marks]

	
03 An amateur football team wants a computer program to calculate the points scored. The user inputs:

	
• the number of games won

	
• the number of games drawn.

	
• There are 3 points for a win, 1 for a draw and 0 for a loss.

The program should prompt the user for the inputs and output a suitable message with the points total.

Using AQA pseudo-code or a high-level language that you have learned, write a program to input the data above and output the total points scored.

[6 marks]

	
04 Here is an algorithm that is intended to collect and store the names of people going into an event. Only 15 people are allowed to enter the event.

[image:]

	
04.1 Identify the mistakes in this algorithm.

[2 marks]

	
04.2 Rewrite the algorithm so that it does what is intended.

[2 marks]

	
04.3 Add to the algorithm so that it outputs all the names entered.

[4 marks]

	
05 Complete the trace table for the following program:

[6 marks]

[image:]

	x

	y

	output

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
06 Show the stages of a bubble sort when applied to the following data:

Elephant, Dog, Cat, Dolphin, Sheep, Frog

[4 marks]

	
07 Show the stages of a bubble sort on the following data:

Pear, Apple, Grape, Banana, Strawberry, Raspberry

[5 marks]

	
08 For the following data:

Pizza, Apple, Banana, Chips, Sandwich, Crisps, Egg, Pasty

	
08.1 Show the stages of a merge sort on the data.

[4 marks]

	
08.2 Outline the advantage of a merge sort over a bubble sort.

[2 marks]

	
09 For the following list:

Jeremy, Adrian, Ben, Harry, Frank, James

	
09.1 Show the stages of a linear search for Harry in the list.

[4 marks]

	
09.2 Explain why a binary search could not be used with this list to find Harry.

[1 mark]

	
10 The following shows airline departures from an airport.

	
10.1 Show the stages of a binary search for HA102 in the list:

AD245, BE767, FR226, HA102, HC224, JA233, KE124, MA267, PE334

[3 marks]

	
10.2 State the number of comparisons needed to find MA267 using a binary search.

[1 mark]

	
10.3 State the number of comparisons needed to find MA267 using a linear search.

[1 mark]

2 PROGRAMMING

[image:]

CHAPTER INTRODUCTION

In this chapter you will learn about:

2.1 Data types

	
• Understand the concept of a data type

	
• Understand the use of integer, real, Boolean, character and string data types

2.2 Programming concepts

	
• Use and understand variables, constants and assignments

	
• Use meaningful identifier names and understand why it is important to use them

	
• Understand the three combining principles of sequence, selection/choice and iteration/repetition

	
• Use definite (count-controlled) and indefinite (condition-controlled) iteration

	
• Use nested selection and iteration structures

2.3 Arithmetic operations in a programming language

	
• Be familiar with and use addition, subtraction, multiplication and division (real and integer division, including remainders)

2.4 Relational operations in a programming language

	
• Be familiar with and use equal to, not equal to, less than, greater than, less than or equal to, and greater than or equal to

2.5 Boolean operations in a programming language

	
• Be familiar with and be able to use NOT, AND, OR

2.6 Data structures

	
• Understand the concept of data structures

	
• Use one and two-dimensional arrays (or equivalent) in the design of solutions to simple problems

	
• Use records (or equivalent) in the design of solutions to simple problems

2.7 Input/output

	
• Be able to obtain user input from the keyboard

	
• Be able to output data and information from a program to the computer display

2.8 String-handling operations in a programming language

	
• Understand and be able to use standard string-handling operations such as length, position, substring, concatenation and type conversion

2.9 Random number generation in a programming language

	
• Be able to use random number generation within a computer program

2.10 Structured programming and subroutines (procedures and functions)

	
• Understand the concept and advantages of subroutines

	
• Describe how parameters are used to pass data within programs

	
• Use subroutines that return values to the calling routine

	
• Understand and use local variables

	
• Describe and explain the advantage of a structured approach to programming

2.11 Robust and secure programming

	
• Understand simple data validation and authentication routines

	
• Test algorithms and programs, correcting errors

	
• Understand and justify the choice of test data, including normal, boundary and erroneous data

	
• Understand syntax and logic errors

	
• Identify and categorise errors within algorithms and programs

[image:]

[image:]

Key point

Paper 1 requires significant knowledge and understanding of programming. It is a requirement of the AQA GCSE Computer Science course that you are able to program in one of the specified high-level languages (Python, VB.Net or C#). Assessment of programming skills will only be made through this written examination.

Some questions in the examination will be presented in AQA Pseudo-code. Full details of this are given on the AQA website. Other questions will be presented in Python, VB.Net or C#, depending upon the option chosen by your teacher; AQA provide a separate examination paper for each of these languages.

Examples in the main text are given in AQA Pseudo-code. Where possible, all worked examples given in this chapter are written in AQA Pseudo-code, Python, VB.Net and C#. Please ensure that you are aware which of these you are studying.

Please refer to www.aqa.org.uk for full details of the assessment.

[image:]

2.1 Data types

Computer programs store data in memory. However, the type of data to be stored determines how much memory needs to be allocated for that value.

There are five main data types that GCSE Computer Scientists need to be aware of.

Integer

Integers are whole numbers, positive or negative, that have no decimal or fractional part. Integers are used for counting or storing quantities. For example:

[image:]

All variables used in this example are integers.

Real

The real data type is used for numbers, positive or negative, that have (or may have) a decimal or fractional part. Real numbers are sometimes called float or floating point numbers. For example:

[image:]

All variables used in this example are real numbers.

[image:]

Tech term

Floating point numbers Another name for real numbers – the floating point refers to the position of the decimal point, which can be different (or ‘float’) for different numbers.

[image:]

OEBPS/OEBPS/images/tp.gif
Computer
Science

Second Edition

Approval message from AQA

The core content of this digital textbook has been approved by AQA for use with our qualification.
‘This means that we have checked that it broadly covers the specification and that we are
satisfied with the overall quality. We have also approved the printed version of this book. We
donot however check or approve any links or any functionality. Full details of our approval
process can be found on our website.

We approve print and digital textbooks because we know how important it is for teachers and
students to have the right resources to support their teaching and learning. However, the
publisher is ultimately responsible for the editorial control and quality of this digital book.
Please note that when teaching the GCSE Computer Science (8525) course, you must refer
1o AQA's specification as your definitive source of information. While this digital book has been
written to match the specification, it cannot provide complete coverage of every aspect of

the course.

Anwide range of other useful resources can be found on the relevant subject

pages of our website: aga.org.uk

(> HODDER
7 EDUCATION
AN HACHETTE UK COMPANY

DYNAMIC
LEARNING

OEBPS/OEBPS/images/cover.jpg
AQA
oo
e
8525 =
e e N
N

Compute
Science |-

Second Edition

OEBPS/OEBPS/images/20-1.gif
REFEAL
REPEAT for each pair of numbers in the list
where list[x] is lst item in a pair
and where list[x + 1] is 2nd item in a pair
IF list[x] > list[x + 1] THEN
swap list[x], list[x + 1]
ENDIF
UNTIL all pairs of values checked
UNTIL no swaps made

OEBPS/OEBPS/images/20-3.gif
REFEAL
REPEAT
REPEAT
Compare the first value in both lists
Insert larger of two values into new merged list
Remove value from old list
UNTIL all numbers in pairs of lists are merged
UNTIL each pair of lists have been considered

UNTIL all lists are merged

OEBPS/OEBPS/images/21-2.gif
REreAl
Pick the middle value in a list (if even number of values, pick left-
of-middle value)
IF value matches what is being searched for THEN
output value
ELSE IF value searched for > middle value THEN
Discard middle value AND lower half of list
ELSE IF value searched for < middle value THEN
Discard middle value AND upper half of list
ENDIF

UNTIL (value found) or (list is of size 1 and value is not found)

OEBPS/OEBPS/images/20-2.gif
REFEAL
Divide each list in half

UNTIL each list is of size 1

OEBPS/OEBPS/images/21-1.gif
REreAl
Check one value (from the start)
IF value matches what is being searched for THEN
output value
ELSE
Move to next value
ENDIF
UNTTL number is found OR end of list is reached

OEBPS/OEBPS/images/23-2.gif
WHILE y < 6
yoy+1
X o X +y

ENDWHILE

OUTPUT x

OEBPS/OEBPS/images/23-1.gif
number

WHILE number < 15

name[1] « USERINPUT

number « number + 1

ENDWHILE

OUTPUT 'The total number of names entered is'

OUTPUT number

OEBPS/OEBPS/images/26-1.gif
score <« 25
highScore « 100
numOfAttempts « O

OEBPS/OEBPS/images/27-1.gif
price ~ 13.39
fastestTime - 9.983
ccore . 17 .0

OEBPS/nav.xhtml

Contents

		Cover

		Title Page

		Copyright

		Contents

		How to use this book

		1 Fundamentals of Algorithms

		1.1 Representing algorithms

		1.2 Efficiency of simple algorithms

		1.3 Sorting and searching algorithms

		2 Programming

		2.1 Data types

		2.2 Programming concepts

		2.3 Arithmetic operations

		2.4 Relational operations

		2.5 Boolean operations

		2.6 Data structures

		2.7 Input and output

		2.8 String-handling operations

		2.9 Random number generation

		2.10 Structured programming and subroutines

		2.11 Robust and secure programming

		3 Fundamentals of Data Representation

		3.1 Number bases

		3.2 Converting between number bases

		3.3 Units of information

		3.4 Binary arithmetic

		3.5 Character encoding

		3.6 Representing images

		3.7 Representing sound

		3.8 Data compression

		4 Computer Systems

		4.1 Hardware and software

		4.2 Boolean logic

		4.3 Software classification

		4.4 Classification of programming languages and translators

		4.5 Systems architecture

		5 Fundamentals of Computer Networks

		5.1 Computer networks

		6 Cyber Security

		6.1 Fundamentals of cyber security

		6.2 Cyber security threats

		6.3 Methods to detect and prevent cyber security threats

		7 Relational Databases And Structured Query Language (SQL)

		7.1 Relational databases

		7.2 Structured Query Language (SQL)

		8 Ethical, Legal and Environmental Impacts of Digital Technology on Wider Society

		8.1 Ethical, legal and environmental impacts and risks of digital technology

		Glossary

		Knowledge Check Answers

		Question Practice Answers

		Acknowledgements

Guide

		Cover

		Title Page

		Copyright

		Contents

Pages

		Cover

		i

		ii

		iii

		iv

		v

		vi

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		247

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		237

		238

		239

		240

		241

		242

		243

		244

		245

		246

		247

		248

		249

		250

		251

		252

		253

		254

		255

		256

		257

OEBPS/OEBPS/images/8-1.gif
o1l

02

03

04

05

06

07

NumOne <« USERINPUT
NumTwo « USERINPUT
IF NumOne 2 NumTwo THEN
OUTPUT NumTwo
ELSE
OUTPUT NumOne

ENDIF

OEBPS/OEBPS/images/8-2.gif
#Version 1
OUTPUT 1

OUTPUT
OUTPUT
OUTPUT
OUTPUT

e wn

#version 2

FOR x < 1 to 5
OUTPUT x

ENDFOR

#version 3

x o 1

WHILE x < 5
OUTEUT x
X x+1

ENDWHTILE

OEBPS/OEBPS/images/9-1.gif
#Algorithm 1
a <« USERINPUT
b <« USERINPUT
WHILE b # 0
IF a > b THEN

a< a-b
ELSE

b b-a
ENDWHILE
OUTPUT a

#Algorithm 2
a <« USERINPUT
b <« USERINPUT

ged « 0
IF a > b THEN
large « a
ELSE
large < b
ENDIF

FOR x « 1 TO large
IF (a MOD x = 0) AND (b MOD x = 0) THEN
ged « x
ENDIF
ENDFOR
OUTPUT gcd

OEBPS/OEBPS/images/3-1.gif
‘ Input H Process H output I

OEBPS/OEBPS/images/3-2.gif
Input Process output

Size of Tshirt search through List of T-shirts that
required list meet customer
Colour of T-shirt Find matching requirements
required Tshirts
File of all Tshirts Bxclude Tshirts

available out of stock.

OEBPS/OEBPS/images/4-1.gif
An arow represents control passing

> | Line between the connected shapes.

This shape represents something

Process | being performed or done.

Subroutine | TS shape represents a subroutine
call that will relate to a separate,
non-finked flowchart

ot/ ‘This shape represents the input or

i / "t : output of something into or out of

outpu the flowchart.
This shape represents a decision

Decision | (Yes/No or True/False) that results in
two lines representing the different
possible outcormes.

() Torminal | This shape represents the ‘start

and ‘End" of the process.

OEBPS/OEBPS/images/5-1.gif
Enter ltemCode

Read StockLevel,
ReorderLevel
from User

Is StockLevel
<
ReorderLevel?

True

Call Reorder
Subroutine

l

Output ‘Stock not
ordered”

Output ‘Stock
ordered’

End

OEBPS/OEBPS/images/v-1.gif
FOR a < 1 to &
FOR b « 1 to 3
OUTPUT a * b
ENDFOR
ENDFOR

OEBPS/OEBPS/images/5-2.gif
ItemCode < USERINFUT
StockLevel « USERINEUT
ReorderLevel « USERINPUT
IF StockLevel < ReorderLevel THEN
ReOrder ()
OUTBUT 'Stock ordered
ELSE
OUTBUT 'Stock not ordered'

ENDIF

OEBPS/OEBPS/images/6-1.gif
Python
ItemCode = input("enter item code")
StockLevel = int(input("enter stock level"))
ReorderLevel = int(input("enter reorder level"))
if StockLevel <= ReorderLevel:

ReOrder ()

print("stock ordered")
else:

print("stock not ordered")

VB.Net
Dim ItemCode As String
Dim StockLevel As Integer
Dim ReorderLevel As Integer
ItemCode = Console.Readline ()
StockLevel = Console.Readline ()
ReorderLevel = Console.Readline ()
If StockLevel <= ReorderLevel Then
ReOrder ()
Console.WriteLine ("stock ordered")
Else
Console.WriteLine ("stock not ordered")
End If

C#

string ItemCode;

int StockLevel;

int ReorderLevel;

ItemCode = Console.Readline();

StockLevel = Convert.ToInt32(Console.Readline());
ReorderLevel = Convert.ToInt32(Console.Readline());
if (StockLevel <= ReorderLevel)

{
ReOrder() ;
Console.WriteLine ("stock ordered");
}
else
{

Console.WriteLine ("stock not ordered");

OEBPS/OEBPS/images/2-1.jpg

OEBPS/OEBPS/images/copy.gif
MIX

Paper from

responsible sources
Ewsyg FSC™ C104740

OEBPS/OEBPS/images/11-1.gif
REPEAT

REPEAT for each pair in list
4 where list[x] is 1st item in a pair
and where list[x + 1] is 2nd item in a pair
IF list[x] > list[x + 1] THEN

swap listlx], listlx + 1]

ENDIF

UNTIL all pairs of values checked

UNTIL no swaps made

OEBPS/OEBPS/images/rules.jpg

OEBPS/OEBPS/images/11-3.gif

OEBPS/OEBPS/images/12-2.gif

OEBPS/OEBPS/images/13-1.gif
REFEAL
Check one value (from the start)
IF value matches what is being searched for THEN
output value
ELSE
Move to next value
ENDIF

UNTIL number is found OR end of list is reached

OEBPS/OEBPS/images/12-1.gif

OEBPS/OEBPS/images/12-4.gif
REPEAL
REPEAT
REPEAT
Compare the first value in both lists
Insert larger of two values into new merged list
Remove value from old list
UNTIL all numbers in pairs of lists are merged
UNTIL each pair of lists have been considered

UNTIL all lists are merged

OEBPS/OEBPS/images/11-4.gif

OEBPS/OEBPS/images/12-3.gif
REPEAL

Divide each list in half

UNTIL each list is of size 1

OEBPS/OEBPS/images/14-1.gif
REPEAL

Pick the middle value in a list (if even number of
values, pick left-of-middle value)

IF value matches what is being searched for THEN
output value

ELSE IF value searched for > middle value THEN
Discard middle value AND lower half of list

ELSE IF value searched for < middle value THEN
Discard middle value AND upper half of list

ENDIF

UNTIL (value found) or (list is of size 1 and value is not
found)

OEBPS/OEBPS/images/17-1.gif
An arow represents control passing

_
Line between the connected shapes.
Process This shape represents something
being performed or done.
Subroutine | TS shape represents a subroutine
call that will relate to a separate,
non-linked flowchart
Input/ ‘This shape represents the input or
i / "t : output of something into or out of
outpu the flowchart.
This shape represents a decision
Decision | (Yes/No or True/False) that results in
two lines representing the different
possible outcomes
() Torminal | ThiS shape represents the ‘Start

and ‘End" of the process.

OEBPS/OEBPS/images/16-1.gif
| Input H Process H Output ‘

OEBPS/OEBPS/images/17-2.gif
INumber = Number - 2|

OEBPS/OEBPS/images/18-1.gif
Number <« USERINPUT
WHILE Number 2 0

IF Number =

1 THEN
OUTPUT 'odd'
ELSE IF Number = 0
OUTPUT 'even'
END IF

Number «

Number — 2
ENDWHILE

