

[image:]

[image:]

Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked, the Publishers will be pleased to make the necessary arrangements at the first opportunity.

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE.
Telephone: +44 (0)1235 827827. Fax: +44 (0)1235 400401. Email education@bookpoint.co.uk. Lines are open from 9 a.m. to 5 p.m., Monday to Saturday, with a 24-hour message answering service. Visit our website: www.hoddereducation.co.uk

ISBN: 978 1 5104 6182 6
eISBN: 978 1 5104 6159 8

© Greg Reid 2020

First published in 2020 by

Hodder Education

An Hachette UK Company,

Carmelite House, 50 Victoria Embankment

London EC4Y 0LS

Impression number 5 4 3 2 1

Year 2024 2023 2022 2021 2020

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © AndSus/stock.Adobe.com

Illustrations by Aptara Inc.

Typeset in India by Aptara Inc.

Printed in Spain.

A catalogue record for this title is available from the British Library.

[image:]

Contents

Chapter 1 – Introduction

Section 1 – Input, output and simple calculations

Chapter 2 – Examples of input, output and simple calculations

Chapter 3 – Computational thinking puzzles (input and output)

Chapter 4 – Examples of simple calculations

Chapter 5 – Computational thinking puzzles (simple calculations)

Chapter 6 – Examples of simple string functions

Chapter 7 – Computational thinking puzzles (string functions)

Chapter 8 – Examples of simple mathematical functions

Chapter 9 – Computational thinking puzzles (mathematical functions)

Chapter 10 – Programming challenges for Section 1

Section 2 – Selection (if) statements

Chapter 11 – Examples of selection (if) statements

Chapter 12 – Computational thinking puzzles (if statements)

Chapter 13 – Programming challenges for Section 2

Section 3 – Repetition (loop) statements

Chapter 14 – Examples of repetition (loop) statements

Chapter 15 – Computational thinking puzzles (loops)

Chapter 16 – Programming challenges for Section 3

Section 4 – Storing multiple values using lists

Chapter 17 – Examples of lists

Chapter 18 – Computational thinking puzzles (lists)

Chapter 19 – Programming challenges for Section 4

Section 5 – Predefined functions

Chapter 20 – Examples of predefined functions

Chapter 21 – Computational thinking puzzles (predefined functions)

Chapter 22 – Programming challenges for Section 5

Section 6 – Modular programming

Chapter 23 – Examples of modular programming

Chapter 24 – Computational thinking puzzles (modular programming)

Chapter 25 – Programming challenges for Section 6

Section 7 – File handling

Chapter 26 – Examples of file handling

Chapter 27 – Computational thinking puzzles (file handling)

Chapter 28 – Programming challenges for Section 7

Section 8 – Standard algorithms

Section 9 – Large project tasks

Chapter 1 – Introduction

What makes a good programmer?

Good programmers are logical thinkers. They have the ability to take a problem, break it down into its component parts and design a solution. They can then implement their solution as a sequence of instructions written in a programming language. If all this sounds like a high-level skill, well it is. Programmers are in high demand all over the world and often earn good salaries.

Although few people have this natural talent, EVERYBODY can learn to be a better programmer.

The three stages of programming

All programmers work through three stages when coding a solution to a problem.

1 The programmer must understand the problem. For simple problems, understanding may be almost instantaneous. More complex problems may require time, research and questioning in order to fully understand what is required.

2 The problem is broken down into smaller and smaller sub-problems in a process called decomposition. Depending on the complexity and size of the problem, decomposition may involve creating a formal design or it may simply take place inside the programmer’s head. The purpose of decomposition is to identify the individual components (or building blocks) of the problem and programming structures that will be required to build the solution.

3 Each component is coded, tested and combined with others until a completed program solution is achieved.

[image:]

Figure 1.1: The three stages of programming

How do you become a good programmer?

Learning to program involves practising and developing several skills simultaneously:

• Statements (used to make instructions) are the building blocks of code and the tools you will require to successfully write working programs. Each section of this book begins by explaining a few new statements. The first time these are used, they will appear in bold. The more statements you learn and understand, the more complex the programs you can code.

• Good programmers can predict the effect of code even before they type out the actual instructions. The puzzles in each section of this book offer you the opportunity to practise this skill. Each puzzle presents you with some code and ask you to successfully predict what it will do.

• At the end of each section you will find a selection of programming problems. To code each problem, you need to identify which instructions are required to program a solution.

Finally, programming is like any other skill in that lots of practice and time will have a marked effect on your ability to code solutions to problems.

Installing Python

This book has been written for Version 3 of the Python programming language. If you are in school, college or university then you will probably already have access to the software required to code and execute (run) Python programs.

If you have purchased this book to teach yourself or to use at home, then you will need to download and install a copy of the Python 3 programming language. Python is “open source” software meaning that it is created, maintained and improved by an online community rather than a company. As such, it can be freely downloaded and installed from numerous websites. The official Python website is https://www.python.org.

Many Python users also download an editor application to write and test their Python programs. An editor will help your coding as it can provide facilities such as syntax checking (highlighting coding mistakes as you type). One editor you could use is called PyScripter but many others are freely available.

For users of tablets and smart phones there are a number of free Python Apps. These are perfect for learning the basics of Python programming and would be suitable for most of the problems and puzzles in this book. Make sure that the app you select allows you to save programs and return to them later.

Saving files

At several points throughout this book you will be challenged to solve problems by writing Python programs. As you complete each program, make sure you save your code in an organised, clearly labelled way. Some of the later problems in the book require that you continue code that you wrote to solve an earlier problem. It is a good idea to create a new folder for your all programs and give the files meaningful names, problem1 – Three In, Three Out and so on.

If an earlier program has not been saved, you may use one of the downloaded solutions as your starting point (see below).

Python code download

All the Python code in this book can be downloaded from:

www.hoddereducation.co.uk/pythonextras

The download of over 300 Python files includes:

• all the example code from each section

• every computational thinking puzzle

• solutions to every computational thinking puzzle (with explanations)

• solutions to every programming challenge (with comments)

• .txt and .csv files required to complete some of the later tasks in the book.

Try to solve the programming challenges before looking at a solution. You will be a much better programmer if you persevere and solve problems on your own.

Happy Coding!

About the author

Greg Reid started teaching Computing Science (and therefore programming) in Scottish Secondary Schools in 1994. Five years later he was promoted to head of department, a role in which he developed his love of writing teaching resources, which he has shared all over the world. Greg left teaching in 2017 to work full time for the Scottish Qualifications Authority. He is currently:

• involved with the development of Scottish school qualifications in Computing Science

• advising computing teachers across Scotland

• creating and presenting professional development opportunities for computing teachers in Scotland

• still finding the time to write the occasional teaching resource.

Section 1 – Input, output and simple calculations

Almost all computer programs are written to input, process and output data. For example:

• A calculator takes numbers and instructions from a keypad (input), performs the calculation requested (process) and displays the answer on the calculator’s small screen (output).

• A washing machine senses the weight of clothes (input) and the selected wash cycle from the machine’s control panel (input). The amount of water required and length of the wash cycle are calculated (process). Electrical signals are sent to pumps, heaters and motors to control the wash cycle (output).

[image:]

While it would be great to write program code that reads data from sensors or controls a water pump, the first steps in learning to program usually involve writing simple code that

• allows the user to enter text or numbers using the keyboard (input)

• changes the text or performs simple mathematical calculations with numbers (process)

• displays text or numbers on the user’s screen (output).

In programming, the user is the person who will use the executing (running) program.

Chapter 2 – Examples of input, output and simple calculations

Some examples of Python 3 input and output instructions are shown below. Try typing each of these programs into your Python editor. Execute (run) the code and observe what happens.

[image:]

Example 1 – Output using a simple print() statement

To display text or numbers on the user’s screen we use the print() statement.

Notice that displaying text requires quotation marks “ ” around the words, while displaying numbers does not.

[image:]

Each print() statement will display its output on a new line.

[image:]

[image:]

Example 2 – Output using a complex print() statement

A print() statement can be made up of several parts, with each part separated by a comma.

Note that Python automatically replaces the comma with a space when the output is displayed.

[image:]

[image:]

[image:]

Example 3 – Keyboard input using a simple input() statement

Input statements are used to ask the user to type in text or numbers.

[image:]

When an input() statement is used, the program must store whatever data the user enters.

[image:]

Variables

The second line of the code in Example 3 above creates a variable (or storage location) called “userName”. When the user types the name (enters text) and then presses enter, the keyboard input “Greg” is stored in the variable.

You might want to imagine variables as boxes that your program temporarily stores data in while it’s running.

[image:]

A variable can be given almost any name made up of letters and numbers. Some exceptions to this are:

• You cannot use two or more separate words as a variable name. Note that this book uses camel case (using capital letters in the middle of a word) in place of two words. For example, “userName” instead of “user name”.

• In Python, variable names should always start with a lower case letter. This is because capital letters are reserved for something else.

• A variable cannot be called any of the statement words of the Python language. For example, “print” or “input” would not be valid variable names.

[image:]

Example 4 – Keyboard input, with a message to the user

An input() statement may include a suitable message inside quotation marks “ ”.

[image:]

The print() statement is used this time to display some text and the variable “userName”. Note that when you print a variable, you display what the variable is currently storing. In this example that will be whatever the user typed in.

[image:]

[image:]

Example 5 – Inputting the correct data type

Simple programs will input and store three different types of data:

• Strings – text

• Integers – whole numbers with no decimal places

• Real numbers – numbers with decimal places (sometimes called floating point numbers or floats).

In programming, string, integer and float (or real) are called data types.

[image:]

An input() statement can be contained with str(), int() or float() statements to ensure that the correct type of data will be entered by your user. If the user enters the wrong type of data the program may display an error message and crash.

[image:]

[image:]

Example 6 – Concatenation

In programming, concatenation means to join two strings together.

[image:]

The second print() statement uses the + symbol to concatenate the two variables “firstName” and “surname”. Note the difference between the outputs produced by the two print lines. When strings are concatenated, they are literally joined together and displayed without a space.

OEBPS/OEBPS/images/1-1.gif
Problem — Collate statistical
data on the use of individual
electric car charging points
around the UK.

Use the data to predict the
best location for future
installations of additional

charging points.

Read File

Key Input

Repetition

Calculation
Decision

Store Data

Display

OEBPS/OEBPS/images/tp.gif
How to code in

Python

GCSE, iGCSE, National 4/5 and Higher

Greg Reid

HODDER
EDUCATION
AN HACHETTE UK COMPANY

OEBPS/OEBPS/images/ii-1.gif
EMSMS FSC™ C104740

OEBPS/OEBPS/images/cover.jpg
GCSE, iGCSE, National 4/5
and Higher
Greg Reid

D oruanic

OEBPS/OEBPS/images/rules.jpg

OEBPS/OEBPS/images/5-3.gif
Steg

UserNayg

OEBPS/OEBPS/images/6-2.gif
Program Code

location = str(input("Where are you?"))

hour = int(input("What hour is it?"))

temp = float(input("What is the temperature?"))

print("It is", temp, "degrees at", hour, "hours in", location)

Controlled input types and complex output

Where are you? Paris
What hour is it? 18

What is the temperature? 22.5
It is 22.5 degrees at 18 hours in Paris

OEBPS/OEBPS/images/7-1.gif
W Program Code

firstName = str(input("What is your first name?"))
surname = str(input("What is your surname?"))

print(firstName,surname)

print(firstName+surname)

Controlled input types and complex output

What is your first name? Evelyn
What is your surname? Phair
Evelyn Phair

EvelynPhair

OEBPS/OEBPS/images/5-2.gif
W Program Code Input [typed by the user) & output

print("Please enter your name.") Please enter your name.
userName = input() Greg

OEBPS/OEBPS/images/6-1.gif
W Program Code Input (typed by the user] & output

userName = input("Please enter your name.") Please enter your name. Greg
print("Hello" userName) Hello Greg

OEBPS/OEBPS/images/4-2.gif
‘W Program Code
print("Hello World")
print("I am")
print(44)

print("years old.")

Output (as seen on the user's screen|
Hello World

I am

44

years old.

OEBPS/OEBPS/images/5-1.gif
w Program Code Output

print("Hello World") Hello World
print("I am",44,"years old.") I am 44 years old.

OEBPS/OEBPS/images/4-1.jpg

