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We are all mathematicians


Ours is not to question why, just invert and multiply.





North American readers may be familiar with the mantra ‘Ours is not to question why, just invert and multiply’ for dividing one fraction by another. Even if you have not met it before, for many people it encapsulates the point at which they gave up on mathematics. Not only does life seem too short to memorize something you will probably never need to do, but division of fractions also seems to be magic: 1/2 ÷ 1/3 becomes 1/2 × 3/1 or 1½. What is going on here? How can dividing 1/2 of anything by 1/3 result in 1½ – an answer that looks larger than the amount you started with? If that were possible, then we could all be as rich as Midas: get half an ounce of gold, divide it by one-third and you’ll have one and a half ounces of gold; keep going and soon there would be enough gold to retire on. (There is a sensible interpretation of this division, which I look at later.) No wonder mathematics can seem so mysterious.


There is so much more to mathematics than unquestioning acceptance of pre-formed facts and procedures. In this book I explore what it means both to think with mathematics and to think about mathematics. In doing so I am not trying to set out a ‘mathematics primer’– there is not the space here for that and there are plenty of those on the market (see 100 Ideas). What I hope to do is lift the veil from the face of mathematics and reveal something of her beauty. I argue that mathematics is really based in common sense and that, far from being an esoteric subject accessible only to a chosen few, mathematics is better thought of as, in Cuoco, Goldenberg and Mark’s term, a set of ‘habits of mind’, habits that, with a little help and a bit of perseverance, more people can develop and so come to appreciate what drives mathematicians. And perhaps find some enjoyment in the subject.


[image: image] Is mathematics inaccessible?


Mathematics often gets a bad press. Describing someone as ‘calculating’ or ‘rational’ is hardly flattering and mathematicians in movies or novels are often portrayed as social misfits who rarely get the guy or girl (more often the latter, as mathematics is presented as a predominantly male interest). No wonder common refrains such as ‘Oh I don’t care for mathematics’ or ‘I was never any good at it’ are often said with a wistful sense of pride.


Yet professional mathematicians talk differently. They describe looking for elegant solutions to problems, of pleasure in playing around with mathematical ideas and of creating with mathematics. As the Russian mathematician Sofia Kovalevskaya said, ‘It is impossible to be a mathematician without being a poet in soul.’


So why is there such a gap between the popular and professional views of mathematics? Part of the problem lies in how mathematics is often taught in schools. Mathematics is served up there as a series of decontextualized, abstract ideas, wrested from the human struggles and interactions that gave birth to those ideas. School mathematics wrests mathematics from its humanity.


I work a lot with teachers, mainly primary (elementary), many of whom are not particularly fond of mathematics and as such are typical of many people. Sometimes their dislike – fear even – of mathematics is a result of bad experiences at school, but I believe that many people never ‘get inside’ the mathematical mindset. A group of teachers I once worked with had come a long way on a journey of demystifying and one day I handed out scientific calculators. A teacher called me over, curious as to why her cheap supermarket calculator had a button for 1/x but this was missing from the more expensive models. Pointing out that the x−1 button was the equivalent button on the other models, I took the opportunity to talk about why mathematicians define x−1 as equal to 1/x (more on this later). As I completed my explanation the teachers were muttering so I asked if there was something they had not followed. ‘No’, one replied, ‘we follow the logic of the argument, but we were just saying, “Why would anyone want to do that?”’


That sums up the mystique of mathematics. While we might not all aspire to being poets or painters, we would not question what drives some people to create poems or paintings; we have a sense, without necessarily being part of the group of artists ourselves, that artists are interested in challenging taken-for-granted perceptions and in finding new ways of seeing the world. Mathematicians are no different. The problem is that school mathematics rarely addresses the creative aspects of mathematics. School mathematics focuses on techniques, skills and procedures. Mathematicians focus on form, structure and relations. School mathematics values having a good memory. Mathematicians develop habits of mind like sniffing out patterns, looking for generalities, pushing back boundaries. These are not arcane processes or nerdy habits; they are simply an extension of our natural curiosity. Young children are often fascinated by numbers and will, without prompting, see patterns in the system and make sensible generalizations. A friend’s five-year-old daughter, for example, was delighted that she had learned to count to 99, and having got a sense of the pattern, continued it in her own way; 97, 98, 99, tenty, tenty-one, tenty-two. That’s a mathematical habit of mind at work – if you have a system, why stop at 99, why not carry on? The reasoning processes at play for the mathematician are no different from those demonstrated by the five-year-old; it is just that the mathematician has more things in their mathematics kitbag to play with.
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An argument running through this book is that mathematics is an extension of common sense, in the literal meaning of the senses that are common to human kind. The writers Lakoff and Núñez provide a persuasive argument against what they call the myth of mathematics – that mathematics is ‘out there’ in the structure of the world and that mathematicians have been privy to discovering eternal truths. They argue instead that mathematics is an extension of our bodily experiences, our ‘common sense’ of how we move in the world, how we position ourselves in the world and our experiences of acting on objects in the world. For example, the idea of placing numbers along a line often recurs in mathematics and, Lakoff and Núñez argue, this is grounded in our everyday experiences of moving along paths and the sense of order arising from places that we visit along the way.


While some hold tightly to the position that mathematics exists independently of our knowledge, the attraction of these embodied views of the discipline is that they suggest that mathematics can be more accessible to more people, that if we trace mathematical understandings back to these everyday experiences, the structure and patterning of mathematics could be more widely appreciated.


[image: image] Mathematics is hard-wired


The evidence that we have a sense of number ‘hard-wired’ into us also suggests that we are more predisposed to being mathematicians than we might think. Infants as young as six months show signs of surprise (measured by tracking eye movement) when a situation is set up where, for instance, two oranges are hidden, one is removed and yet subsequently two oranges are revealed. Yet they show no signs of surprise when two oranges turn into two rubber ducks, suggesting that it is the incorrectness of quantity that grabs their attention.


Even animals have been demonstrated to be able to track changes in small quantities. Birds, for example, have been demonstrated to show signs of awareness when the number of eggs in a nest changes. Sadly, none have lived up to the expectations set by the calculating horse – a famous Parisian music-hall act at the turn of the 20th century that could ‘paw out’ the answers to calculations put up on a chalkboard by audience members. Eventually scientists found that the horse’s trainer was using his breath to subtly signal to the horse when to stop moving. The irony is that the trainer wasn’t aware he was doing this and thought his horse had real arithmetical powers.
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A major debate in the philosophy of mathematics is whether or not the discipline is discovered or invented. The argument for it having an independent existence usually rests on the number of achievements that mathematics has enabled humankind to accomplish, but that’s a bit like claiming that a cake made using a food processor provides evidence that the food processor must have pre-existed its invention. The fact that models of the world that mathematicians create have good predictive power of how the world behaves is not a sufficient argument to convince some that mathematics must already exist out there in the world, independent of human activity and thought.


It is a debate that I doubt will ever be fully resolved, partly because I agree with philosophers taking the position that all knowledge has to be a product of human consciousness. We can never know what exists independently of the bodily means through which we come to know. This is not solipsistic; I am not suggesting that all knowledge is simply ‘made up’. Rather, the argument is that mathematics may well exist independently of human minds, but we can never know. There is also a pragmatic reason for siding with the argument that mathematics is a human creation – it should then be more accessible to the members of the species that invented it.


My hope is that this book, through looking at some of the processes that mathematicians engage in and some of the ideas and problems that matter to mathematicians, will enable the reader, if not to fall in love with mathematics, then at least to come to understand its nature a little better, and perhaps care a little more for it.
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Counting


God created the integers, the rest is the work of man.


Kronecker





[image: image] The natural numbers


The history of the integers − the positive and negative whole numbers together with zero – reveals that it took mathematicians a long time to accept the ideas of zero and negative quantities, raising doubts that Kronecker was correct. It does seem reasonable, however, to assume that the mathematics of counting – one, two, three … – does have its origins in the physical world.


The evidence for our earliest number words suggests that they were used as adjectives, describing properties of collections of things – two eyes, two legs, two lions. Or, again adjectively, number words placed persons or objects in order – the first person of the tribe, the second-born child, the third antelope caught. At some point, lost in time, numbers ceased to be adjectives and became treated as objects in their own right, objects in the sense of things that, while not having a concrete existence, could be thought about, much as we can think about unicorns without them existing.


The numbers that we first meet are the familiar whole numbers – 1, 2, 3 … – so commonplace that they seem natural, which is what mathematicians called them. Our early experiences of the natural numbers resonate with that history of numbers as adjectives. Counting stairs as you climb them involves the ordinal use of the sequence of natural numbers. Counting that you have three teddies is the cardinal aspect.


Adults have no difficulty in coordinating and switching between the ordinal and the cardinal, but it takes years for a young child to become aware that having labelled each biscuit on a plate as one, two, three, four, five (essentially, ordering the biscuits to distinguish the counted from the yet-to-be counted), that the pronouncement of ‘five’ simultaneously not only labels the last biscuit in the count with the ordinal number five, but also expresses the total cardinal number of biscuits. Such lack of awareness becomes apparent when, having counted five biscuits, you ask a three-year-old to give you four biscuits and, rather than pick up a total of four, they hand over the fourth biscuit. Although, as mentioned in Chapter 1, there is evidence that the cardinality of collections of up to three items is ‘hard-wired’ into us, it is a step up from that to understanding how to work flexibly with the system of natural numbers.


Simple counting reveals that the distinction between whether the mathematics is in the world or whether we bring mathematics to the world is blurred. From all the pebbles on the beach, separating out a collection of five means bringing the sensibility that we can take what is randomly organized in the natural world and use the mathematics of counting to bring order – counting out five is a subtle blend of interaction between what is out there in the world and human intelligence bringing order to that world.
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Mathematics begins in earnest when we start to operate on the natural numbers. Our experiences of putting two collections of objects together (e.g. taking the biscuits from two plates and putting them onto one) or removing objects from a collection (e.g. sneaking a biscuit away when no one is looking) become abstracted into addition and subtraction. Experiences such as putting three biscuits on each of four plates lays the foundation for multiplication, and sharing biscuits out equally is one of the roots of division.


Such seemingly simple arithmetic contains the seeds of much of higher mathematics. To begin to explore that, we need to look beyond the specifics of calculations like 4 + 5 or 7 × 3 and examine the underlying structures that govern the functioning of the natural numbers and operations on them.


The identity element


Many of us learn the multiplication tables, the times tables, through chanting, with memory helped through a common first line structure to each table: one times two is two, one times three is three … one times ten is ten. We hardly pause to think about this, but it is an example of an important mathematical idea, the identity element. Multiply any number by one and the number is unchanged. While one is the identity element for multiplication, there is no equivalent natural number that acts as an identity element for addition. We take it for granted that zero serves as the identity element for addition, but zero is not regarded as a ‘natural’ number. The natural numbers represent what is there in the world, while zero marks an absence. Does zero count (pun intended)? As we see below, the behaviour of zero makes it questionable whether it should be treated as a number at all.


	Why ‘identity element’ and not ‘identity number’?




Identity element expresses an idea, rather than a specific number. The idea that there is a member of a set that, when combined in some way with another member of that set, leaves everything unchanged enables mathematicians to make connections across seeming disparate realms of inquiry. For example, as I explore in Chapter 7, an equilateral triangle rotated clockwise through 120 degrees or 240 degrees looks exactly the same as it did before the rotation (assuming it is plain and unmarked). A rotation of 360 degrees has the effect of bringing the triangle back to its original orientation – this rotation acts as an identity element.
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Place value


Prior to the introduction of the decimal place value system – recording all numbers with only nine digits plus zero – arithmeticians carrying out calculations involving the natural numbers had no need for zero. The Romans, for example, would have written the number 205 as CCV (the Babylonian, Sumerian and other early mathematicians had different symbols, but their systems were similar to the Roman system of having to introduce new symbols as numbers got larger). In calculating, Roman arithmeticians would not – could not – have found the answer by manipulating symbols: CCV + MCLIX cannot be answered by lining up the letters in columns. Instead, numbers were represented on a counting board, an abacus – a clay tablet with grooves in it. Small clay pellets were placed in the grooves and calculations were carried out by combining and exchanging the pellets.


In this system, 205 recorded as either CCV or CC V is unambiguous. Replacing Roman symbols with the Arabic numerals, does 25 mean the same as 2 5? Is the gap between the 2 and the 5 significant, there because the 2 is representing two beads in the hundreds column of the counting board, or is it the result of sloppy scribing? Zero steps in to ‘hold the place’ so that 25 is clearly different from 205. Zero does something, rather than represents something, as the other two digits do.
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