

[image: Cover Image]

[image:]

Cambridge International copyright material in this publication is reproduced under licence and remains the intellectual property of Cambridge Assessment International Education.

Cambridge Assessment International Education bears no responsibility for the example answers to questions taken from its past question papers which are contained in this publication.

Exam-style questions and sample answers have been written by the authors. In examinations, the way marks are awarded may be different. References to assessment and/or assessment preparation are the publisher’s interpretation of the syllabus requirements and may not fully reflect the approach of Cambridge Assessment International Education.

Third-party websites and resources referred to in this publication have not been endorsed by Cambridge Assessment International Education.

Acknowledgements

The Publishers would like to thank the following for permission to reproduce copyright material.

p.xi © pinglabel/stock.adobe.com; p.31 © adisa/Fotolia; p.85 t © md3d/stock.adobe.com; p.86 l © SergeyBitos/Shutterstock.com; p.87 © Елена Хайруллина/stock.adobe.com; p.92 © Romanchuck/ Fotolia; p.94 tl © jijomathai/stock.adobe.com, bl © Dmitriy Melnikov/Fotolia.com; p.104 © Elokua/stock.adobe.com; p.105 © Konstantin/Fotolia; p.106 tl © philipus/stock.adobe.com, bl © Marek/stock.adobe.com; p.108 b © Scanrail/stock.adobe.com; p.111 tl © Alec Romijn/Alamy Stock Photo; p.115 t © Manfred Schmidt/Fotolia.com; p.121 c © Mauro Rodrigues/Fotolia, l ©Martin Dohrn/Science Photo Library; p.123 © wpg77/stock.adobe.com; p.127 © Engdao/stock.adobe.com; p.138 c ©iStockphoto.com/Karl Yamashita, b © jacobx/stock.adobe.com; p.139 r © Cigdem Simsek / Alamy Stock Photo; p.156 tl © Allies Interactive/Shutterstock.com; p.201 © Andrew Brown/Fotolia; p.202 © Stanford Eye Clinic/Science Photo Library; p.230 cl © bobo1980/stock.adobe.com, r © Ocskay Mark/stock.adobe.com, bl © naka/stock.adobe.com; p.231 b © Purestock/Alamy Stock Photo; p.232 t © wellphoto/stock.adobe.com, b © Image Source/Alamy Stock Photo; p.235 © Monica Wells/Alamy Stock Photo; p.239 © tino168/Shutterstock.com; p.251 © c watman/stock.adobe.com; p.257 © Maximusdn/stock.adobe.com; p.259 tl Cambridge map, reproduced with permission from OS © Crown copyright and database rights 2021 Hodder Education under licence to OS, tr © chagpa/stock.adobe.com.

t = top, b = bottom, l = left, r = right, c = centre

Computer hardware and software brand names mentioned in this book are protected by their respective trademarks and are acknowledged.

Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu

Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked, the Publishers will be pleased to make the necessary arrangements at the first opportunity.

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Hachette UK Distribution, Hely Hutchinson Centre, Milton Road, Didcot, Oxfordshire, OX11 7HH. Telephone: +44 (0)1235 827827. Email education@hachette.co.uk Lines are open from 9 a.m. to 5 p.m., Monday to Friday. You can also order through our website: www.hoddereducation.com

ISBN: 9781398318281
eISBN: 9781398320758

© David Watson and Helen Williams 2021

First published in 2014

This edition published in 2021 by
Hodder Education,
An Hachette UK Company
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ

www.hoddereducation.com

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2025 2024 2023 2022 2021

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © phonlamaiphoto – stock.adobe.com

Typeset by Aptara Inc.

Printed in the UK

A catalogue record for this title is available from the British Library.

[image:]

Contents

Introduction

SECTION 1 COMPUTER SYSTEMS

1 Data representation

1.1 Number systems

1.2 Text, sound and images

1.3 Data storage and file compression

2 Data transmission

2.1 Types and methods of data transmission

2.2 Methods of error detection

2.3 Symmetric and asymmetric encryption

3 Hardware

3.1 Computer architecture

3.2 Input and output devices

3.3 Data storage

3.4 Network hardware

4 Software

4.1 Types of software and interrupts

4.2 Types of programming language, translators and integrated development environments (IDEs)

5 The internet and its uses

5.1 The internet and the World Wide Web (WWW)

5.2 Digital currency

5.3 Cyber security

6 Automated and emerging technologies

6.1 Automated systems

6.2 Robotics

6.3 Artificial intelligence (AI)

SECTION 2 ALGORITHMS, PROGRAMMING AND LOGIC

7 Algorithm design and problem solving

7.1 The program development life cycle

7.2 Computer systems, sub-systems and decomposition

7.3 Explaining the purpose of an algorithm

7.4 Standard methods of solution

7.5 Validation and verification

7.6 Test data

7.7 Trace tables to document dry runs of algorithms

7.8 Identifying errors in algorithms

7.9 Writing and amending algorithms

8 Programming

8.1 Programming concepts

8.2 Arrays

8.3 File handling

9 Databases

9.1 Databases

10 Boolean logic

10.1 Standard logic gate symbols

10.2 The function of the six logic gates

10.3 Logic circuits, logic expressions, truth tables and problem statements

Introduction

Aims

This book has been written for students of Cambridge IGCSETM Computer Science (0478/0984) and Cambridge O Level Computer Science (2210) for examination from 2023. It fully covers the syllabus content, provides guidance to support you throughout the course and helps you to prepare for examination.

This book will help students to develop a range of skills, including programming, problem solving and testing and evaluation, as well as introducing them to automated and emerging technologies.

Assessment

The information in this section is taken from the Cambridge IGCSE and O Level Computer Science syllabuses (0478/0984/2210) for examination from 2023. You should always refer to the appropriate syllabus document for the year of examination to confirm the details and for more information. The syllabus document is available on the Cambridge International website at: www.cambridgeinternational.org

There are two examination papers:

	

	Paper 1 Computer Systems

	Paper 2 Algorithms, Programming and Logic

	Duration

	1 hour 45 minutes

	1 hours 45 minutes

	Marks

	75 marks

	75 marks

	Percentage of overall marks

	50%

	50%

	Syllabus topics examined

	1–6

	7–10

How to use this book

The information in this section is taken from the Cambridge IGCSE and O Level Computer Science syllabuses (0478/0984/2210) for examination from 2023. You should always refer to the appropriate syllabus document for the year of your examination to confirm the details and for more information. The syllabus document is available on the Cambridge International website at www.cambridgeinternational.org

Organisation

The content is organised into 10 chapters, corresponding to the syllabus. The content is in the same order as the syllabus. The material directly relevant to Computer Systems is in Chapters 1–6 and the material directly relevant to Algorithms, Programming and Logic is in Chapters 7–10.

Features

Learning outline

Each chapter opens with an outline of the subject material to be covered.

[image:]

In this chapter, you will learn about:

	
• automated systems

	
– the use of sensors, microprocessors and actuators in automated systems

	
– the advantages and disadvantages of using automated systems in given scenarios

	
• robotics

	
– what is meant by robotics

	
– the characteristics of a robot

	
– the roles, advantages and disadvantages of robots

	
• artificial intelligence

	
– what is meant by artificial intelligence (AI)

	
– the main characteristics of AI

	
– the basic operation and components of AI systems to simulate intelligent behaviour.

[image:]

Chapter introduction

A short introduction to the chapter topics and their focus.

[image:]

This chapter considers the hardware found in many computer systems. The hardware that makes up the computer itself and the various input and output devices will all be covered.

[image:]

Activity

Short questions and exercises to help recap and confirm knowledge and understanding of the concepts covered.

[image:]

Activity 1.2

Convert the following denary numbers into binary (using both methods):

	
a 4 1

	
b 6 7

	
c 8 6

	
d 1 0 0

	
e 1 1 1

	
f 1 2 7

	
g 1 4 4

	
h 1 8 9

	
i 2 0 0

	
j 2 5 5

	
k 3 3 0 0 0

	
l 8 8 9

	
m 4 0 9 5

	
n 1 6 4 0 0

	
o 6 2 3 0 7

[image:]

Example

Worked examples of technical or mathematical techniques.

[image:]

[image:] Example 2

A camera detector has an array of 2048 by 2048 pixels and uses a colour depth of 16. Find the size of an image taken by this camera in MiB.

	
1 Multiply number of pixels in vertical and horizontal directions to find total number of pixels = (2 048 × 2 048) = 4 194 304 pixels

	
2 Now multiply number of pixels by colour depth = 4 194 304 × 16 = 67 108 864 bits

	
3 Now divide number of bits by 8 to find the number of bytes in the file = (67 108 864)/8 = 8 388 608 bytes

	
4 Now divide by 1024 × 1024 to convert to MiB = (8 388 608)/(1 048 576) = 8 MiB.

[image:]

Find out more

Short activities that go a little beyond the syllabus, for those students who have a deeper interest in the subject.

[image:]

[image:] Find out more

Find out how buffers are used to stream movies from the internet to a device (such as a tablet).

[image:]

Advice

These provide tips and background, and also highlight any content that is not specifically covered in the syllabus.

[image:]

Advice

As well as library routines, typical IDEs also contain an editor, for entering code, and an interpreter and/or a compiler, to run the code.

[image:]

Links

Numerous topics in Computer Science are connected together. The Links feature states where relevant material is covered elsewhere in the book.

[image:]

Link

For more details on RAM, see Section 3.3.

[image:]

Extension

Written for students interested in further study, and placed at the end of each chapter, this optional feature contains details of more sophisticated topics that are explored in the International A Level syllabus.

[image:]

Extension

For those students considering the study of this subject at A Level, the following section gives some insight into further study on a sub-set of machine learning called deep learning.

Deep learning

Deep learning structures algorithms in layers (input layer, output layer and hidden layer(s)) to create an artificial neural network made up of ‘units’ or ‘nodes’, which is essentially based on the human brain (i.e. its interconnections between neurons). Neural network systems are able to process more like a human and their performance improves when trained with more and more data. The hidden layers are where data from the input layer is processed into something that can be sent to the output layer. Artificial neural networks are excellent at tasks that computers normally find hard. For example, they can be used in face recognition:

[image:]

The following diagram shows an artificial neural network (with two hidden layers) – each circle, called a unit or node, is like an ‘artificial neuron’:

[image:]

Neural networks are effective at complex visual processing such as recognising birds, for example, by their shape and colour. There are many different sizes, colours and types of bird, and machine learning algorithms struggle to successfully recognise such a wide variety of complex objects. But the hidden layers in an artificial neural network allow a deep learning algorithm to do so.

[image:]

Summary

At the end of each chapter there is a list of the main points from the chapter that you should have a good understanding of.

[image:]

In this chapter, you have learnt about:

	
[image:] use of sensors, microprocessors and actuators in automated systems

	
[image:] the advantages and disadvantages of automated systems in a number of key areas

	
[image:] what is meant by robotics

	
[image:] what characterises a robot

	
[image:] the role of robots in a number of areas

	
[image:] the advantages and disadvantages of robots in a number of areas

	
[image:] the concept of artificial learning (AI)

	
[image:] the main characteristics of AI

	
[image:] expert systems

	
[image:] machine learning.

[image:]

Key terms

Key terms are in red throughout the book and are defined at the end of each chapter.

[image:]

Key terms used throughout this chapter

bit – the basic computing element that is either 0 or 1, and is formed from the words Binary digit

binary number system – a number system based on 2, in which only the digits 0 and 1 are used

hexadecimal number system – a number system based on the value 16 which uses denary digits 0 to 9 and letters A to F

error codes – error messages (in hexadecimal) generated by the computer

MAC address – MAC address - standing for Media Access Control, this address uniquely identifies a device on the internet; it takes the form: NN-NN-NN-DD-DD-DD, where NN-NN-NN is the manufacturer code and DD-DD-DD is the device code

IP address – IP address short for internet protocol address and identified as either IPv4 or IPv6; the IP address gives a unique address to each device connected to the internet, identifying its location

hypertext mark-up language (HTML) – the language used to design, display and format web pages

[image:]

Exam-style questions

Chapters 1–10 conclude with exam-style questions, to help with preparation for examination.

Exam-style questions

	
1 A software developer is using a microphone to collect various sounds for his new game. He is also using a sound editing app.

When collecting sounds, the software developer can decide on the sampling resolution he wishes to use.

	
a i What is meant by sampling resolution?

[1]

	 ii Describe how sampling resolution will affect how accurate the stored digitised sound will be.

[3]

The software developer will include images in his new game.

	
b i Explain the term image resolution.

[1]

	 ii The software developer is using 16-colour bitmap images. How many bits would be used to encode data for one pixel of his image?

[1]

	 iii One of his images is 16 384 pixels wide and 512 pixels high.

He decides to save it as a 256-colour bitmap image.

Calculate the size of the image file in gibibytes.

[3]

	 iv Describe any file compression techniques the developer may use.

[3]

Pseudocode and programming languages

To succeed in your course, you will need an understanding of a particular pseudocode syntax that will be used that will be used when studying Algorithms, Programming and Logic, along with one of the following high-level programming languages: Python, VB.NET or Java. Within Chapters 7 and 8, code examples are given using the correct pseudocode syntax and all three programming languages, each in a different text colour for clarity.

	
Table 8.4 Examples of output statements with messages

	Output the results

	Language

	print("Volume of the cylinder is ", volume)

	Python uses a comma

	Console.WriteLine("Volume of the cylinder is " & volume)

	VB uses &

	System.out.println("Volume of the cylinder is " + volume);

	Java uses +

It is assumed that access to an integrated development environment (IDE) is provided by your school for the programming language in use but, if not, full instructions on how to download and run an IDE for each language are given in the Programming, Algorithms and Logic Workbook.

Additional support

The Computer Systems Workbook and Programming, Algorithms and Logic Workbook provide additional opportunity for practice. These write-in workbooks are designed to be used throughout the course.

Command words

	Command word

	What it means

	Calculate

	work out from given facts, figures or information

	Compare

	identify/comment on similarities and/or differences

	Define

	give precise meaning

	Demonstrate

	show how or give an example

	Describe

	state the points of a topic/give characteristics and main features

	Evaluate

	judge or calculate the quality, importance, amount or value of something

	Explain

	set out purposes or reasons/make the relationships between things evident/provide why and/or how and support with relevant evidence

	Give

	produce an answer from a given source or recall/memory

	Identify

	name/select/recognise

	Outline

	set out the main points

	Show (that)

	provide structured evidence that leads to a given result

	State

	express in clear terms

	Suggest

	apply knowledge and understanding to situations where there are a range of valid responses in order to make proposal/put forward considerations

[image:]

1 Data representation

[image:]

In this chapter you will learn about:

	• number systems

	– how and why computers use binary to represent data

	– the denary, binary and hexadecimal number systems

	– converting numbers between denary, binary and hexadecimal

	– how and why hexadecimal is used for data representation

	– how to add two positive 8-bit numbers

	– overflow when performing binary addition

	– logical binary shifts on positive 8-bit integers

	– two’fs complement notation to represent positive and negative binary numbers

	• text, sound and images

	– how and why a computer represents text

	– the use of character sets including ASCII and Unicode

	– how and why a computer represents sound

	– sound sample rate and sample resolution

	– how and why a computer represents an image

	– the effects of the resolution and colour depth on images

	• data storage and compression

	– how data storage is measured

	– calculating the file size of an image and sound file

	– the purpose of and need for data compression

	– lossy and lossless compression.

[image:]

[image:]

This chapter considers the three key number systems used in computer science, namely binary, denary and hexadecimal. It also discusses how these number systems are used to measure the size of computer memories and storage devices, together with how sound and images can be represented digitally.

[image:]

1.1 Number systems

1.1.1 Binary represents data

As you progress through this book you will begin to realise how complex computer systems really are. By the time you reach Chapter 10 you should have a better understanding of the fundamentals behind computers themselves and the software that controls them.

You will learn that any form of data needs to be converted into a binary format so that it can be processed by the computer.

However, no matter how complex the system, the basic building block in all computers is the binary number system. This system is chosen because it only consists of 1s and 0s. Since computers contain millions and millions of tiny ‘switches’, which must be in the ON or OFF position, they can be represented by the binary system. A switch in the ON position is represented by 1; a switch in the OFF position is represented by 0.

Switches used in a computer make use of logic gates (see Chapter 10) and are used to store and process data.

1.1.2 Binary, denary and hexadecimal systems

The binary system

We are all familiar with the denary number system which counts in multiples of 10. This gives us the well-known headings of units, 10s, 100s, 1000s, and so on:

[image:]

Denary uses ten separate digits, 0-9, to represent all values. Denary is known as a base 10 number system.

The binary number system is a base 2 number system. It is based on the number 2. Thus, only the two ‘values’ 0 and 1 can be used in this system to represent all values. Using the same method as denary, this gives the headings 20, 21, 22, 23, and so on. The typical headings for a binary number with eight digits would be:

[image:]

A typical binary number would be: 11101110.

Converting from binary to denary

The conversion from binary to denary is a relatively straightforward process. Each time a 1-value appears in a binary number column, the column value (heading) is added to a total. This is best shown by three examples which use 8-bit, 12-bit and 16-bit binary numbers:

[image:]

[image:] Example 1

Convert the binary number, 11101110, into a denary number.

[image:]

The equivalent denary number is 128 + 64 + 32 + 8 + 4 + 2 = 238

[image:]

[image:]

[image:] Example 2

Convert the following binary number, 011110001011, into a denary number.

[image:]

The equivalent denary number is 1024 + 512 + 256 + 128 + 8 + 2 + 1 = 1931

[image:]

[image:]

[image:] Example 3

Convert the following binary number, 0011000111100110, into a denary number.

[image:]

As with the two examples above, to convert this number to denary, each time a 1 appears in a column the column value is added to the total:

8192 + 4096 + 256 + 128 + 64 + 32 + 4 + 2 = 12 774

The same method can be used for a binary number of any size.

[image:]

[image:]

Activity 1.1

Convert the following binary numbers into denary:

	
a 0 0 1 1 0 0 1 1

	
b 0 1 1 1 1 1 1 1

	
c 1 0 0 1 1 0 0 1

	
d 0 1 1 1 0 1 0 0

	
e 1 1 1 1 1 1 1 1

	
f 0 0 0 0 1 1 1 1

	
g 1 0 0 0 1 1 1 1

	
h 1 0 1 1 0 0 1 1

	
i 0 1 1 1 0 0 0 0

	
j 1 1 1 0 1 1 1 0

	
k 0 0 0 1 1 1 1 0 0 1 1 1

	
l 0 1 0 1 0 1 0 1 0 1 0 0

	
m 1 1 1 1 0 0 0 0 1 1 1 1

	
n 0 1 1 1 1 1 0 0 1 0 0 0

	
o 0 1 1 1 1 1 1 1 1 1 1 1

	
p 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0

	
q 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1

	
r 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1

	
s 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

	
t 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[image:]

Converting from denary to binary

The conversion from denary numbers to binary numbers can be done in two different ways. The first method involves successive subtraction of powers of 2 (that is, 128, 64, 32, 16, and so on); whilst the second method involves successive division by 2 until the value “0” is reached. This is best shown by two examples:

[image:]

[image:] Example 1

Consider the conversion of the denary number, 142, into binary:

Method 1

The denary number 142 is made up of 128 + 8 + 4 + 2 (that is, 142 – 128 = 14; 14 – 8 = 6; 6 – 4 = 2; 2 – 2 = 0; in each stage, subtract the largest possible power of 2 and keep doing this until the value 0 is reached. This will give us the following 8-bit binary number:

[image:]

Method 2

This method involves successive division by 2. Start with the denary number, 142, and divide it by 2. Write the result of the division including the remainder (even if it is 0) under the 142 (that is, 142 ÷ 2 = 71 remainder 0); then divide again by 2 (that is, 71 ÷ 2 = 35 remainder 1) and keep dividing until the result is zero. Finally write down all the remainders in reverse order:

[image:]

Figure 1.1

We end up with an 8-bit binary number which is the same as that found by Method 1.

[image:]

[image:]

[image:] Example 2

Consider the conversion of the denary number, 59, into binary:

Method 1

The denary number 59 is made up of 32 + 16 + 8 + 2 + 1 (that is, 59 – 32 = 27; 27 – 16 = 11; 11 – 8 = 3; 3 – 2 = 1; 1 – 1 = 0; in each stage, subtract the largest possible power of 2 and keep doing this until the value 0 is reached. This will give us the following 8-bit binary number:

[image:]

Method 2

This method involves successive division by 2. Start with the denary number, 59, and divide it by 2. Write the result of the division including the remainder (even if it is 0) under the 59 (that is, 59 ÷ 2 = 29 remainder 1); then divide again by 2 (that is, 29 ÷ 2 = 14 remainder 1) and keep dividing until the result is zero. Finally write down all the remainders in reverse order:

[image:]

Figure 1.1b

If we want to show this as an 8-bit binary number (as shown in Method 1), we now simply add two 0’s from the left-hand side to give the result: 0 0 1 1 1 0 1 1. The two results from both methods clearly agree.

Both the above examples use 8-bit binary numbers. This third example shows how the method can still be used for any size of binary number; in this case a 16-bit binary number.

[image:]

[image:]

[image:] Example 3

Consider the conversion of the denary number, 35 000, into a 16-bit binary number:

Method 1

The denary number 35 000 is made up of 32 768 + 2048 + 128 + 32 + 16 + 8 (that is, 35 000 – 32 768 = 2232; 2232 – 2048 = 184; 184 – 128 = 56; 56 – 32 = 24; 24 – 16 = 8; 8 – 8 = 0; in each stage, subtract the largest possible power of 2 and keep doing this until the value 0 is reached. This will give us the following 16-bit binary number:

[image:]

Method 2

This method involves successive division by 2. Start with the denary number, 35000, and divide it by 2. Write the result of the division including the remainder (even if it is 0) under the 35 000 (that is, 35 000 ÷ 2 = 17 500 remainder 0); then divide again by 2 (that is, 17 500 ÷ 2 = 8750 remainder 0) and keep dividing until the result is zero. Finally write down all the remainders in reverse order:

[image:]

Figure 1.1c

[image:]

[image:]

Activity 1.2

Convert the following denary numbers into binary (using both methods):

	
a 4 1

	
b 6 7

	
c 8 6

	
d 1 0 0

	
e 1 1 1

	
f 1 2 7

	
g 1 4 4

	
h 1 8 9

	
i 2 0 0

	
j 2 5 5

	
k 3 3 0 0 0

	
l 8 8 8

	
m 4 0 9 5

	
n 1 6 4 0 0

	
o 6 2 3 0 7

[image:]

The hexadecimal system

The hexadecimal number system is very closely related to the binary system. Hexadecimal (sometimes referred to as simply ‘hex’) is a base 16 system and therefore needs to use 16 different ‘digits’ to represent each value.

Because it is a system based on 16 different digits, the numbers 0 to 9 and the letters A to F are used to represent each hexadecimal (hex) digit. A in hex = 10 in denary, B = 11, C = 12, D = 13, E = 14 and F = 15.

Using the same method as for denary and binary, this gives the headings 160, 161, 162, 163, and so on. The typical headings for a hexadecimal number with five digits would be:

[image:]

A typical example of hex is 2 1 F 3 A.

Since 16 = 24 this means that FOUR binary digits are equivalent to each hexadecimal digit. The following table summarises the link between binary, hexadecimal and denary:

	Table 1.1

	Binary value

	Hexadecimal value

	Denary value

	0 0 0 0

	0

	0

	0 0 0 1

	1

	1

	0 0 1 0

	2

	2

	0 0 1 1

	3

	3

	0 1 0 0

	4

	4

	0 1 0 1

	5

	5

	0 1 1 0

	6

	6

	0 1 1 1

	7

	7

	1 0 0 0

	8

	8

	1 0 0 1

	9

	9

	1 0 1 0

	A

	10

	1 0 1 1

	B

	11

	1 1 0 0

	C

	12

	1 1 0 1

	D

	13

	1 1 1 0

	E

	14

	1 1 1 1

	F

	15

Converting from binary to hexadecimal and from hexadecimal to binary

Converting from binary to hexadecimal is a fairly easy process. Starting from the right and moving left, split the binary number into groups of 4 bits. If the last group has less than 4 bits, then simply fill in with 0s from the left. Take each group of 4 bits and convert it into the equivalent hexadecimal digit using Table 1.1. Look at the following two examples to see how this works.

[image:]

[image:] Example 1

[image:]

First split this up into groups of 4 bits:

[image:]

Then, using Table 1.1, find the equivalent hexadecimal digits:

[image:]

[image:]

[image:]

[image:] Example 2

[image:]

First split this up into groups of 4 bits:

[image:]

The left group only contains 2 bits, so add in two 0s:

[image:]

Now use Table 1.1 to find the equivalent hexadecimal digits:

[image:]

[image:]

[image:]

Activity 1.3

Convert the following binary numbers into hexadecimal:

	
a 1 1 0 0 0 0 1 1

	
b 1 1 1 1 0 1 1 1

	
c 1 0 0 1 1 1 1 1 1 1

	
d 1 0 0 1 1 1 0 1 1 1 0

	
e 0 0 0 1 1 1 1 0 0 0 0 1

	
f 1 0 0 0 1 0 0 1 1 1 1 0

	
g 0 0 1 0 0 1 1 1 1 1 1 1 0

	
h 0 1 1 1 0 1 0 0 1 1 1 0 0

	
i 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1

	
j 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0

[image:]

Converting from hexadecimal to binary is also very straightforward. Using the data in Table 1.1, simply take each hexadecimal digit and write down the 4-bit code which corresponds to the digit.

[image:]

[image:] Example 3

[image:]

Using Table 1.1, find the 4 bit code for each digit:

[image:]

Put the groups together to form the binary number:

[image:]

[image:]

[image:]

[image:] Example 4

[image:]

Again just use Table 1.1:

[image:]

Then put all the digits together:

[image:]

[image:]

[image:]

Activity 1.4

Convert the following hexadecimal numbers into binary:

	
a 6 C

	
b 5 9

	
c A A

	
d A 0 0

	
e 4 0 E

	
f B A 6

	
g 9 C C

	
h 4 0 A A

	
i D A 4 7

	
j 1 A B 0

[image:]

Converting from hexadecimal to denary and from denary to hexadecimal

To convert hexadecimal numbers into denary involves the value headings of each hexadecimal digit; that is, 4096, 256, 16 and 1.

Take each of the hexadecimal digits and multiply it by the heading values. Add all the resultant totals together to give the denary number. Remember that the hex digits A → F need to be first converted to the values 10 → 15 before carrying out the multiplication. This is best shown by two examples:

[image:]

[image:] Example 1

Convert the hexadecimal number, 4 5 A, into denary.

First of all we have to multiply each hex digit by its heading value:

[image:]

Then we have to add the three totals together (1024 + 80 + 10) to give the denary number:

[image:]

[image:]

[image:]

[image:] Example 2

Convert the hexadecimal number, C 8 F, into denary.

First of all we have to multiply each hex digit by its heading value:

[image:]

Then we have to add the three totals together (3072 + 128 + 15) to give the denary number:

[image:]

[image:]

[image:]

Activity 1.5

Convert the following hexadecimal numbers into denary:

	
a 6 B

	
b 9 C

	
c 4 A

	
d F F

	
e 1 F F

	
f A 0 1

	
g B B 4

	
h C A 8

	
i 1 2 A E

	
j A D 8 9

[image:]

To convert from denary to hexadecimal involves successive division by 16 until the value “0” is reached. This is best shown by two examples:

[image:]

[image:] Example 1

Convert the denary number, 2004, into hexadecimal.

This method involves successive division by 16 until the value 0 is reached. We start by dividing the number 2004 by 16. The result of the division including the remainder (even if it is 0) is written under 2004 and then further divisions by 16 are carried out (that is, 2004 ÷ 16 = 125 remainder 4; 125 ÷ 16 = 7 remainder 13; 7 ÷ 16 = 0 remainder 7). The hexadecimal number is obtained from the remainders written in reverse order:

[image:]

Figure 1.2a

[image:]

[image:]

[image:] Example 2

Convert the denary number, 8463, into hexadecimal.

We start by dividing the number 8463 by 16. The result of the division including the remainder (even if it is 0) is written under 8463 and then further divisions by 16 are carried out (that is, 8463 ÷ 16 = 528 remainder 15; 528 ÷ 16 = 33 remainder 0; 33 ÷ 16 = 2 remainder 1; 2 ÷ 16 = 0 remainder 2). The hexadecimal number is obtained from the remainders written in reverse order:

[image:]

Figure 1.2b

[image:]

[image:]

Activity 1.6

Convert the following denary numbers into hexadecimal:

	
a 9 8

	
b 2 2 7

	
c 4 9 0

	
d 5 1 1

	
e 8 2 6

	
f 1 0 0 0

	
g 2 6 3 4

	
h 3 7 4 3

	
i 4 0 0 7

	
j 5 0 0 0

[image:]

1.1.3 Use of the hexadecimal system

As we have seen, a computer can only work with binary data. Whilst computer scientists can work with binary, they find hexadecimal to be more convenient to use. This is because one hex digit represents four binary digits. A complex binary number, such as 1101001010101111 can be written in hex as D2AF. The hex number is far easier for humans to remember, copy and work with. This section reviews four uses of the hexadecimal system:

	
• error codes

	
• MAC addresses

	
• IPv6 addresses

	
• HTML colour codes

The information in this section gives the reader sufficient grounding in each topic at this level. Further material can be found by searching the internet, but be careful that you don’t go off at a tangent.

Error codes

Error codes are often shown as hexadecimal values. These numbers refer to the memory location of the error and are usually automatically generated by the computer. The programmer needs to know how to interpret the hexadecimal error codes. Examples of error codes from a Windows system are shown below:

[image:]

Figure 1.3 Example of error codes

[image:]

[image:] Find out more

Another method used to trace errors during program development is to use memory dumps, where the memory contents are printed out either on screen or using a printer. Find examples of memory dumps and find out why these are a very useful tool for program developers.

[image:]

Media Access Control (MAC) addresses

Media Access Control (MAC) address refers to a number which uniquely identifies a device on a network. The MAC address refers to the network interface card (NIC) which is part of the device. The MAC address is rarely changed so that a particular device can always be identified no matter where it is.

A MAC address is usually made up of 48 bits which are shown as 6 groups of two hexadecimal digits (although 64-bit addresses also exist):

[image:]

or

[image:]

where the first half (NN – NN – NN) is the identity number of the manufacturer of the device and the second half (DD – DD – DD) is the serial number of the device. For example:

00 – 1C – B3 – 4F – 25 – FE is the MAC address of a device produced by the Apple Corporation (code: 001CB3) with a serial number of: 4F25FE. Very often lowercase hexadecimal letters are used in the MAC address: 00-1c-b3-4f-25-fe. Other manufacturer identification numbers include:

[image:]

[image:]

Link

Refer to Chapter 3 for more detail on MAC addresses.

[image:]

[image:]

[image:] Find out more

Try to find the MAC addresses of some of your own devices (e.g. mobile phone and tablet) and those found in the school.

[image:]

Internet Protocol (IP) addresses

Each device connected to a network is given an address known as the Internet Protocol (IP) address. An IPv4 address is a 32-bit number written in denary or hexadecimal form: e.g. 109.108.158.1 (or 77.76.9e.01 in hex). IPv4 has recently been improved upon by the adoption of IPv6. An IPv6 address is a 128-bit number broken down into 16-bit chunks, represented by a hexadecimal number. For example:

[image:]

Note IPv6 uses a colon (:) rather than a decimal point (.) as used in IPv4.

[image:]

Link

Refer to Chapter 3 for more detail on IP addresses.

[image:]

[image:]

[image:] Find out more

Try to find the IPv4 and IPv6 addresses of some of your own devices (e.g. mobile phone and tablet) and those found in the school.

[image:]

HyperText Mark-up Language (HTML) colour codes

HyperText Mark-up Language (HTML) is used when writing and developing web pages. HTML isn’t a programming language but is simply a mark-up language. A mark-up language is used in the processing, definition and presentation of text (for example, specifying the colour of the text).

HTML uses <tags> which are used to bracket a piece of text for example, <h1> and </h1> surround a top-level heading. Whatever is between the two tags has been defined as heading level 1. Here is a short example of HTML code:

[image:]

Figure 1.4

HTML is often used to represent colours of text on the computer screen. All colours can be made up of different combinations of the three primary colours (red, green and blue). The different intensity of each colour (red, green and blue) is determined by its hexadecimal value. This means different hexadecimal values represent different colours. For example:

	
• # FF 00 00 represents primary colour red

	
• # 00 FF 00 represents primary colour green

	
• # 00 00 FF represents primary colour blue

	
• # FF 00 FF represents fuchsia

	
• # FF 80 00 represents orange

	
• # B1 89 04 represents a tan colour,

and so on producing almost any colour the user wants. The following diagrams show the various colours that can be selected by altering the hex ‘intensity’ of red, green and blue primary colours. The colour ‘FF9966’ has been chosen as an example:

[image:]

Figure 1.5 Examples of HTML hex colour codes

The # symbol always precedes hexadecimal values in HTML code. The colour codes are always six hexadecimal digits representing the red, green and blue components. There are a possible 256 values for red, 256 values for green and 256 values for blue giving a total of 256 × 256 × 256 (i.e. 16 777 216) possible colours.

[image:]

Activity 1.7

	
1 Using software on your computer (for example, text colour option in Word), find out what colours would be represented by the following RGB denary value combinations:

	
a Red 53

Green 55

Blue 139

	
b Red 201

Green 122

Blue 204

	
c Red 12

Green 111

Blue 81

	
2 Convert each of the above denary numbers into hexadecimal.

[image:]

1.1.4 Addition of binary numbers

This section will look at the addition of two 8-bit positive binary numbers.

Note the following key facts when carrying out addition of two binary digits:

	binary addition

	carry

	sum

	0+0

	0

	0

	0+1

	0

	1

	1+0

	0

	1

	1+1

	1

	0

This can then be extended to consider the addition of three binary digits:

	binary digit

	carry

	sum

	0+0+0

	0

	0

	0+0+1

	0

	1

	0+1+0

	0

	1

	0+1+1

	1

	0

	1+0+0

	0

	1

	1+0+1

	1

	0

	1+1+0

	1

	0

	1+1+1

	1

	1

[image:]

For comparison: if we add 7 and 9 in denary the result is: carry = 1 and sum = 6; if we add 7, 9 and 8 the result is: carry = 2 and sum = 4, and so on.

[image:]

[image:]

Advice

Here’s a quick recap on the role of carry and sum. If we want to add the numbers 97 and 64 in decimal, we:

	
• add the numbers in the right hand column first

	
• if the sum is greater than 9 then we carry a value to the next column

	
• we continue moving left, adding any carry values to each column until we are finished.

For instance:

[image:]

Adding in binary follows the same rules except that we carry whenever the sum is greater than 1.

[image:]

[image:]

[image:] Example 1

Add 00100111 + 01001010

We will set this out showing carry and sum values:

[image:]

[image:]

[image:]

[image:] Example 2

	
a Convert 126 and 62 into binary.

	
b Add the two binary values in part a and check the result matches the addition of the two denary numbers

[image:]

1 0 1 1 1 1 0 0 has the equivalent denary value of 128 + 32 + 16 + 8 + 4 = 188 which is the same as 126 + 62.

[image:]

[image:]

Activity 1.8

Carry out the following binary additions:

	
a 0 0 0 1 1 1 0 1 + 0 1 1 0 0 1 1 0

	
b 0 0 1 0 0 1 1 1 + 0 0 1 1 1 1 1 1

	
c 0 0 1 0 1 1 1 0 + 0 1 0 0 1 1 0 1

	
d 0 1 1 1 0 1 1 1 + 0 0 1 1 1 1 1 1

	
e 0 0 1 1 1 1 0 0 + 0 0 1 1 0 0 1 1

	
f 0 0 1 1 1 1 0 0 + 0 1 1 1 1 0 1 1

	
g 0 0 1 1 1 1 1 1 + 0 0 1 1 1 1 1 1

	
h 0 0 1 1 0 0 0 1 + 0 0 1 1 1 1 1 1

	
i 0 1 1 1 1 1 1 1 + 0 1 1 1 1 1 1 1

	
j 1 0 1 0 0 0 1 0 + 0 0 1 1 1 0 1 1

[image:]

[image:]

Activity 1.9

Convert the following denary numbers into binary and then carry out the binary addition of the two numbers and check your answer against the equivalent denary sum:

	
a 9 8 + 1 5

	
b 2 9 + 8 8

	
c 4 9 + 1 0 0

	
d 5 1 + 1 7 1

	
e 8 2 + 6 9

	
f 1 0 0 + 1 4 0

	
g 1 9 + 1 3 9

	
h 2 0 3 + 3 0

	
i 6 6 + 1 6 6

	
j 2 1 1 + 3 5

[image:]

Overflow

Now consider the following example:

[image:]

[image:] Example 3

Add 0 1 1 0 1 1 1 0 and 1 1 0 1 1 1 1 0 (using 8 bits)

[image:]

This addition has generated a 9th bit. The 8 bits of the answer are 0 1 0 0 1 1 0 0 – this gives the denary value (64 + 8 + 4) of 76 which is incorrect because the denary value of the addition is 110 + 222 = 332.

The maximum denary value of an 8-bit binary number is 255 (which is 28 – 1). The generation of a 9th bit is a clear indication that the sum has exceeded this value. This is known as an overflow error and in this case is an indication that a number is too big to be stored in the computer using 8 bits.

The greater the number of bits which can be used to represent a number then the larger the number that can be stored. For example, a 16-bit register would allow a maximum denary value of 65 535 (i.e. 216 – 1) to be stored, a 32-bit register would allow a maximum denary value of 4 294 967 295 (i.e. 232 – 1), and so on.

[image:]

[image:]

Activity 1.10

	
1 Convert the following pairs of denary numbers to 8-bit binary numbers and then add the binary numbers. Comment on your answers in each case:

	
a 89 + 175

	
b 168 + 99

	
c 88 + 215

	
2 Carry out the following 16-bit binary additions and comment on your answers:

	
a 0111 1111 1111 0001 + 0101 1111 0011 1001

	
b 1110 1110 0000 1011 + 1111 1101 1101 1001

[image:]

1.1.5 Logical binary shifts

Computers can carry out a logical shift on a sequence of binary numbers. The logical shift means moving the binary number to the left or to the right. Each shift left is equivalent to multiplying the binary number by 2 and each shift right is equivalent to dividing the binary number by 2.

As bits are shifted, any empty positions are replaced with a zero – see examples below. There is clearly a limit to the number of shifts which can be carried out if the binary number is stored in an 8-bit register. Eventually after a number of shifts the register would only contain zeros. For example, if we shift 01110000 (denary value 112) five places left (the equivalent to multiplying by 25, i.e. 32), in an 8-bit register we would end up with 00000000. This makes it seem as though 112 × 32 = 0! This would result in the generation of an error message.

[image:]

[image:] Example 1

The denary number 21 is 00010101 in binary. If we put this into an 8-bit register:

[image:]

If we now shift the bits in this register one place to the left, we obtain:

[image:]

The value of the binary bits is now 21 × 21 i.e. 42. We can see this is correct if we calculate the denary value of the new binary number 101010 (i.e. 32 + 8 + 2).

[image:]

Suppose we now shift the original number two places left:

[image:]

The binary number 1010100 is 84 in denary – this is 21 × 22.

And now suppose we shift the original number three places left:

[image:]

The binary number 10101000 is 168 in denary – this is 21 × 23.

So, let us consider what happens if we shift the original binary number 00010101 four places left:

[image:]

The left-most 1-bit has been lost. In our 8-bit register the result of 21 × 24 is 80 which is clearly incorrect. This error is because we have exceeded the maximum number of left shifts possible using this register.

[image:]

[image:] Example 2

The denary number 200 is 11001000 in binary. Putting this into an 8-bit register gives:

[image:]

If we now shift the bits in this register one place to the right:

[image:]

[image:]

The value of the binary bits is now 200 ÷ 21 i.e. 100. We can see this is correct by converting the new binary number 01100100 to denary (64 + 32 + 4).

Suppose we now shift the original number two places to the right:

[image:]

The binary number 00110010 is 50 in denary – this is 200 ÷ 22.

And suppose we now shift the original number three places to the right:

[image:]

The binary number 00011001 is 25 in denary – this is 200 ÷ 23.

Now let us consider what happens if we shift four places right:

[image:]

The right-most 1-bit has been lost. In our 8-bit register the result of 200 ÷ 24 is 12, which is clearly incorrect. This error is because we have therefore exceeded the maximum number of right shifts possible using this 8-bit register.

[image:]

[image:] Example 3

	
a Write 24 as an 8-bit register.

	
b Show the result of a logical shift 2 places to the left.

	
c Show the result of a logical shift 3 places to the right.

	
a [image:]

	
b [image:]

	
c [image:]

[image:]

[image:]

[image:] Example 4

	
a Convert 19 and 17 into binary.

	
b Carry out the binary addition of the two numbers.

	
c Shift your result from part b two places left and comment on the result.

	
d Shift your result from part b three places right and comment on the result.

	
a [image:]

	
b [image:]

	
c [image:]

	
d [image:]

In c the result is 36 × 22 = 144 (which is correct).

In d the result of the right shift gives a value of 4, which is incorrect since 36 ÷ 23 is not 4; therefore, the number of possible right shifts has been exceeded. You can also see that a 1 has been lost from the original binary number, which is another sign that there have been too many right shifts.

[image:]

[image:]

Activity 1.11

	
1 a Write down the denary value of the following binary number.

[image:]

	 b Shift the binary number three places to the right and comment on your result.

	 c Write down the denary value of the following binary number.

[image:]

	 d Shift the binary number four places to the left and comment on your result.

	
2 a Convert 29 and 51 to 8-bit binary numbers.

	 b Add the two binary numbers in part a.

	 c Shift the result in part b three places to the right.

	 d Convert 75 to an 8-bit binary number.

	 e Add the two binary numbers from parts c and d.

	 f Shift your result from part e one place to the left.

[image:]

1.1.6 Two’s complement (binary numbers)

Up until now, we have assumed all binary numbers are positive integers. To allow the possibility of representing negative integers we make use of two’s complement. In this section we will again assume 8-bit registers are being used. Only one minor change to the binary headings needs to be introduced here:

[image:]

In two’s complement the left-most bit is changed to a negative value. For instance, for an 8-bit number, the value 128 is now changed to −128, but all the other headings remain the same. This means the new range of possible numbers is: −128 (10000000) to +127 (01111111).

It is important to realise when applying two’s complement to a binary number that the left-most bit always determines the sign of the binary number. A 1-value in the left-most bit indicates a negative number and a 0-value in the left-most bit indicates a positive number (for example, 00110011 represents 51 and 11001111 represents −49).

Writing positive binary numbers in two’s complement format

[image:]

[image:] Example 1

The following two examples show how we can write the following positive binary numbers in the two’s complement format 19 and 4:

[image:]

[image:]

As you will notice, for positive binary numbers, it is no different to what was done in Section 1.1.2.

Converting positive denary numbers to binary numbers in the two’s complement format

If we wish to convert a positive denary number to the two’s complement format, we do exactly the same as in Section 1.1.2:

[image:]

[image:] Example 2

Convert a 38 b 125 to 8-bit binary numbers using the two’s complement format.

	
a Since this number is positive, we must have a zero in the −128 column. It is then a simple case of putting 1-values into their correct positions to make up the value of 38:

[image:]

	
b Again, since this is a positive number, we must have a zero in the −128 column. As in part a, we then place 1-values in the appropriate columns to make up the value of 125:

[image:]

[image:]

Converting positive binary numbers in the two’s complement format to positive denary numbers

[image:]

[image:] Example 3

Convert 01101110 in two’s complement binary into denary:

[image:]

As in Section 1.1.2, each time a 1 appears in a column, the column value is added to the total. For example, the binary number (01101110) above has the following denary value: 64 + 32 + 8 + 4 +2 = 110.

[image:]

[image:]

[image:] Example 4

Convert 00111111 in two’s complement binary into denary:

[image:]

As above, each time a 1 appears in a column, the column value is added to the total. For example, the binary number (00111111) above has the following denary value: 32 + 16 + 8 + 4 +2 + 1 = 63.

[image:]

[image:]

Activity 1.12

	
1 Convert the following positive denary numbers into 8-bit binary numbers in the two’s complement format:

	
a 39

	
b 66

	
c 88

	
d 102

	
e 111

	
f 125

	
g 77

	
h 20

	
i 49

	
j 56

	
2 Convert the following binary numbers (written in two’s complement format) into positive denary numbers:

[image:]

[image:]

Writing negative binary numbers in two’s complement format and converting to denary

[image:]

[image:] Example 1

The following three examples show how we can write negative binary numbers in the two’s complement format:

[image:]

By following our normal rules, each time a 1 appears in a column, the column value is added to the total. So, we can see that in denary this is: −128 + 16 + 2 + 1 = −109.

[image:]

Similarly, in denary this number is −128 + 64 + 32 + 4 = −28.

[image:]

This number is equivalent to −128 + 64 + 32 + 16 + 4 + 1 = −11.

[image:]

Note that a two’s complement number with a 1-value in the −128 column must represent a negative binary number.

Converting negative denary numbers into binary numbers in two’s complement format

Consider the number +67 in 8-bit (two’s complement) binary format:

[image:]

Method 1

Now let’s consider the number −67. One method of finding the binary equivalent to −67 is to simply put 1s in their correct places:

[image:]

Method 2

However, looking at the two binary numbers above, there is another possible way to find the binary representation of a negative denary number:

	first write the number as a positive binary value – in this case 67:

	0 1 0 0 0 0 1 1

	we then invert each binary value, which means swap the 1s and 0s around:

	1 0 1 1 1 1 0 0

	then add 1 to that number:

	1

	this gives us the binary for −67:

	1 0 1 1 1 1 0 1

[image:]

[image:] Example 2

Convert −79 into an 8-bit binary number using two’s complement format.

Method 1

As it is a negative number, we need a 1-value in the −128 column.

−79 is the same as −128 + 49

We can make up 49 from 32 + 16 + 1; giving:

[image:]

Method 2

	write 79 in binary:

	0 1 0 0 1 1 1 1

	invert the binary digits:

	1 0 1 1 0 0 0 0

	add 1 to the inverted number

	1

	thus giving −79:

	1 0 1 1 0 0 0 1

[image:]

It is a good idea to practise both methods.

[image:]

When applying two’s complement, it isn’t always necessary for a binary number to have 8 bits:

[image:]

[image:] Example 3

The following 4-bit binary number represents denary number 6:

[image:]

Applying two’s complement (1 0 0 1 + 1) would give:

[image:]

in other words: −6

[image:]

[image:]

[image:] Example 4

The following 12-bit binary number represents denary number 1676:

[image:]

Applying two’s complement (1 0 0 1 0 1 1 1 0 0 1 1 + 1) would give:

[image:]

In other words: −1676

[image:]

[image:]

Activity 1.13

Convert the following negative denary numbers into binary numbers using the two’s complement format:

	
a −18

	
b −31

	
c −47

	
d −63

	
e −88

	
f −92

	
g −100

	
h −1

	
i −16

	
j −127

[image:]

[image:]

Activity 1.14

Convert the following negative binary numbers (written in two’s complement format) into negative denary numbers:

[image:]

[image:]

1.2 Text, sound and images

1.2.1 Character sets – ASCII code and Unicode

The ASCII code system (American Standard Code for Information Interchange) was set up in 1963 for use in communication systems and computer systems. A newer version of the code was published in 1986. The standard ASCII code character set consists of 7-bit codes (0 to 127 in denary or 00 to 7F in hexadecimal) that represent the letters, numbers and characters found on a standard keyboard, together with 32 control codes (that use codes 0 to 31 (denary) or 00 to 19 (hexadecimal)).

Table 1.2 shows part of the standard ASCII code table (only the control codes have been removed).

Table 1.2 Part of the ASCII code table

[image:]

Consider the uppercase and lowercase codes in binary of characters. For example,

[image:]

The above examples show that the sixth bit changes from 1 to 0 when comparing the lowercase and uppercase of a character. This makes the conversion between the two an easy operation. It is also noticeable that the character sets (e.g. a to z, 0 to 9, etc.) are grouped together in sequence, which speeds up usability.

Extended ASCII uses 8-bit codes (0 to 255 in denary or 0 to FF in hexadecimal). This gives another 128 codes to allow for characters in non-English alphabets and for some graphical characters to be included:

[image:]

Figure 1.6 Extended ASCII code table

ASCII code has a number of disadvantages. The main disadvantage is that it does not represent characters in non-Western languages, for example Chinese characters. As can be seen in Figure 1.6 where DOS and Windows use different characters for some ASCII codes. For this reason, different methods of coding have been developed over the years. One coding system is called Unicode. Unicode can represent all languages of the world, thus supporting many operating systems, search engines and internet browsers used globally. There is overlap with standard ASCII code, since the first 128 (English) characters are the same, but Unicode can support several thousand different characters in total. As can be seen in Table 1.2 and Figure 1.6, ASCII uses one byte to represent a character, whereas Unicode will support up to four bytes per character.

The Unicode consortium was set up in 1991. Version 1.0 was published with five goals; these were to:

	
• create a universal standard that covered all languages and all writing systems

	
• produce a more efficient coding system than ASCII

	
• adopt uniform encoding where each character is encoded as 16-bit or 32-bit code

	
• create unambiguous encoding where each 16-bit and 32-bit value always represents the same character

	
• reserve part of the code for private use to enable a user to assign codes for their own characters and symbols (useful for Chinese and Japanese character sets, for example).

[image:]

[image:] Find out more

DOS appears in the ASCII extended code table. Find out what is meant by DOS and why it needs to have an ASCII code value.

[image:]

A sample of Unicode characters are shown in Figure 1.7. As can be seen from the figure, characters used in languages such as Russian, Romanian and Croatian can now be represented in a computer).

[image:]

Figure 1.7 Sample of Unicode characters

1.2.2 Representation of sound

Soundwaves are vibrations in the air. The human ear senses these vibrations and interprets them as sound.

Each sound wave has a frequency, wavelength and amplitude. The amplitude specifies the loudness of the sound.

[image:]

Figure 1.8 High and low frequency wave signals

Sound waves vary continuously. This means that sound is analogue. Computers cannot work with analogue data, so sound waves need to be sampled in order to be stored in a computer. Sampling means measuring the amplitude of the sound wave. This is done using an analogue to digital converter (ADC).

To convert the analogue data to digital, the sound waves are sampled at regular time intervals. The amplitude of the sound cannot be measured precisely, so approximate values are stored.

[image:]

Figure 1.9 A sound wave being sampled

Figure 1.9 shows a sound wave. The x-axis shows the time intervals when the sound was sampled (1 to 21), and the y-axis shows the amplitude of the sampled sound to 10.

At time interval 1, the approximate amplitude is 10; at time interval 2, the approximate amplitude is 4, and so on for all 20 time intervals. Because the amplitude range in Figure 1.9 is 0 to 10, then 4 binary bits can be used to represent each amplitude value (for example, 9 would be represented by the binary value 1001). Increasing the number of possible values used to represent sound amplitude also increases the accuracy of the sampled sound (for example, using a range of 0 to 127 gives a much more accurate representation of the sound sample than using a range of, for example, 0 to 10). The number of bits per sample is known as the sampling resolution (also known as the bit depth). So, in our example, the sampling resolution is 4 bits.

Sampling rate is the number of sound samples taken per second. This is measured in hertz (Hz), where 1 Hz means ‘one sample per second’.

So how is sampling used to record a sound clip?

	
• the amplitude of the sound wave is first determined at set time intervals (the sampling rate)

	
• this gives an approximate representation of the sound wave

	
• each sample of the sound wave is then encoded as a series of binary digits.

Using a higher sampling rate or larger resolution will result in a more faithful representation of the original sound source. However, the higher the sampling rate and/or sampling resolution, the greater the file size.

	
Table 1.3 The benefits and drawbacks of using a larger sampling resolution when recording sound

	Benefits

	Drawbacks

	larger dynamic range

	produces larger file size

	better sound quality

	takes longer to transmit/download music files

	less sound distortion

	requires greater processing power

CDs have a 16-bit sampling resolution and a 44.1 kHz sample rate – that is 44 100 samples every second. This gives high-quality sound reproduction.

[image:]

Link

See Section 1.3 for a calculation of file sizes.

[image:]

1.2.3 Representation of (bitmap) images

Bitmap images are made up of pixels (picture elements); an image is made up of a two-dimensional matrix of pixels. Pixels can take different shapes such as:

[image:]

Figure 1.10

Each pixel can be represented as a binary number, and so a bitmap image is stored in a computer as a series of binary numbers, so that:

	
• a black and white image only requires 1 bit per pixel – this means that each pixel can be one of two colours, corresponding to either 1 or 0

	
• if each pixel is represented by 2 bits, then each pixel can be one of four colours (22 = 4), corresponding to 00, 01, 10, or 11

	
• if each pixel is represented by 3 bits then each pixel can be one of eight colours (23 = 8), corresponding to 000, 001, 010, 011, 100, 101, 110, 111.

The number of bits used to represent each colour is called the colour depth. An 8 bit colour depth means that each pixel can be one of 256 colours (because 28 = 256). Modern computers have a 24 bit colour depth, which means over 16 million different colours can be represented With x pixels, 2x colours can be represented as a generalisation. Increasing colour depth also increases the size of the file when storing an image.

Image resolution refers to the number of pixels that make up an image; for example, an image could contain 4096 × 3072 pixels (12 582 912 pixels in total).

The resolution can be varied on many cameras before taking, for example, a digital photograph. Photographs with a lower resolution have less detail than those with a higher resolution. For example, look at Figure 1.11:

[image:]

Figure 1.11 Five images of the same car wheel using different resolutions

Image ‘A’ has the highest resolution and ‘E’ has the lowest resolution. ‘E’ has become pixelated (‘fuzzy’). This is because there are fewer pixels in ‘E’ to represent the image.

The main drawback of using high resolution images is the increase in file size. As the number of pixels used to represent the image is increased, the size of the file will also increase. This impacts on how many images can be stored on, for example, a hard drive. It also impacts on the time to download an image from the internet or the time to transfer images from device to device. A certain amount of reduction in resolution of an image is possible before the loss of quality becomes noticeable.

[image:]

Activity 1.15

	
1 Explain each of the following terms:

	
i colour depth

	
ii ASCII code and Extended ASCII code

	
iii Unicode

	
iv sampling rate

	
v bitmap image

	
2 A colour image is made up of red, green and blue colour combinations. 8 bits are used to represent each of the colour components.

	
i How many possible variations of red are there?

	
ii How many possible variations of green are there?

	
iii How many possible variations of blue are there?

	
iv How many different colours can be made by varying the red, green and blue values?

	
3 Describe the effect of increasing resolution and sampling rate on the size of a file being stored in a computer.

[image:]

1.3 Data storage and file compression

1.3.1 Measurement of data storage

A bit is the basic unit of all computing memory storage terms and is either 1 or 0. The word comes from binary digit. The byte is the smallest unit of memory in a computer. 1 byte is 8 bits. A 4-bit number is called a nibble – half a byte.

1 byte of memory wouldn’t allow you to store very much information so memory size is measured in the multiples shown in Table 1.4:

Table 1.4 Memory size using denary values

[image:]

The above system of numbering now only refers to some storage devices but is technically inaccurate. It is based on the SI (base 10) system of units where 1 kilo is equal to 1000.

A 1 TB hard disk drive would allow the storage of 1 × 1012 bytes according to this system.

However, since memory size is actually measured in terms of powers of 2, another system has been adopted by the IEC (International Electrotechnical Commission) that is based on the binary system (Table 1.5):

Table 1.5 IEC memory size system

[image:]

This system is more accurate. Internal memories (such as RAM and ROM) should be measured using the IEC system. A 64 GiB RAM could, therefore, store 64 × 230 bytes of data (68 719 476 736 bytes).

[image:]

Advice

Only the IEC system is covered in the syllabus.

[image:]

1.3.2 Calculation of file size

In this section we will look at the calculation of the file size required to hold a bitmap image and a sound sample.

The file size of an image is calculated as:

[image:]

The size of a mono sound file is calculated as:

[image:]

For a stereo sound file, you would then multiply the result by two.

[image:]

[image:] Example 1

A photograph is 1024 × 1080 pixels and uses a colour depth of 32 bits. How many photographs of this size would fit onto a memory stick of 64 GiB?

	
1 Multiply number of pixels in vertical and horizontal directions to find total number of pixels = (1024 × 1080) = 1 105 920 pixels

	
2 Now multiply number of pixels by colour depth then divide by 8 to give the number of bytes = 1 105 920 × 32 = 35 389 440/8 bytes = 4 423 680 bytes

	
3 64 GiB = 64 × 1024 × 1024 × 1024 = 68 719 476 736 bytes

	
4 Finally divide the memory stick size by the files size = 68 719 476 736/4 423 680 = 15 534 photos.

[image:]

[image:]

[image:] Example 2

A camera detector has an array of 2048 by 2048 pixels and uses a colour depth of 16. Find the size of an image taken by this camera in MiB.

	
1 Multiply number of pixels in vertical and horizontal directions to find total number of pixels = (2 048 × 2 048) = 4 194 304 pixels

	
2 Now multiply number of pixels by colour depth = 4 194 304 × 16 = 67 108 864 bits

	
3 Now divide number of bits by 8 to find the number of bytes in the file = (67 108 864)/8 = 8 388 608 bytes

	
4 Now divide by 1024 × 1024 to convert to MiB = (8 388 608)/(1 048 576) = 8 MiB.

[image:]

[image:]

[image:] Example 3

An audio CD has a sample rate of 44 100 and a sample resolution of 16 bits. The music being sampled uses two channels to allow for stereo recording. Calculate the file size for a 60-minute recording.

	
1 Size of file =

[image:]

	
2 Size of sample = (44 100 × 16 × (60 × 60)) = 2 540 160 000 bits

	
3 Multiply by 2 since there are two channels being used = 5 080 320 000 bits

	
4 Divide by 8 to find number of bytes = (5 080 320 000)/8 = 635 040 000

	
5 Divide by 1024 × 1024 to convert to MiB = 635 040 000 / 1 048 576 = 605 MiB.

[image:]

[image:]

Activity 1.16

	
1 A camera detector has an array of 1920 by 1536 pixels. A colour depth of 16 bits is used. Calculate the size of a photograph taken by this camera, giving your answer in MiB.

	
2 Photographs have been taken by a smartphone which uses a detector with a 1024 × 1536 pixel array. The software uses a colour depth of 24 bits. How many photographs could be stored on a 16 GiB memory card?

	
3 Audio is being sampled at the rate of 44.1 kHz using 8 bits. Two channels are being used. Calculate:

	
a the size of a one second sample, in bits

	
b the size of a 30-second audio recording in MiB.

	
4 The typical song stored on a music CD is 3 minutes and 30 seconds. Assuming each song is sampled at 44.1 kHz (44 100 samples per second) and 16 bits are used per sample. Each song utilises two channels.

Calculate how many typical songs could be stored on a 740 MiB CD.

[image:]

1.3.3 Data compression

The calculations in Section 1.3.2 show that sound and image files can be very large. It is therefore necessary to reduce (or compress) the size of a file for the following reasons:

	
• to save storage space on devices such as the hard disk drive/solid state drive

	
• to reduce the time taken to stream a music or video file

	
• to reduce the time taken to upload, download or transfer a file across a network

	
• the download/upload process uses up network bandwidth – this is the maximum rate of transfer of data across a network, measured in bits per second. This occurs whenever a file is downloaded, for example, from a server. Compressed files contain fewer bits of data than uncompressed files and therefore use less bandwidth, which results in a faster data transfer rate.

	
• reduced file size also reduces costs. For example, when using cloud storage, the cost is based on the size of the files stored. Also an internet service provider (ISP) may charge a user based on the amount of data downloaded.

1.3.4 Lossy and lossless file compression

File compression can either be lossless or lossy.

Lossy file compression

With this technique, the file compression algorithm eliminates unnecessary data from the file. This means the original file cannot be reconstructed once it has been compressed.

Lossy file compression results in some loss of detail when compared to the original file. The algorithms used in the lossy technique have to decide which parts of the file need to be retained and which parts can be discarded.

For example, when applying a lossy file compression algorithm to:

	
• an image, it may reduce the resolution and/or the bit/colour depth

	
• a sound file, it may reduce the sampling rate and/or the resolution.

Lossy files are smaller than lossless files which is of great benefit when considering storage and data transfer rate requirements.

Common lossy file compression algorithms are:

	
• MPEG-3 (MP3) and MPEG-4 (MP4)

	
• JPEG.

MPEG-3 (MP3) and MPEG-4 (MP4)

MP3 files are used for playing music on computers or mobile phones. This compression technology will reduce the size of a normal music file by about 90%. While MP3 music files can never match the sound quality found on a DVD or CD, the quality is satisfactory for most general purposes.

But how can the original music file be reduced by 90% while still retaining most of the music quality? Essentially the algorithm removes sounds that the human ear can’t hear properly. For example:

	
• removal of sounds outside the human ear range

	
• if two sounds are played at the same time, only the louder one can be heard by the ear, so the softer sound is eliminated. This is called perceptual music shaping.

MP4 files are slightly different to MP3 files. This format allows the storage of multimedia files rather than just sound – music, videos, photos and animation can all be stored in the MP4 format. As with MP3, this is a lossy file compression format, but it still retains an acceptable quality of sound and video. Movies, for example, could be streamed over the internet using the MP4 format without losing any real discernible quality.

JPEG

When a camera takes a photograph, it produces a raw bitmap file which can be very large in size. These files are temporary in nature. JPEG is a lossy file compression algorithm used for bitmap images. As with MP3, once the image is subjected to the JPEG compression algorithm, a new file is formed and the original file can no longer be constructed.

The JPEG file reduction process is based on two key concepts:

	
• human eyes don’t detect differences in colour shades quite as well as they detect differences in image brightness (the eye is less sensitive to colour variations than it is to variations in brightness)

	
• by separating pixel colour from brightness, images can be split into 8 × 8 pixel blocks, for example, which then allows certain ‘information’ to be discarded from the image without causing any real noticeable deterioration in quality.

Lossless file compression

With this technique, all the data from the original uncompressed file can be reconstructed. This is particularly important for files where any loss of data would be disastrous (e.g. when transferring a large and complex spreadsheet or when downloading a large computer application).

Lossless file compression is designed so that none of the original detail from the file is lost.

Run-length encoding (RLE) can be used for lossless compression of a number of different file formats:

	
• it is a form of lossless/reversible file compression

	
• it reduces the size of a string of adjacent, identical data (e.g. repeated colours in an image)

	
• a repeating string is encoded into two values:

	– the first value represents the number of identical data items (e.g. characters) in the run

	– the second value represents the code of the data item (such as ASCII code if it is a keyboard character)

	
• RLE is only effective where there is a long run of repeated units/bits.

Using RLE on text data

Consider the following text string: ‘aaaaabbbbccddddd’. Assuming each character requires 1 byte then this string needs 16 bytes. If we assume ASCII code is being used, then the string can be coded as follows:

[image:]

This means we have five characters with ASCII code 97, four characters with ASCII code 98, two characters with ASCII code 99 and five characters with ASCII code 100. Assuming each number in the second row requires 1 byte of memory, the RLE code will need 8 bytes. This is half the original file size.

One issue occurs with a string such as ‘cdcdcdcdcd’ where RLE compression isn’t very effective. To cope with this, we use a flag. A flag preceding data indicates that what follows are the number of repeating units (for example, 255 05 97 where 255 is the flag and the other two numbers indicate that there are five items with ASCII code 97). When a flag is not used, the next byte(s) are taken with their face value and a run of 1 (for example, 01 99 means one character with ASCII code 99 follows).

Consider this example:

[image:]

The original string contains 32 characters and would occupy 32 bytes of storage.

The coded version contains 18 values and would require 18 bytes of storage.

Introducing a flag (255 in this case) produces:

[image:]

This has 15 values and would, therefore, require 15 bytes of storage. This is a reduction in file size of about 53% when compared to the original string.

Using RLE with images

[image:]

[image:] Example 1: Black and white image

Figure 1.12 shows the letter ‘F’ in a grid where each square requires 1 byte of storage. A white square has a value 1 and a black square a value of 0:

[image:]

Figure 1.12 Using RLE with a black and white image

The 8 × 8 grid would need 64 bytes; the compressed RLE format has 30 values, and therefore needs only 30 bytes to store the image.

[image:]

[image:]

[image:] Example 2: Coloured images

Figure 1.13 shows an object in four colours. Each colour is made up of red, green and blue (RGB) according to the code on the right.

[image:]

Figure 1.13 Using RLE with a coloured image

[image:]

This produces the following data: 2 0 0 0 4 0 255 0 3 0 0 0 6 255 255 255 1 0 0 0 2 0 255 0 4 255 0 0 4 0 255 0 1 255 255 255 2 255 0 0 1 255 255 255 4 0 255 0 4 255 0 0 4 0 255 0 4 255 255 255 2 0 255 0 1 0 0 0 2 255 255 255 2 255 0 0 2 255 255 255 3 0 0 0 4 0 255 0 2 0 0 0.

The original image (8 × 8 square) would need 3 bytes per square (to include all three RGB values). Therefore, the uncompressed file for this image is 8 × 8 × 3 = 192 bytes.

The RLE code has 92 values, which means the compressed file will be 92 bytes in size. This gives a file reduction of about 52%. It should be noted that the file reductions in reality will not be as large as this due to other data which needs to be stored with the compressed file (e.g. a file header).

[image:]

Extension

For those students considering the study of this subject at A Level, the following section gives some insight into further study on data representation.

The following two exercises are designed to help students thinking of furthering their study in Computer Science at A Level standard. The two topics here are not covered in the syllabus and merely show how some of the topics in this chapter can be extended to this next level. The two topics extend uses of the binary number system and using two’s complement format to do binary addition.

Topic 1: Binary Coded Decimal (BCD)

The Binary Coded Decimal (BCD) system uses a 4-bit code to represent each denary digit, i.e.:

	0 0 0 0 = 0

	0 1 0 1 = 5

	0 0 0 1 = 1

	0 1 1 0 = 6

	0 0 1 0 = 2

	0 1 1 1 = 7

	0 0 1 1 = 3

	1 0 0 0 = 8

	0 1 0 0 = 4

	1 0 0 1 = 9

Therefore, the denary number, 3 1 6 5, would be 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 in BCD format.

Uses of BCD

The most obvious use of BCD is in the representation of digits on a calculator or clock display. For example:

[image:]

Each denary digit will have a BCD equivalent value which makes it easy to convert from computer output to denary display.

Questions to try

	
1 Convert the following denary numbers into BCD format:

	
a 2 7 1

	
b 5 0 0 6

	
c 7 9 9 0

	
2 Convert the following BCD numbers into denary numbers:

	
a 1 0 0 1 0 0 1 1 0 1 1 1

	
b 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0

Topic 2: Subtraction using two’s complement notation

To carry out subtraction in binary, we convert the number being subtracted into its negative equivalent using two’s complementation and then add the two numbers.

[image:]

[image:] Example 1

Carry out the subtraction 95 – 68 in binary.

[image:]

Then add 95 and −68:

[image:]

The additional ninth bit is simply ignored leaving the binary number: 0 0 0 1 1 0 1 1 (denary equivalent of 27 which is the correct result of the subtraction).

[image:]

[image:]

[image:] Example 2

Carry out the subtraction 49 – 80 in binary.

[image:]

Now add 49 and −80:

[image:]

This gives us 1 1 1 0 0 0 0 1 which is −31 in denary; the correct answer.

[image:]

Questions to try

	
1 Carry out the following binary additions and subtractions using the 8-bit column weightings:

[image:]

	
a 0 0 1 1 1 0 0 1 + 0 0 1 0 1 0 0 1

	
b 0 1 0 0 1 0 1 1 + 0 0 1 0 0 0 1 1

	
c 0 1 0 1 1 0 0 0 + 0 0 1 0 1 0 0 0

	
d 0 1 1 1 0 0 1 1 + 0 0 1 1 1 1 1 0

	
e 0 0 0 0 1 1 1 1 + 0 0 0 1 1 1 0 0

	
f 0 1 1 0 0 0 1 1 − 0 0 1 1 0 0 0 0

	
g 0 1 1 1 1 1 1 1 − 0 1 0 1 1 0 1 0

	
h 0 0 1 1 0 1 0 0 − 0 1 0 0 0 1 0 0

	
i 0 0 0 0 0 0 1 1 − 0 1 1 0 0 1 0 0

	
j 1 1 0 1 1 1 1 1 − 1 1 0 0 0 0 1 1

[image:]

[image:]

In this chapter, you have learnt how to:

	
[image:] use the binary and hexadecimal number systems

	
[image:] convert numbers between the binary, denary and hexadecimal numbers systems

	
[image:] add together two binary numbers

	
[image:] carry out a logical shift

	
[image:] store negative binary numbers using two’s complement

	
[image:] interpret ASCII and Unicode character tables

	
[image:] understand the way a computer stores image and sound files

	
[image:] represent the size of a computer memory using KiB, GiB, and so on

	
[image:] calculate the size of an image and sound file taking into account a number of factors

	
[image:] understand the effect of sampling rates and resolution on the size of a sound file

	
[image:] understand the effect of resolution and colour depth on the size of an image file

	
[image:] understand the advantages and disadvantages of reducing the size of a file

	
[image:] apply lossless and lossy file reduction techniques.

[image:]

[image:]

Key terms used throughout this chapter

bit – the basic computing element that is either 0 or 1, and is formed from the words Binary digit

binary number system – a number system based on 2 and can only use the values 0 and 1

hexadecimal number system – a number system based on the value 16 which uses denary digits 0 to 9 and letters A to F

error code – an error message generated by the computer

MAC address – standing for Media Access Control, this address (given in hexadecimal) uniquely identifies a device on the internet; it takes the form: NN-NN-NN-DD-DD-DD, where NN-NN-NN is the manufacturer code and DD-DD-DD is the device code NN-NN-NN-DD-DD-DD

IP address – Internet Protocol identified either as IPv4 or IPv6; it gives a unique address to each device connected to a network identifying their location

HTML – HyperText Mark-up Language is used in the design of web pages and to write, for example, http(s) protocols; in the context of this chapter, colours used in web pages are assigned a hexadecimal code based on red, green and blue colours

overflow error – the result of carrying out a calculation that produces a value that is too large for the computer’s allocated word size (8-bit, 16-bit, 32-bit, and so on)

logical shift – an operation that shifts bits to the left or right in a register; any bits shifted out of a register (left or right) are replaced with zeroes

two’s complement – a method of representing negative numbers in binary; when applied to an 8-bit system, the left-most bit (most significant bit) is given the value −128

ASCII code – a character set for all the characters on a standard keyboard and control codes

character set – a list of characters that have been defined by computer hardware and software. The character set is necessary so that the computer can understand human characters

Unicode – a character set which represents all the languages of the world (the first 128 characters are the same as ASCII code)

sampling resolution – the number of bits used to represent sound amplitude in digital sound recording (also known as bit depth)

bit depth – the number of bits used to represent the smallest unit in a sound file

colour depth – the number of bits used to represent the colours of a pixel

sampling rate – the number of sound samples taken per second in digital sound recording

bitmap image – an image made up of pixels

pixel – derived from the term ‘picture element ’, this is the smallest element used to make up an image on a display

image resolution – the number of pixels in the X–Y direction of an image, for example, 4096 × 3192 pixels

pixelated (image) – this is the result of zooming into a bitmap image; on zooming out the pixel density can be diminished to such a degree that the actual pixels themselves can be seen

pixel density – number of pixels per square inch

compression – reduction of the size of a file by removing repeated or redundant pieces of data; this can be lossy or lossless

bandwidth – the maximum rate of transfer of data across a network, measured in kilobits per second (kbps) or megabits per second (Mbps)

lossy (file compression) – a file compression method in which parts of the original file cannot be recovered during the decompression process for example, JPEG, mp3

lossless (file compression) – a file compression method that allows the original file to be fully restored during the decompression process, for example, run length encoding (RLE)

audio compression – a method used to reduce the size of a sound file using perceptual music shaping

MP3 – a lossy file compression method used for music files

MP4 – a lossy file compression method used for multimedia files

JPEG – from Joint Photographic Expert Group; a form of lossy file compression used with image files which relies on the inability of the human eye to distinguish certain colour changes and hues

run length encoding (RLE) – a lossless file compression technique used to reduce the size of text and photo files in particular

[image:]

Exam-style questions

	
1 A software developer is using a microphone to collect various sounds for his new game. He is also using a sound editing app.

When collecting sounds, the software developer can decide on the sampling resolution he wishes to use.

	
a i What is meant by sampling resolution?

[1]

	 ii Describe how sampling resolution will affect how accurate the stored digitised sound will be.

[3]

The software developer will include images in his new game.

	
b i Explain the term image resolution.

[1]

	 ii The software developer is using 16-colour bitmap images. How many bits would be used to encode data for one pixel of his image?

[1]

	 iii One of his images is 16 384 pixels wide and 512 pixels high. He decides to save it as a 256-colour bitmap image. Calculate the size of the image file in gibibytes.

[3]

	 iv Describe any file compression techniques the developer may use.

[3]

	
2 The editor of a movie is finalising the music score. He will send the final version of his score to the movie producer by email attachment.

	
a Describe how sampling is used to record the music sound clips.

[3]

	
b The music sound clips need to undergo some form of data compression before the music editor can send them via email. Which type of compression, lossy or lossless, should he use? Give a justification for your answer.

[3]

	
c One method of data compression is known as run length encoding (RLE).

	
i What is meant by RLE?

[3]

	
ii The following image is being developed:

[image:]

Show how RLE would be used to produce a compressed file for the above image. Write down the data you would expect to see in the RLE compressed format (you may assume that the grey squares have a code value of 0 and the white squares have a code value of 1).

[4]

	
3 An 8-bit binary register contains the value:

[image:]

	

	
a Write down the denary value of this register.

[1]

	
b The contents of this register undergo a logical shift one place to the right.

	
i Show the result of this right shift.

	
ii Write down the denary value following this right shift.

[2]

	
c The contents of this register, at the start of the question, now undergo a logical shift two places to the left.

	
i Show the contents of the register after this left shift operation.

[1]

	
ii State, with reasons, the effect of this shift on the denary value in part a.

[2]

	
4 a Convert the following denary numbers into 8-bit binary numbers:

	
i 123

	
ii 55

	
iii 180

[3]

	 b Carry out the following additions using your binary values from part a:

	
i 123 + 55

	
ii 123 + 180

[4]

	 c i Write down the two’s complement value of: 0 1 1 1 0 1 0 0

[2]

	 ii Write down the binary value of −112 using two’s complement notation.

[1]

	 iii Write down the denary value of the following binary number, which is using two’s complement notation:

[1]

[image:]

	 d i Convert the following denary number into an 8-bit binary number using two’s complement notation: 104.

	 ii Use two’s complement notation to find the 8-bit binary value of −104.

[2]

	
5 A bitmap image has the following resolution: 1140 × 1080 pixels. The image uses a colour depth of 24 bits.

	
a Explain the term pixel.

[1]

	
b Explain the term colour depth.

[1]

	
c Calculate how many of these images could be stored on a 32-GiB memory stick.

[3]

	
d Describe how it would be possible to increase the number of these images which could be stored on this memory stick.

[3]

	
6 a Nancy has captured images of her holiday with her camera. The captured images are stored as digital photo files on her camera.

Explain how the captured images are converted to digital photo files.

[4]

	 b Nancy wants to email photos to Nadia.

Many of the photos are very large files, so Nancy needs to reduce their file size as much as possible.

Identify which type of file compression would be most suitable for Nancy to use. Explain your choice.

[4]

Cambridge IGCSE Computer Science 0478, Paper 12 Q2, May/June 2018

	
7 A stopwatch uses six digits to store hours, minutes and seconds. The stopwatch stopped at:

[image:]

An 8-bit register is used to store each pair of digits.

	

	
a Write the 8-bit binary numbers that are currently stored for the Hours, Minutes and Seconds.

[image:]

[3]

	

	
b The stopwatch is started again and then stopped. When the watch is stopped, the 8-bit binary registers show:

[image:]

Write the denary values that will now be shown on the stopwatch.

[image:]

[3]

Cambridge IGCSE Computer Science 0478, Paper 12 Q3, May/June 2018

	
8 A memory stick is advertised as having a capacity of 64 GiB.

	
a How many photographs of size 10 KiB could be stored on this memory stick?

[2]

	
b John wants to store 400 photographs in a folder on his solid state drive (SSD). Each photograph is 10 KiB in size.

	
i Name one way of reducing the size of this file.

[1]

	
ii Give two advantages of reducing the size of his photography files.

[2]

	
iii Give one disadvantage of reducing files using the method named in part b i.

[1]

	
c The original photographs were stored as bitmap images.

	
i Explain why 3 bytes of data would be needed to store each pixel in the bitmap image.

[2]

	
ii Calculate how many different pixel colours could be formed if one of the bytes gives the intensity of the red colour, one of the bytes gives the intensity of the green colour and one of the bytes gives the intensity of the blue colour.

[3]

	
9 Six calculations are shown on the left and eleven denary values are shown on the right.

By drawing arrows, connect each calculation to its correct denary value.

[6]

[image:]

OEBPS/OEBPS/images/sec1.png
SECTION 1

Computer
systems

Chapters

1 Data representation
2 Data transmission
3 Hardware

4 Software
5

6

The internet and its uses
Automated and emerging technologies

pe 3 ~
: et
- P
ee ~ =
-z
/
‘
[]

OEBPS/OEBPS/images/22-1.png

OEBPS/OEBPS/images/41-1.jpg

OEBPS/OEBPS/images/22-3.png
16

Sz

b4

—1z8

OEBPS/OEBPS/images/22-2.png
-8

OEBPS/OEBPS/images/26-1.png
Dec Hex Char Dec Hex Char | Dec Hex Char
32 20 <SPACE> b4 40 @ 96 60

33 21 ! 65 41 A 97 61 a
34 22 66 42 B 98 62 b
35 23 # 67 43 C 99 63 ©
36 24 $ 68 bb D 100 b4 d
37 25 % 69 45 E 101 65 @
38 26 & 70 46 F 102 66 f
39 27 : 7 47 G 103 67 g
40 28 (72 48 H 104 68 h
41 29) 73 49 | 105 69 i
42 2A * 4 4A J 106 6A j
43 2B + 75 4B K 107 6B k
4b 2C 0 76 4C L 108 6C L
45 2D = 77 4D M 109 6D m
46 2E o 78 4E N 10 6E n
47 2F / 79 4F 0 m 6F o
48 30 0 80 50 P 12 70 P
49 31 1 81 51 Q 13 7 q
50 32 2 82 52 R 14 72 r
51 33 3 83 53 5 15 73 s
52 34 4 84 54 T 16 4 t
53 35 5 85 55 u n7 75 u
54 36 6 86 56 v n8 76 v
55 37 7 87 57 w n9 77 w
56 38 8 88 58 X 120 78 X
57 39 9 89 59 Y 121 79 y
58 3A 90 5A z 122 7A z
59 3B H 91 5B [123 7B {
60 3C < 92 5C \ 124 7C |
61 3D = 93 5D 1 125 7D }
62 3E > 9% SE " 126 7E -
63 3F 95 SF 127 7F <DELETE>

OEBPS/OEBPS/images/example.png

OEBPS/OEBPS/images/19-3.png
128

16

OEBPS/OEBPS/images/19-2.png
Notice the 1-bit
from the right-
most bit position
is now lost

causing an error

128

64

2

16

OEBPS/nav.xhtml

Contents

		Cover

		Title Page

		Copyright

		Contents

		Introduction

		SECTION 1 COMPUTER SYSTEMS

		1 Data representation

		1.1 Number systems

		1.2 Text, sound and images

		1.3 Data storage and file compression

		2 Data transmission

		2.1 Types and methods of data transmission

		2.2 Methods of error detection

		2.3 Symmetric and asymmetric encryption

		3 Hardware

		3.1 Computer architecture

		3.2 Input and output devices

		3.3 Data storage

		3.4 Network hardware

		4 Software

		4.1 Types of software and interrupts

		4.2 Types of programming language, translators and integrated development environments (IDEs)

		5 The internet and its uses

		5.1 The internet and the World Wide Web (WWW)

		5.2 Digital currency

		5.3 Cyber security

		6 Automated and emerging technologies

		6.1 Automated systems

		6.2 Robotics

		6.3 Artificial intelligence (AI)

		SECTION 2 ALGORITHMS, PROGRAMMING AND LOGIC

		7 Algorithm design and problem solving

		7.1 The program development life cycle

		7.2 Computer systems, sub-systems and decomposition

		7.3 Explaining the purpose of an algorithm

		7.4 Standard methods of solution

		7.5 Validation and verification

		7.6 Test data

		7.7 Trace tables to document dry runs of algorithms

		7.8 Identifying errors in algorithms

		7.9 Writing and amending algorithms

		8 Programming

		8.1 Programming concepts

		8.2 Arrays

		8.3 File handling

		9 Databases

		9.1 Databases

		10 Boolean logic

		10.1 Standard logic gate symbols

		10.2 The function of the six logic gates

		10.3 Logic circuits, logic expressions, truth tables and problem statements

Guide

		Cover

		Title Page

		Copyright

		Contents

Pages

		cover

		i

		ii

		iii

		iv

		v

		vi

		vii

		viii

		ix

		x

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		237

		238

		239

		240

		241

		242

		243

		244

		245

		246

		247

		248

		249

		250

		251

		252

		253

		254

		255

		256

		257

		258

		259

		260

		261

		262

		263

		264

		265

		266

		267

		268

		269

		270

		271

		272

		273

		274

		275

		276

		277

		278

		279

		280

		281

		282

		283

		284

		285

		286

		287

		288

		289

		290

		291

		292

		293

		294

		295

		296

		297

		298

		299

		300

		301

		302

		303

		304

		305

		306

		307

		308

		309

		310

		311

		312

		313

		314

		315

		316

		317

		318

		319

		320

		321

		322

		323

		324

		325

		326

		327

		328

		329

		330

		331

		332

		333

		334

		335

		336

		337

		338

		339

		340

		341

		342

		343

		344

		345

		346

		347

		348

		349

		350

		351

		352

		353

		354

		355

		356

		357

		358

		359

		360

		361

		362

		363

		364

		365

		366

		367

		368

		369

		370

		371

		372

		373

		374

		375

		376

		377

		378

		379

		380

		381

		382

		383

		384

		385

		386

OEBPS/OEBPS/images/19-5.png
128 64 32 16 8 4 < 1

ol 1|1 [olo o] o| o0 |®2ux2=9

OEBPS/OEBPS/images/19-4.png
128

16

OEBPS/OEBPS/images/7-1.png
(164 (167 (16%) (16" (16°)
65536 4096 256 16 1
2 1 F 3 A

OEBPS/OEBPS/images/19-7.png
128

19
17

OEBPS/OEBPS/images/19-6.png
128 o4 32 16 8 4 <z 1

oo oo oo 1|1 |®2%:2=3

OEBPS/OEBPS/images/3-1.png
(104 (109 (102) (101 (107
10000 1000 100 10 1
2 5 1 7 7

OEBPS/OEBPS/images/3-2.png
27 (29 (29) (24 (23 (22) 21 (29
128 64 32 16 8 4 2 1
1 1 1 0 1 1 1 0

OEBPS/OEBPS/images/3-3.png
128 64 32 16 ©

L1101

OEBPS/OEBPS/images/3-4.png
2048 1024 512 256 128 64 32 16 8

0 1 1 1 1 o]0 0 1

OEBPS/OEBPS/images/30-1.jpg
o 9

OEBPS/OEBPS/images/11-1.png
16 2004

16 125 | remainder: 4

16 7 | remainder: 13
0 | remainder: 7

write the remainders from bottom to top
to get the hexadecimal number:

7 D 4 (D=13)

OEBPS/OEBPS/images/11-2.png
16 8463

16 528 | remainder: 15

16 33 | remainder: 0

16 2 | remainder: 1
0| remainder: 2

read the remainder from bottom to top
to get the hexadecimal number:

2 1 0 F (F=15)

OEBPS/OEBPS/images/15-1.png
+ 64
11 CARRY VALUES

161SUMVAI UES

OEBPS/OEBPS/images/38-3.png
-128 b4 32 16
0 1 0 1
1 0 1 1
0 0 0 1

OEBPS/OEBPS/images/19-1.png
128

16

OEBPS/OEBPS/images/38-1.png

OEBPS/OEBPS/images/38-2.png
-irst convert the two numbers into binary:

Now find the two's complement of 68:

68

-b68

o oo

o -
-~ oo
- oo
S o
o = o
- oo

17011110

o O

OEBPS/OEBPS/images/cover.jpg
David Watson
Helen Williams

6 HooReR

OEBPS/OEBPS/images/44-1.png
An 8-bit register uses two's
complement notation.

What is the denary value of:
001011017

10

16

Convert the following into
GiB:

59 055800 320 bytes

20

28

If 2¢=1048 576 bytes

Whatis the value of x?

45

4é

Give the denary equivalent
of the following hexadecimal
number;

3F

55

What is the denary result of

the following binary addition:

00010011
+00011011

57

60

Find the hexadecimal value
of the following denary
number;

40

63

80

OEBPS/OEBPS/images/21-2.png
-8

16

OEBPS/OEBPS/images/21-1.png
-8

16

OEBPS/OEBPS/images/21-3.png
-8

16

OEBPS/OEBPS/images/25-2.png
—2048 1026 512 256 128

1 0 0 1 0

OEBPS/OEBPS/images/25-1.png
—2048 1026 512 256 128

0 1 1 0 1

OEBPS/OEBPS/images/25-3.png

OEBPS/OEBPS/images/29-2.png
\I

\

L

\
\J
01234567 891011121314151617181920

i
v

Co o~ LT MmN O

apnyjdwe punos

Time intervals

OEBPS/OEBPS/images/29-1.png
Amplitude

Amplitude

High Frequency Wave

NANNN L

VAVEVEVAVAY,

|=Period>|

Low Frequency Wave

VYR

|«—Period——|

OEBPS/OEBPS/images/8-4.png
10000111111101

OEBPS/OEBPS/images/18-4.png

OEBPS/OEBPS/images/8-5.png
10

0001

1111

1101

OEBPS/OEBPS/images/18-3.png
128

16

OEBPS/OEBPS/images/r_sign.jpg

OEBPS/OEBPS/images/8-6.png
0010

0001

1111

1101

OEBPS/OEBPS/images/18-6.png
128 6 32 16 8 L2 1 The right-most bit

is often referred to
as the LEAST

SIGNIFICANT BIT

OEBPS/OEBPS/images/8-7.png

OEBPS/OEBPS/images/18-5.png
128

16

Losing 1 bit
following a shift

operation will
cause an error

OEBPS/OEBPS/images/8-1.png
101111100001

OEBPS/OEBPS/images/18-7.png
Note how the left-
most bit position is

now filled with a 0

128

64 32

16

OEBPS/OEBPS/images/8-2.png
1011

1110

0001

OEBPS/OEBPS/images/8-3.png

OEBPS/OEBPS/images/4-1.png
52708 1638% 8192 4090 2098 1024 >ls 2506 128 64 32

0 0 1 1 0 oo 1|1 1 1

OEBPS/OEBPS/images/4-2.png
128

64

32

16

OEBPS/OEBPS/images/10-1.png
256 16 1
4 5 A

(4x256=1024) (5x16=80) (10x 1 =10)

(NOTE: A= 10)

OEBPS/OEBPS/images/33-1.png
image resolution (in pixels) x colour depth (in bits)

OEBPS/OEBPS/images/10-2.png
1114

OEBPS/OEBPS/images/10-3.png
256 16 1
c 8 F

(12x256=3072) (8x 16=128) (15x 1 =15)

(NOTE: C=12,F=15)

OEBPS/OEBPS/images/33-3.png
sample rate (in Hz) x sample resolution (in bits) x length of sample (in seconds)

OEBPS/OEBPS/images/10-4.png
3215

OEBPS/OEBPS/images/33-2.png
sample rate (in Hz) x sample resolution (in bits) x length of sample (in seconds)

OEBPS/OEBPS/images/37-1.png
1111111
0000001
0111111
0111111

0000011
0111111
0111111
0111111

In compressed RLE format this becomes:

9W 6B 2W 1B 7W 1B 7W 5B 3W 1B 7W 1B
7W 1B 6W

Using W = 1 and B = 0 we get:

9160211071107150311071 10711061

OEBPS/OEBPS/images/14-2.png
FF
99
66

FF9966

OEBPS/OEBPS/images/14-1.png
FF0000;">This is a red heading</hl>

<h2 style="color:#00FF00;">This is a green heading</h2>

0000FF;">This is a blue heading</h3>

OEBPS/OEBPS/images/18-2.png
128 b4 32 16 8 4 2 1 Note how the empty
right-most bit position

is now filled witha 0

The left-most bit is
now lost following a
left shift

OEBPS/OEBPS/images/37-2.png
Square Green
colour | Red components Blue
[| 0 0 0
[|25 255 255
0 | o 255 0
W | s 0 0

OEBPS/OEBPS/images/18-1.png
The left-most bit is
often referred to
as the MOST

SIGNIFICANT BIT

128

16

OEBPS/OEBPS/images/vii-1.jpg

OEBPS/OEBPS/images/tp.png
Cambridge

IGCSE™ and 0 level

Computer

Science

Second Edition

100
BOOSt AN HACHETTE UK COMPANY

OEBPS/OEBPS/images/vii-2.png

OEBPS/OEBPS/images/20-1.png
00010011
.
00010001
1 11 <— camry

00100100 <—— sum

OEBPS/OEBPS/images/43-1.png
02 : 31 : 58

Hours Minutes Seconds

OEBPS/OEBPS/images/43-2.png
Hours

Minutes

Seconds

OEBPS/OEBPS/images/20-3.png
128

16

OEBPS/OEBPS/images/20-2.png
128

16

OEBPS/OEBPS/images/20-5.png

OEBPS/OEBPS/images/24-1.png

OEBPS/OEBPS/images/20-4.png

OEBPS/OEBPS/images/24-3.png

OEBPS/OEBPS/images/43-3.png
Hours:

Minutes:

Seconds:

OEBPS/OEBPS/images/20-6.png
—1Z8

32

16

OEBPS/OEBPS/images/24-2.png

OEBPS/OEBPS/images/43-4.png
| |

Hours Minutes Seconds

OEBPS/OEBPS/images/28-1.png
q

"

u

&

D2

L]

N

N

«

OEBPS/OEBPS/images/24-4.png

OEBPS/OEBPS/images/9-3.png
010001011010

OEBPS/OEBPS/images/9-4.png

OEBPS/OEBPS/images/9-5.png
Lo11

111t

0000

1000

OEBPS/OEBPS/images/9-6.png
1011111100001000

OEBPS/OEBPS/images/5-3.png
2 59

2 29 remainder: 1

2 14 remainder: 1

2 7 remainder: 0

2 3 remainder: 1

2 1 remainder: 1
0 remainder: 1

write the remainders from bottom to top
to get the binary number:

1110 11

OEBPS/OEBPS/images/9-1.png

OEBPS/OEBPS/images/9-2.png
0100

0101

1010

OEBPS/OEBPS/images/5-1.png
2 142
2 7 remainder: 0
2 35 remainder: 1
2 17 remainder: 1
2 8 remainder: 1
2 4 remainder: 0
2 2 remainder: 0
2 1 remainder: 0
0 remainder: 1

read the remainders from bottom to top
to get the binary number:

100 01 1 10

OEBPS/OEBPS/images/5-2.png
128

64

32

16

OEBPS/OEBPS/images/find_out.jpg

OEBPS/OEBPS/images/32-2.png
Name of memory size Number of bytes Equivalent denary value
Tkibibyte (1KiB) 20 1024 bytes
1mebibyte (1MiB) o 1048576 bytes
1gibibyte (1GiB) 20 1073741824 bytes
1tebibyte (1TiB) 20 1099511627776 bytes
1pebibyte (1PiB] 20 1125899906842624 bytes
1 exbibyte (1EiB) 20 1152921504606846976 bytes

OEBPS/OEBPS/images/32-1.png
Name of memory size

Equivalent denary value

1kilobyte (1KB) 1000 bytes
Tmegabyte (1MB) 1000000 bytes
1gigabyte (16B) 1000000000 bytes
Iterabyte (1TB) 1000000000000 bytes

1 petabyte (1PB)

1000000000000000 bytes

1exabyte (1EB)

1000000000000000000 bytes

OEBPS/OEBPS/images/13-1.png
NN - NN -NN-DD -DD -DD

OEBPS/OEBPS/images/13-3.png
00 — 14 - 22 which identifies devices made by Dell

00 —40-96 which identifies devices made by Cisco

00— a0 —c9 which identifies devices made by Intel, and so on.

OEBPS/OEBPS/images/36-2.png
String

aaaaaaaa

bbbbbbbbbb

eeceeeee

Code

0897

1098

0199

01100

0199

01100

0199

01100

08101

OEBPS/OEBPS/images/13-2.png
NN:NN:NN:DD:DD:DD

OEBPS/OEBPS/images/36-1.png
0597 0498 0299 05100

OEBPS/OEBPS/images/17-1.png
orirorilo
+
11011110

9“‘}31’\1 111111 <— carry
1)01001100 <—— sum

OEBPS/OEBPS/images/13-4.png
a8fb:7a88:fff0:0fff:3d21:2085:66fb:f0fa

OEBPS/OEBPS/images/36-3.png
255 08 97 || 255 10 98 || 99 100 99 100 99 100 ||

255 08 101

OEBPS/OEBPS/images/42-2.png

OEBPS/OEBPS/images/42-1.png

OEBPS/OEBPS/images/23-2.png
-8

16

OEBPS/OEBPS/images/23-1.png
-8

16

OEBPS/OEBPS/images/23-4.png
-8

16

OEBPS/OEBPS/images/rules.jpg

OEBPS/OEBPS/images/23-3.png
-8

16

OEBPS/OEBPS/images/27-2.png
DOS WIN Dec Hex DOS WIN Dec Hex DOS WIN Dec Hex

DOS WIN Dec Hex

SFE®E QOSSO EmanT T N6 e s s S eSO

-

8" ~¥r

N

8~ o= g

- N

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
9
92
93
9
95
96
97
98
99
9A
9B
9C
9D
9E
9F

TZmE E o =&

T

T

N X

BT T T T |

fum s O oe

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

A0
Al
A2
A3
A4
AS
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
Bl
B2
B3
B4
BS
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

T+ T Fr

=9 E=

EF==1

W= Ol = = r o A

PTLCOOCR X GO0 T T B IO g e B b

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

co
c1
2
3
c4
C5
c6
c7
c8
<9
CA
CB
cc
<D
CE
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

S8 § oD 08 " F 8 We 558

AV W

)

- ek 600 BB oE @ B e

o oo o m o

T

224
25
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

OEBPS/OEBPS/images/23-5.png
-128 66 32 16 8 4 2 1 128 +32+16+8

+he1=-67

OEBPS/OEBPS/images/27-1.png
hex 61 (lower case)
hex 41 (upper case)
hex 79 (lower case]

hex 59 (upper case]

OEBPS/OEBPS/images/6-2.png
2 35000
2 17500 | remainder: 0
2 8750 remainder: 0
2 4375 remainder: 0
2 2187 remainder: 1
2 1093 remainder: 1
2 546 remainder: 1
2 273 remainder: 0
2 136 remainder: 1
2 68 remainder 0
2 34 remainder 0
2 17 remainder 0
2 8 remainder 1
2 4 remainder 0
2 2 remainder 0
2 1 remainder 0
0 remainder 1

read the remainder from bottom to top
to get the binary number:

100 0 10 00 1 0
1110 00

OEBPS/OEBPS/images/6-1.png
52708 1638% 8192 4090 2098 1024 >ls 2506 128 64 32

1 0 0 0 1 0001 0 1

OEBPS/OEBPS/images/copy.png
\Q Paper from

responsible sources
WFAWJSng FSC™ C104740

OEBPS/OEBPS/images/31-1.png
B2 B2 Ba Bu B,

OEBPS/OEBPS/images/12-1.png
MexrrorCode Errorpescription

Sncorrece function.

e aysten Cannot Find the File specificd.
The 3/ZEen Chmor Find the path Speciried:
The HyEten Camot open the File.

Tecert s denved:

neRanate 2 mario.

A ek v w3 108a 3 progran ¥iTn a ncorrect formse.
e

T e T

B Sl s v oo comtece oms operacion.
Systes cannot move the file to a different disk drive.
The Syten’camnot find the device specified.

B =

BEEEEETIERREEETIRLLRAS

e The Gevice dses not recogmize the comand.
as Saea’error (eyerte. reoundancy check)
oan roaran isued o command but the comand Tength f5 incorrect.

The
The Grive.canat Tocate & speciTic area o track on the disk.
The SpeCieied sk o aiskeree cannot be sccersed

oan The SFive Lot Fing e sector reqsesies.
The princer 15 out of puper
The Systen camnat wrvek o the speciried device.
The systen camnot read frae he Ipccifics device.

mar Vaeiice attacned vo the system 15 not unctiontpa.

= o access the Tile because 1T 15 being used by anocher process.
fed Camnat access the TI16 because another Brocess has Tocked & portion of the file.
oz Sketee 55 3o the grive. .

E5 2 openca Tor Sharing.

e enaer e T,

E=4 15'nax supportea.

OEBPS/OEBPS/images/16-2.png
2 126=01111110 and 62=00111110] column1:0+0=0no carry
b 01111110 column 2: 1+ 1=0carry 1

. ————— cumali-tan
00111110 column 4:1+1+1=1carry 1
_ column6: 1+1+1=1carry 1
111111 <— carry values column é:1+1+1=1carry 1

column7:1+0+1=0carry 1
column 8: 0+ 0+ 1=1no carry

10111100 <«— sum values

Answer: 10111100

OEBPS/OEBPS/images/39-2.png
-128 b4 32 16
0 0 1 1
+
1 0 1 1

OEBPS/OEBPS/images/16-1.png
00100111 column 1: 1+ 0= 1 no carry

N column2: 1+ 1=0carry 1
01001010 column3: 1+0+1=0carry 1
— column 4:0+1+1=0carry 1
111 <—— carry values column5:0+0+1=1nocarry

column 6: 1+0 = 1no carry
column7:0+1 =1 nocarry
column 8: 0+ 0 = 0 no carry

01110001 <—— sum values

Answer: 01110001

OEBPS/OEBPS/images/39-3.png

OEBPS/OEBPS/images/39-1.png
-irst convert the two numbers into binary:

Now find the two's complement of 68:

80

-80

