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Dedication


This is harder than I expected. Let’s see. . .


Let J ≡ “always being himself.”


Let W ≡ “the same reason.”


Let R ≡ “all the help. Hopefully that will make sense eventually.”


Okay. . .


[image: ][image: ](To E. T. Jaynes, for J)


[image: ][image: ](To David Foster Wallace, for W)


(1 − α)(To Reader, for R)


where α ∈ [0, 1] is determined by the final dedicatee.11




I promise the book isn’t this confusing.





. . . (
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  1.  I promise the book isn’t this confusing.












Preface


            Good fiction’s job [is] to comfort the disturbed and disturb the comfortable.


            —David Foster Wallace, interview with Larry McCaffery


            Fiction and nonfiction are not so easily divided.


            —Yann Martel, Beatrice and Virgil


Burn Math Class


Okay, don’t really burn math class. Or anything. Arson is mean, and extremely illegal. I. . . No, nevermind. I don’t want to start the book like that.


(Author thinks for a moment.)


Alright, I think I’ve got it. Sorry about that.


(Ahem.)


We should all be very angry. Something beautiful has been stolen from us, but we’ve never felt its absence because the theft happened long before we were born. Imagine that by some massive historical accident, we had all been convinced that music was a dull, tedious, rigid enterprise to be avoided except when absolutely necessary. Suppose that we had all attended music classes for more than a decade during our youth, and that through some feat of brilliant sadism among the instructors, we all left these classes with a firm belief that music is at most a means to an end. We might agree that everyone should have a basic level of familiarity with the subject, but only for reasons of practicality: you need music because it might — rarely — help you with other things. But the consensus view would hold that music more closely resembles plumbing than an art form.


The world would still be full of artists, of course. Just as it’s full of them now. By artists, I don’t necessarily mean art-school students, or professional artists, or the guy who wrote some stuff on a toilet and put it in a museum. I mean the people who pull things into existence out of nothingness; who refuse not to be themselves; who have their own way of fracturing reality that’s so authentic you can feel it in your nerve endings; who enter the world on fire and too often die young. “Music is not for them,” we’d agree. “Music is for the accountants among us, and it’s best if we leave it to them.” As farfetched as such a situation might seem, this is exactly what has happened to mathematics. Mathematics has been stolen from us, and it is time we take it back.


With this book, I am advocating a process of conceptual arson. The state of mathematics education all over the world has degenerated to a point where it no longer makes sense to do anything but burn it all down and start over. We begin by doing just that. In this book, mathematics is not approached as a preexisting subject that was created without you and must now be explained to you. Beginning on the first page, mathematics does not exist. We invent the subject for ourselves, from the ground up, free from the historical baggage of arcane notation and pretentious terminology that haunts every mathematics textbook. The orthodox terminology is mentioned throughout, and used when it makes sense to do so, but the mathematical universe we create is entirely our own, and existing conventions are not allowed in unless we explicitly choose to invite them.


The result is an approach that requires zero memorization, encourages experimentation and failure, never asks the reader to accept anything we have not created ourselves, avoids fancy names that hide the simplicity of the ideas, and presents mathematics like the adventure it is, in a conversational form that could easily be read as if it were a novel. While the primary goal of our journey is hedonism rather than practicality, we are lucky to find no conflict between the two. You will actually learn the subject — a lot of it — and learn it well.


When one attempts to construct a narrative through mathematics that does not ask the reader to accept facts established elsewhere, it is impossible not to notice what I think is the fundamental tragedy of existing mathematical pedagogy — a tragedy that is never mentioned, even in the harshest criticisms of orthodox educational practice:


We have been teaching the subject backwards.


Let me explain what I mean with a story. I got a C in basic algebra. All I learned was to hate the word “polynomial.” I got a C in trigonometry. All I learned was to hate the words “sine,” “cosine,” and “hypotenuse.” Mathematics had never been anything but memorization, boredom, and arbitrary authority — these are a few of my least favorite things. By my senior year of high school, I had completed all of the required mathematics courses, and I can’t describe how happy I was that I could now die without ever setting foot in a mathematics classroom again. Free at last.


One night during my senior year, I was hanging around in a bookstore, as I often did, and I saw a book on calculus. I had always heard that calculus was pretty difficult, but I had never taken a course in it, and I would never have to. . . a relaxing thought. This lack of any obligation to learn the subject somehow made the book seem more appealing, so I thought I would flip through it for a few seconds. I expected to see some scary symbols, think “Yep, that sure looks difficult,” and then put the book down and be done with it forever. But when I opened the book, it wasn’t just the usual garbage. In completely honest and unpretentious language, the author was saying something like this: Straight things are easier to deal with than curvy things, but if you zoom in far enough, then each tiny piece of a curvy thing almost looks like a straight thing. So whenever you have a curvy problem, just imagine zooming in until things look straight, solve the problem down there at the microscopic level where it’s easy, and then zoom out. You’ve solved the problem. You’re done.


Anyone can understand this idea, and it has nothing to do with mathematics. If you’ve got a hard problem, then break it up into a bunch of easy problems, solve those, and put them back together. The idea had a feel of elegance and necessity that I had never experienced in a math class. I flipped through the book some more, and when I saw that it had a section where the author complained about the way mathematics is usually taught, I knew this guy was my kind of person.


So I bought the book, and I started reading it whenever I didn’t have anything else to do. I liked the way the author wrote. It gave me an odd sense of justification for having always disliked mathematics in school, while at the same time convincing me that I had been entirely wrong about the subject. I wasn’t planning to learn calculus, and I didn’t remember any of the prerequisites from high school, so I didn’t even know how to solve the “easy problems” down at the microscopic level. But that didn’t matter, because I was free from all the restrictions of formal education, and there was no one to punish me for doing things wrong.


Thus began my strange journey of learning calculus before I knew algebra, trigonometry, what a “logarithm” is, or any of the other stuff they say you have to learn before calculus. I bought a notebook and started playing around. Whenever I didn’t understand something, I’d draw a picture and try to convince myself that it was true. I usually didn’t succeed in doing this.


Weirdly, the calculus concepts were by far the simplest parts of the book. Much harder were the so-called “prerequisites” to calculus: the algebra, trigonometry, and other conceptual packing peanuts with which modern high school courses are filled. All the stuff about zooming in made sense to me: derivatives and integrals were not only simple computationally but easy to understand from first principles. From their pre-mathematical motivation to their definitions to the methods of computing them, there was a coherent and well-motivated narrative tying everything together. But once in a while the author would make use of things that were supposed to be more “basic” — things I couldn’t understand at all, though I vaguely remembered hearing them from some teacher in a quiet, boring classroom. I couldn’t for the life of me figure out where all those supposedly simple things came from, like the area of a circle, or the pile of unexplained “trig identities.”


Fortunately, there was no one to force me to memorize any of it, so I kept learning the calculus bits without learning the algebra and trigonometry bits. I’d be reading something about calculus in the book, understanding it just fine, and then get lost because I didn’t remember how to add fractions. Occasionally, in cases like this, staring at the confusing step for a while was enough to eventually realize, “Oh, they’re just multiplying by 1 twice. It’s like they’re lying to make the problem easier, and then correcting for the lie so that they don’t get the wrong answer. Interesting . . .” Other things weren’t so easy to figure out by staring at them, and they continued to stump me. Logarithms, sine and cosine, the “quadratic formula,” and “completing the square” were not part of my vocabulary, and the terms themselves felt like a hangover from all the negative experiences I’d had with the subject in school.


After learning a bit more calculus, I still didn’t understand the “prerequisites,” but I started noticing some interesting things. I noticed that the derivative of a sphere’s volume was its surface area, and the derivative of a circle’s area was the distance around it. I still had no idea where the area and volume formulas themselves came from, but this weird “zooming in” operation suggested that they were all related somehow. This was my first exposure to a strange fact about mathematics: we may be completely defeated by two different questions, unable to make progress on either in isolation, and yet nevertheless manage to demonstrate with certainty that they have the same answer, all while remaining completely ignorant of what that answer is. This fact, which appears at first to be some sort of black magic, turns out to be a fundamentally important feature of abstract mathematics at all levels. This was clearly not the dull, authoritarian field I had been exposed to in school.


When it came time to start my first year of college, I did the unthinkable: I decided to take a calculus class. Having always hated mathematics with every fiber of my being, because of a freak accident in a bookstore I found myself taking calculus 1 for fun. Then calculus 2. Then my calculus 2 professor suggested that I take a graduate-level math course during my second year. I reminded him that I didn’t know anything and that he was insane. I took it anyway, and got the highest grade. By my senior year of college the department gave me one of those plaque thingies that said something like “Congrats on being the best math major we have.” I want to stress that I have absolutely no innate mathematical talent whatsoever, and nothing in my thirteen years of pre-university mathematics education suggested I’d find any enjoyment in the subject either. In any education system where the above series of events is possible, something has gone horribly wrong.


In the end, the Mathematics Department, my sworn nemesis in high school, ended up being the department where I felt most at home.11 After college I went on to enter a Ph.D. program in mathematical physics at the University of Alberta. In the summer after my first year, following a lifelong pattern of doing everything except what I’m supposed to be doing, I became obsessed with psychology and neuroscience. I eventually applied to some Ph.D. programs in the field, somehow got accepted, left my mathematical physics program with a master’s degree, and I’m now living in Santa Barbara, California, studying the brain and behavior using mathematics. During my first year of graduate school in the Department of Psychological and Brain Sciences, I met tons of extremely smart students who had the same unjustified fear of mathematics that I always had in high school. Every time I see the flash of fear in someone’s eyes when advanced mathematics is mentioned, I want to tell them that their entire experience of the subject is a lie. The perceived difficulty of mathematics is entirely the fault of how we teach it, and I hold myself to that standard as well. If there is anything in this book that you’ve repeatedly attempted to understand, but failed to do so, that is my fault, not yours. The underlying ideas are extremely simple. All of them. I promise.




I was lucky to have amazing mathematics teachers in college, and I should mention (R/y+V)icky Klima, Eric Marland, and Jeff Hirst. I had many other wonderful teachers, but these four deserve special mention for being unbelievably helpful, and always putting up with me storming into their offices with bizarre questions unrelated to any course.





Throughout my first year in Santa Barbara, I couldn’t help but think that research in every area of science could be accelerated significantly if only everyone in the various fields of science knew more mathematics. By “knew more mathematics,” I don’t mean “had more mathematical facts in their heads.” I mean “had been explicitly trained in abstract reasoning.” What’s worse, I’m fairly certain that nine out of ten people have more “innate skill” at mathematics than I do (whatever that means). The only reason I happen to know more of it than my fellow graduate students is because of a random accident in a bookstore that led me toward a subject I never thought I’d love.


It’s summer now, and I’m writing this book for everyone who ever hated mathematics. Not only for the young and disenchanted, but also for the many scientists who secretly regard mathematics as a distasteful but necessary professional requirement, and have dutifully endured it but have never felt the fire, the anarchy, and the hedonistic pleasure of the subject. Unless I have failed miserably, we’ll have a lot of fun along the way.22 However, I should stress that this is not another one of those tired attempts to “make math fun,” which usually translates to spreading a thin layer of silly faces and bad puns on top of the same old approach. While for some this might be a minor improvement over the standard textbooks, such books never present the subject in the way I always wished it would be presented: clearly pointing out everything that is arbitrary, everything that only looks the way it looks because someone is trying to sound fancy (consciously or not), separating historical accidents from timeless processes of reasoning, acknowledging the well-justified contempt that most students in most math classes feel most of the time by poking fun at the way that the subject is typically taught, and most importantly: backwards.




The above sentence was (of course) written by the author of this book, a heavily biased source whose opinions of his own work should not be trusted. However, the same principle applies to that last sentence as well, suggesting that the aforementioned distrust should itself be distrusted. We appear to have reached an impasse. Think what you will.





The subject as it is usually presented in modern educational institutions is something that no creative, independent thinker should be able to stand, and books that try to remedy this fundamental flaw with chapter titles like “Funky Functions and Their Groovy Graphs” are missing a large part of why so many students find the subject so alienating.33 But mathematics itself, when stripped of everything unnecessary, everything pretentious, and presented in as honest and human a manner as possible, is clearly one of the most beautiful things our species has discovered. It is a scientific art form that doesn’t need to justify itself by being “useful,” though learning it is one of the most useful things you can do.




To be fair, this is a chapter title from a very well-written book. Mark Ryan, I’d love to meet you in person someday. You’re an incredible teacher.





At each point of our journey, I will focus on the ideas that I consider to be of largest conceptual importance, whether or not they’re typically presented together. Although we’ll start at an extremely basic level, we’ll eventually start learning some things that aren’t usually taught until the latter years of a four-year degree in mathematics. If there has ever been a book that goes from addition and multiplication to calculus in infinite-dimensional spaces, I’ve never found it. If you continue reading, I hope to show that this approach is not nearly as delusional as it seems.


I try at every stage to run the ideas through a conceptual centrifuge before I present them. What is presented in courses on any subject is usually a cloudy, confusing mixture of the essential with the historically contingent, a mixture that hides the simplicity of the underlying ideas from even the most attentive students. I’ve always wished that academics would spend much more time attempting to separate this mixture into its component parts before writing their books or giving their lectures. I’ve attempted to do this throughout the book, but for an example of what I mean, see the first few pages of Chapter 4, “On Circles and Giving Up.” Also notice that circles first enter the story long after we’ve invented calculus. And they should; they’re extremely confusing before then.


Here’s an example of how we do things differently. One of the few things I remember hearing about in high school mathematics was the “Pythagorean theorem,” but I didn’t know why it was true, I didn’t know why we should care, and I didn’t like the unnecessarily fancy name. We’ll avoid all three of these problems like this: I’ll use the term “shortcut distance” instead of “hypotenuse,” I’ll think of a more descriptive name than “Pythagorean theorem,” I’ll offer the simplest explanation of why it’s true that I’m aware of (it takes about thirty seconds to explain), and once we’ve invented it for ourselves, I’ll show you a simple derivation of the fact that time slows down when you move.44 This fact comes from Einstein’s theory of special relativity, but the explanation uses no mathematical ideas more complicated than the “Pythagorean theorem,” so at that point you’ll be able to completely understand the argument. The conclusion will still seem surprising, though. It seems surprising to anyone with a human mind, no matter how long you’ve known it! Given the fact that this argument is perfectly comprehensible once we’ve invented the formula for shortcut distances (formerly known as the Pythagorean theorem), it’s a tragedy that this short argument isn’t a mandatory part of every high school geometry class. They should ring a bell, throw confetti, and start explaining it to you five seconds after they teach you the Pythagorean theorem. But they don’t. We will.55




To be a bit more precise, whenever two objects are moving in different directions or at different speeds, their “clocks” start moving at different rates. But it’s not just a fact about clocks. It’s a physical property of time itself. The universe is crazy. More on that later!







You’ll have to provide the bell and confetti. Not that I’m unwilling to provide them, but I’m probably not where you are at the moment.





Burn Math Class breaks a lot of conventions and a lot of rules, probably too many for its own good. No method of learning works for everyone, and I certainly don’t claim that this book is a universal cure for the ailments of mathematics education, nor do I claim that it is guaranteed to be suited to everyone’s learning style. If this book’s approach doesn’t work for you, please stop reading it and find one that does. Your time is valuable, and you shouldn’t waste it trying to trudge through a book that isn’t to your taste. This book was written as a labor of love, entirely for fun, not as part of a job. Ideally, it should be read for the same reasons.


Whether or not this experiment contributes anything of lasting value, radical changes simply are needed in education. As it stands, our educational institutions at all levels — from grade school to grad school to the style requirements of academic journals — appear to have been optimally designed to induce a kind of reverse Stockholm syndrome, causing us to revile subjects we might have otherwise loved. Students are graduating from these institutions deeply bored by the most phenomenally mind-blowing things our species has discovered. If they think mathematics, physics, evolutionary biology, molecular biology, neuroscience, computer science, psychology, economics, and other such fields of inquiry are dull and uninteresting, it isn’t their fault. It’s the fault of an education system that is brilliantly engineered to punish creativity; a system in which they are taught the spellings of words, but not how to think without deceiving themselves, as we all inevitably do; a system in which the laws of nature and arbitrary fiats like the prohibition of prepositions at the end of sentences are presented on equal footing, as if they were both equally valid descriptions of The Way Things Are; a system in which they are legally obligated to spend the majority of their young lives. For them, and for any of you who have ever had a similar experience, this book is my note of apology.




[image: ]


  1.  I was lucky to have amazing mathematics teachers in college, and I should mention (R/y+V)icky Klima, Eric Marland, and Jeff Hirst. I had many other wonderful teachers, but these four deserve special mention for being unbelievably helpful, and always putting up with me storming into their offices with bizarre questions unrelated to any course.


  2.  The above sentence was (of course) written by the author of this book, a heavily biased source whose opinions of his own work should not be trusted. However, the same principle applies to that last sentence as well, suggesting that the aforementioned distrust should itself be distrusted. We appear to have reached an impasse. Think what you will.


  3.  To be fair, this is a chapter title from a very well-written book. Mark Ryan, I’d love to meet you in person someday. You’re an incredible teacher.


  4.  To be a bit more precise, whenever two objects are moving in different directions or at different speeds, their “clocks” start moving at different rates. But it’s not just a fact about clocks. It’s a physical property of time itself. The universe is crazy. More on that later!


  5.  You’ll have to provide the bell and confetti. Not that I’m unwilling to provide them, but I’m probably not where you are at the moment.












Prefacer


            Pre·fac·er [pruh-fes-er] (noun)


            A preface for professors. Or for professional mathematicians, or students with enough mathematical background to understand the rambling in this section, or curious students with no mathematical background, or high school teachers, or anyone who finds themselves thinking about mathematics often. . . or not.


This is not your standard “introductory” mathematics text. It is simultaneously more introductory and more advanced than most individual books you are likely to encounter, and as such, it is something of an experiment.


What Kind of Experiment?


This book will be extremely easy to misunderstand if one comes to it expecting a mathematics textbook, although it shares many features in common with mathematics textbooks, and could indeed be used as one. To understand the goal and structure of this book, I must first coin a term that our lexicon is presently lacking: pre-mathematics. By “pre-mathematics” I do not mean those tiresome non-subjects such as “pre-algebra” and “pre-calculus” that we inflict on unsuspecting students. Rather, I will use the term to refer to the entire set of ideas, confusions, questions, and motivations that occupy the minds of the inventors of mathematical concepts, and which drive them to define and examine one species of mathematical object rather than another.


For instance, the definition of the derivative and the various theorems that follow from it are part of mathematics proper, and they can be found in any mathematics textbook that covers calculus. The reasons why the concept is defined the way it is, rather than any of the infinitely many other ways it could have been defined, as well as the processes of reasoning that would lead one to choose the standard definition over all other candidate definitions (in the absence of a preexisting mathematics textbook), are much less frequently given sufficient attention. It is this set of possibilities and processes of reasoning to which the term pre-mathematics refers. Pre-mathematics includes not only all of the possible alternative definitions of mathematical concepts that would lead to essentially identical formal theories, but also — perhaps more importantly — all of the blind alleys down which one would be led in attempting to invent the standard mathematical definitions and theorems from scratch. It is the conceptual heavy lifting that must be done to pull a mathematical concept into existence out of nothingness. Mathematics is the sausage; pre-mathematics is how the sausage is made.


That is the main topic of the book: the rarely discussed process of moving from the vague and qualitative to the precise and quantitative, or equivalently, how to invent mathematics for yourself. By “invent,” I mean not only the creation of new mathematical concepts, but also the more relevant process of learning how to reinvent bits of mathematics that were originally invented by someone else, in order to gain a deeper and more visceral understanding of those concepts than could be gained simply by reading a standard textbook. This is a process that we virtually never teach explicitly, yet one would be hard pressed to think of a more valuable skill that one could learn from any mathematics course. Learning how to (re)invent mathematics for yourself is of critical and fundamental importance in both the pure and applied domains. It includes pure questions like “How did mathematicians figure out how to define curvature in a way that lets them talk about it in seventeen dimensions, where we can’t picture anything?” and applied questions like “Given what I know, how should I build a model of the phenomenon I’m studying?” Such questions are often addressed in textbooks, briefly, as an afterthought, but it is dramatically less common to place these questions in the spotlight, on equal if not higher footing than the theorems and results themselves.


An honest description of the informal, messy creation process is the missing piece of the puzzle in our exposition of mathematics at all levels, from elementary school to the postdoctoral level, and its absence is one of the primary reasons that our subject so often bores even the most attentive students. The elegance and beauty of our subject cannot be fully appreciated without a visceral understanding of the pre-formal conceptual dance by which mathematical concepts are created. This process is not nearly as difficult to explain as it may seem, but doing so requires a radical shift in the way we teach our subject. It requires that we include in our textbooks and lectures at least some of the false starts, mistakes, and dead ends that a normal human mind would first need to experience before arriving at the modern definitions. It requires that we write our textbooks as narratives in which the characters often get stuck and don’t know what to do next. This book is a quirky, flawed, deeply personal attempt to outline what I believe are some of the core concepts and explanatory strategies of pre-mathematics: strategies that professional mathematicians use every day but rarely discuss openly in their textbooks and courses.


This highlights an important point. While a proper emphasis on pre-mathematics requires a radical change in how we teach mathematics, it does not require a change in how professional mathematicians think about mathematics. Pre-mathematics is their bread and butter. It is the language in which they think, since they are by definition the ones who create — or if you prefer, discover — the subject. In that respect, the content of this book is not novel. It is only novel insofar as it places under the spotlight all the content that is usually hidden behind the wall of formal proofs and pre-polished derivations (in the “unfriendly” textbooks) or behind cartoons and largely unexplained statements of fact (in the “friendly” ones). But at no point along the continuum between the friendly introductory books on the one hand and the awe-inspiring Grothendieck-style monographs on the other do we accurately represent the creation process in a pedagogically useful way.


It is impossible for any book to explore all of the pre-mathematics of a given concept before proceeding to its mathematics, and I do not attempt this impossible task. Rather, I attempt to construct a pre-mathematical narrative that leads from one concept to another, starting from addition and multiplication, proceeding immediately on to single-variable calculus, then backward through the (more advanced!) topics that we commonly think of as its prerequisites, and finally on to calculus in spaces of finitely many or infinitely many dimensions. A large amount of mathematics is found in this narrative, which is why it would not be a mistake to use this book as a mathematics textbook. However, once the pre-mathematics of any given concept has been developed at length, the mathematics itself often turns out to be startlingly straightforward, so we prefer to focus primarily on the former. That is not to say that the book contains an exhaustive and complete discussion of each of the topics it covers. Far from it! Rather, it is my estimate of everything that is missing, in terms of information, motivation, and where we should really begin teaching the subject. The book is a dirty proof of concept, not a polished diamond. I hope that it will start a conversation, but it is by no means the final word on any topic.


Further, it is important to be clear about what I am not criticizing. The problem of pedagogical foundations is fundamentally different from the problem of logical foundations, though they are implicitly conflated in most textbooks. I do not intend to criticize the logical starting point of the field, by which I mean choosing our logic to be first-order predicate calculus and our theory to be ZFC, NBG, or your favorite axiomatization of set theory.11 What I want to criticize is the pedagogical starting point of the field, which is all that the vast majority of members of our society ever come into contact with.




Though for a brilliant critique of the standard set-theoretic approach to logical foundations, see Robert Goldblatt’s spectacular book Topoi: The Categorial Analysis of Logic.





Why Has Pre-mathematics Been Neglected?


Given the ubiquity of pre-mathematical reasoning inside the minds of professional mathematicians, it is worth asking why it so rarely appears in textbooks and journal articles. There are surely multiple reasons, but I believe that the primary culprit is professionalism. Though pre-mathematics is fundamentally important to understanding our field, it is structurally banned from any discussion that demands professionalism, including (but by no means limited to) all mathematical work in academic journals. Why? Because precise pre-mathematics is not formal. It is (by definition) the set of hunches, guesses, and intuitions that lead to the development of a formal mathematical theory in the first place, and the only precise, honest way to explain imprecise thought processes is with informal arguments expressed in informal language: language that accurately conveys to the reader that we are not 100% sure our intuitions are on the right track, and that we are always (to some extent) exploring in the dark. Such informal language is not simply dumbing things down. It is a precise manner of describing the chains of reasoning by which new mathematical concepts are created. And without a firm understanding of how mathematics is created, one’s understanding of the subject will be crippled in comparison to what it could have been otherwise.


To be clear, this is also not a criticism of formal expositions of mathematics or of the concept of the formal proof. But formal proofs do not spring into existence fully formed, nor (more importantly) do the formal definitions of the mathematical concepts on which they are based. An overly formal description of informal thought processes misleads the reader by providing evidence of nonexistent principles, and in doing so tricks the reader into believing that their failure to realize how A follows from B must be a deficit in their own knowledge, when in fact it is often a lack of perfect precision in the underlying pre-mathematical reasoning itself. Full disclosure requires that we offer informal descriptions of that which is informal. Professionalism has its place, but fundamentally its function is to censor honesty, and it has redacted pre-mathematics almost entirely out of existence.


What I Wanted the Book to Be, from the Start


This book grew out of an attempt to explain a subset of the universe of mathematics in as honest and unpretentious a way as possible, making sure at each stage to give away the secrets of our trade. At every step I attempt to separate necessary deductions from historically contingent conventions; I emphasize that the often intimidating words “equation” and “formula” are just code for “sentence”; I try to make it clear that all of the symbols in mathematics are just abbreviations for things that we could be saying verbally; I try to engage the reader in the process of inventing good abbreviations; I always attempt to make clear the distinction between what other textbooks actually do and how they could have done it; I attempt to present each derivation not in the standard post hoc, cleaned up form that reflects nothing about the thought process that led to it, but in a way that makes clear at least some of the blind alleys that most of us would be tempted to wander down before finally arriving at the answer; I try to explain everything as deeply as I can without sacrificing the coherence of the narrative; and I vowed that I would burn the book before I ever allowed myself to say “memorize this,” even once. There are many things I wish I had done differently, but at very least, the book is full of all the things mentioned above.


I also try to explain the strange dance our field does on the border between structured necessity and unrestrained anarchy. This is something that we virtually never explain to students, so I emphasize it whenever possible. Here’s what I mean. On the one hand, there’s the anarchy. We are free to use whatever axioms we please, even an inconsistent set. Defining and playing with an inconsistent formal system is not illegal, it’s boring. For instance, “dividing by zero” is not illegal, and every mathematics professor knows that. We are perfectly free to define a symbol [image: ][image: ] by the property [image: ][image: ] for all a, and many analysis books do just that, in a section on what is usually called “the extended real number system.”22 But if you insist on defining the above symbol, then the algebraic structure you’re examining cannot be a field. You want to insist on saying it’s still a field? That’s perfectly fine, but then you can only be talking about a “field with one element.” You want to insist that there’s still more than one element, or that fields, by your definition, have at least two elements? That’s fine too, but then you’re working in an inconsistent formal system. You want to do that? Fine. But now any sentence is provable, so there’s not much to do.




Though they usually write ∞ instead of [image: ][image: ] for obvious reasons. I’m using [image: ][image: ] to remind us that the following argument is not a problem with “infinity,” it’s a problem with the boredom that starts to corrupt our mathematical universe when we assume that the additive identity has a multiplicative inverse.





It is important to emphasize that even when we hit rock bottom like this, we still have not done anything illegal. Rather, we’ve made the discussion boring. Every mathematician knows that, at least in the choice of what to study, there are no laws in mathematics. There are only more or less elegant and interesting mathematical structures. Who gets to decide what counts as elegant and interesting? Us. QED.


On the other hand, there’s the structured part of mathematics. Once we finish with the “anything goes” stage in which we say exactly what our assumptions are and what we’re talking about, then we find that we have conjured up a world of truth that is independent of us, about which we may know very little, and which it is our job to explore.


Needless to say, when we fail to inform students of this most fundamental point about anarchy and structure, we completely mislead them about the nature of mathematics. For whatever reason, we almost never tell them about this odd interplay between anarchic creation and structured deduction. I’m convinced that this is one of the things that make so many students feel as if mathematics is a kind of totalitarian wasteland full of undefined laws that no one tells you about, and in which you always have to be afraid of accidentally doing something wrong. That’s certainly how I always felt in high school, before the story I told in the first preface. This is one of the things I try to remedy in this book.


The Book Decides It Wants to Be About Something Else, Too


As much as I wanted to explain general things like the big-picture structure of mathematics, I eventually wanted to get around to explaining the ideas that are taught in the standard textbooks, so that the book might actually be helpful to students on Earth. To do this, I needed to build a narrative that somehow had to arrive at many of the standard textbook definitions before I could explain the mathematical arguments that spring from them. However, because of the goal of the book, I promised myself that I would not introduce these definitions in the standard way, which is usually to say “such and such is defined this way,” often out of the blue, or at best with a few pages of motivation, either conceptual or historical, followed by a huge conceptual leap into the mathematical definition itself. In swearing-off this practice, I found that I had placed myself under a rather large set of constraints. The problem can be summarized as follows:


            Assume you don’t know anything about mathematics except the basics of addition and multiplication. Not necessarily the algorithms for performing them, but you know what phrases like “twice as big” mean, and you get the gist of both operations. You’re living in a world before textbooks. How could you discover even the simplest parts of mathematics? As a specific case, how would you figure out that the area of a rectangle is “length times width”?


It would be a non sequitur to answer this question by talking about how area is defined in measure theory, or by talking about axioms, or Euclid’s fifth postulate, or how the formula A = ℓw doesn’t hold in non-Euclidean geometry. It is not a question about rigor, and it is not a question about history. It is a question about creating something. The question is about how to move from a vague, qualitative, everyday concept to a precise, quantitative, mathematical one, when there’s no one around to help you or do it for you.


I was originally asked the above question by one of my closest friends, Erin Horowitz. Around the time I started writing this book, we would occasionally have many-hours-long sessions in which we would talk about mathematics. She doesn’t have a mathematical background, but she’s extremely curious, and always interested in knowing the “whys” of things. We would talk about formal languages, Taylor series, the idea of a function space, or any other crazy things we felt like talking about. One day she asked me the above question about how mathematical ideas are created. It wasn’t a hard question once it was phrased that way, using the area of a rectangle as a test case, and I basically just gave her the simplest argument I could think of, which is the argument about area that you’ll find in Chapter 1, in the section called “How to Invent a Mathematical Concept.” After I yammered for a bit, she asked why we’re never taught things like this in school. She completely understood the short argument, and so could anyone. Here’s the weird part: the argument involves solving a functional equation.


There are very few courses in mathematics departments that focus just on functional equations. I’m not certain that there should be more, but it is a rather confusing fact once one realizes it. After all, every mathematics undergraduate encounters plenty of differential equations, as they should, and they inevitably encounter integral equations as well, but the area of mathematics devoted to studying and solving general expressions involving unknown functions has been largely neglected by history. Despite the fact that it is one of the oldest topics in mathematics, we tend not to hear about it very often. In his monumental work Lectures on Functional Equations and Their Applications, J. Aczél laments that “through the years there has been no systematic presentation of this field, in spite of its age and its importance in application.”


Surprisingly, I started to discover that functional equations are enormously helpful in explaining even the simplest of mathematical concepts, as long as the ideas are presented in the right way.33 Here’s how. You don’t use the term “functional equation,” and in fact, if at all possible, don’t even use the word “function.” Most people have had bad enough experiences in math classes that it’s easy to scare them and shut off their natural creativity by using a lot of orthodox mathematical terminology. Instead, you say something like this:




Not functional equations in the full generality of Aczél’s monograph, but in a somewhat informal guise analogous to the calculus we teach before we teach analysis.





            We’ve got a vague, everyday concept that we want to make into a precise mathematical concept. There’s no wrong way to do this, because we’re the ones who get to decide how successfully we performed the translation. However, we want to cram as much of our everyday concept into our mathematical concept as we possibly can. We start by saying a few sentences about our everyday concept. Then we come up with abbreviations for those sentences.44 Then we mentally eliminate all the possibilities that don’t do everything we asked them to. We can rinse and repeat if we want to, putting more and more vague, everyday information into abbreviated form, and then mentally throwing away everything that doesn’t behave like that. Occasionally, just by writing down examples, we can slowly become convinced that the precise definition we’re looking for has to look a certain way. We may not end up with just one possibility, and even if we do, we may not know when we’ve found the only one, but that doesn’t matter. If there’s more than one candidate definition that does everything we want it to, we can just do what mathematicians do all the time without telling you, and pick the one we think is prettiest. What counts as “prettiest”? That’s up to us.




At this point they’re writing down a functional equation without knowing it.





In short, as crazy as it might sound, I believe that informal mathematical arguments involving functional equations not only provide a way to better explain where our definitions come from at all levels of mathematics, but also that such arguments offer a kind of anti-authoritarian pedagogical style that engages the reader in the process of creating mathematical concepts in a way that is unheard of in introductory courses and textbooks. Surprisingly often (though certainly not always) the rarely discussed pre-mathematical practice of passing from a vague qualitative concept to a quantitative mathematical one turns out to involve the use of functional equations. In Chapter 1, we use this idea to “invent” the concepts of area and slope, arriving at the standard definitions not by simply postulating them, but by deriving them from qualitative correspondence with our everyday concepts. This is a simple illustration of what pre-mathematical pedagogy might look like, but it is only an example, and there is certainly room for improvement. In the meat of the book, we proceed to “invent” a large amount of mathematics this way, sometimes by an informal use of functional equations, sometimes not, but always making clear what we’re trying to do and how else it could be done.


How This Might Help


To see how an emphasis on pre-mathematics differs from the standard approach, let’s look at a specific example of how current teaching practice backs itself into a corner. Consider the problem faced by a teacher or an introductory textbook in attempting to explain where the definition of slope comes from. On the one hand, you want to motivate the idea. On the other hand, you eventually want to arrive at the conventional definition, [image: ][image: ], or as they say in introductory textbooks, “rise over run.” All of differential calculus rests on this formula plus the idea of a limit, so there could hardly be a more important concept to convey to students. Teachers and introductory textbook writers face the following problem. They might be able to think of some set of postulates that would single out “rise over run” as the unique definition satisfying all the postulates, but the proof of this would surely be too complicated for an introductory class, and it would probably just confuse everyone ten times more, so they just introduce “rise over run” as the definition of slope, possibly with a bit of motivation beforehand. Given the situation, this seems like a completely reasonable thing to do.


However, I believe that in this case and others like it, we’re confusing many more students than we realize, and turning them off of mathematics. When I first heard the definition of slope in high school, it did nothing but speed the process of demotivation for me. Introducing the concept like this (i) leaves open infinitely many questions, (ii) makes any reflective student feel as if they are missing something, and (iii) implicitly suggests that it is their own fault for not understanding it. The students are indeed missing something, but it is not their fault; they are missing something because it is being deliberately hidden from them, and it is being hidden by the best intentions of their teachers. In my own experience, I felt something like “I couldn’t invent any of these definitions on my own, from first principles, so there’s something I don’t understand about all of them.” I certainly didn’t put the feeling into those words at the time. All I thought explicitly was “I don’t understand this stuff.”


Years later, when I found myself explaining mathematics to others, I would always try to make the point that we could define slope to be “3 times rise over run,” or “rise over run to the fifth power,” or even “run over rise,” and we could go on to develop calculus using any of these definitions. All of our formulas would look slightly different (or possibly very different, depending on which definition we chose), and we might have to state some familiar theorems in a slightly different or even unrecognizable form, but the essential content of the theory would be identical, however ugly and unfamiliar-looking it might prove to be. An analogous story holds for any mathematical concept. I’ve yet to explain this to anyone without being asked why this isn’t explained in courses and textbooks. I don’t know. It should be.


Burn Math Class: A Mathematical Creation Story


            What am I supposed to publish? L. J. Savage (1962) asked this question to express his bemusement at the fact that, no matter what topic he chose to discuss and no matter what style of writing he chose to adopt, he was sure to be criticized for not making a different choice. In this he was not alone. We would like to plead for a little more tolerance of our individual differences.


            —E. T. Jaynes, Probability Theory: The Logic of Science


Writing a book is an emotional experience. In the course of preparing this book for publication, I was lucky to have two wonderful editors, T. J. Kelleher and Quynh Do, who were both extremely helpful throughout. I primarily dealt with Quynh for most of the publication process. She showed unending patience in helping me improve what I can only imagine was a very difficult book to edit, and though we did not always agree, her comments made the book tremendously better than it would have been otherwise. After mentioning one’s editors, it is customary to say “any remaining flaws in the book are my own,” but the customary phrase is far too mild.


Even in its final form, the book will inevitably contain numerous instances of the following sins: typos, hyperbole, poorly worded sentences, repeating myself, contradicting myself, sounding too arrogant, sounding too insecure, saying “I’ll never do X!” and then promptly doing X, saying “I’ll never do X!” and then later doing X (but not promptly), Easter eggs no one will find or understand, unintentionally alienating or offending innocent readers, experimenting with the medium in ways that some will find distracting, too many prefaces, too many digressions, too many dialogues, too few dialogues, too much meta-commentary, the use of arcane Greek and Latin words despite having made fun of them (and the people who use them) for being more pretentious than is necessary, and at least one unforgivably large error, most likely resulting from an accidental copy/paste of a random paragraph into a completely different part of the book. . . ad infinitum.


This is my first book. It was built on a scaffolding of my flaws. Writing a book is something I never thought I would do, and I was taken completely by surprise when it started happening. I wrote this book over a four-month period in the summer of 2012, in a euphoric flurry of coffee, eyestrain, sixteen-hour days, forgetful meal-skipping, and loving every minute. Writing had never been so fun. I was 25 at the time. Since then, I feel like I’ve become a different person. Parts of the book now hurt to read. When a book is created in the manner described above, it will inevitably be shot through with certain defects that no amount of editing or polish can hide.


Most of these flaws are accidental, but others are present by design. When an error is simply a misstep, there is no harm in hiding it. When we fix a typo in sentence N, sentence N + 1 is not harmed as a result. The same principle holds for sloppy wording or unnecessary repetition, and (although many such missteps surely remain in the book) this is the type of error that one should attempt to fix.


However, in some cases, an error is not a misstep but a stairstep. It is something without which we never could have arrived where we are. Removing the Nth stair from a staircase harms the steps after it, whether that staircase is a narrative or a mathematical argument. Certain rare ideas require flaws in order to be properly conveyed. My goal is to let the reader in on the secrets of the creation process, both of mathematics and of books themselves, and the process of creation cannot be accurately represented in a spotless manner. If there is a single unifying theme that ties together all the quirks of this book, it is full disclosure. Full disclosure in the sense of complete openness and honesty, not only about the process of mathematical creation, but also about the process of writing a book, as well as the emotional experience of returning to something one has written after a long absence and realizing that some of its flaws run too deep to ever be excised. The thought of a person taking time out of their lives to read this book makes me so happy that I have no desire to hide anything from them. I want to show them everything. All of it. Inevitably, this results in a rather unusual book.


I hope to convince you in what follows that the reason why so many members of our society never come to love or understand mathematics is that we have been communicating the subject entirely wrong. That does not mean I know how to do it right! This book may turn out to be a colossal failure, but if I’m certain of anything, it is that mathematics deserves better than the methods we currently use to teach it, at every level. This book is my personal attempt to right a few of these wrongs by writing the book I always wanted to read. Ready to have some fun? Me too. Let’s begin.




[image: ]


  1.  Though for a brilliant critique of the standard set-theoretic approach to logical foundations, see Robert Goldblatt’s spectacular book Topoi: The Categorial Analysis of Logic.


  2.  Though they usually write ∞ instead of [image: ][image: ] for obvious reasons. I’m using [image: ][image: ] to remind us that the following argument is not a problem with “infinity,” it’s a problem with the boredom that starts to corrupt our mathematical universe when we assume that the additive identity has a multiplicative inverse.


  3.  Not functional equations in the full generality of Aczél’s monograph, but in a somewhat informal guise analogous to the calculus we teach before we teach analysis.


  4.  At this point they’re writing down a functional equation without knowing it.












Act I









1   Ex Nihilo


            If you want to build a ship, don’t drum up people together to collect wood and don’t assign them tasks and work, but rather teach them to long for the endless immensity of the sea.


            —Antoine de Saint-Exupéry, Citadelle


1.1   Forgetting Mathematics


1.1.1   Hello, World


Forget everything you’ve been told about math. Forget all those silly formulas you’ve ever been told to memorize. Make a little room in your head with clean white walls and no math. Without leaving that room, let’s reinvent mathematics for ourselves. Without the burden of teachers, without the burden of a classroom, without paying any attention to the thing called “mathematics” that has been handed down the generations to us, free of that ridiculous lie that the worst thing you can do is to be wrong. Only by doing this will we be able to understand anything.


I’m calling this chapter Ex Nihilo for two reasons. The first is to poke fun at the unnecessarily fancy terminology that shows up in all subjects, including math. We humans love to sound smart, and saying stuff in a different language (especially a dead language) makes it seem more important. Having said that, we can dispense with the Latin. The term Ex Nihilo means “out of nothing,” and I chose this as the name for the first chapter to emphasize that in this book, mathematics is ours. The term no longer refers to that thing you learned in school. We are pulling mathematics into existence, out of nothing.


I’ll assume that the language of addition and multiplication is familiar enough that you can speak it fluently. I don’t mean that it should be obvious how to calculate the square of 111111111 or how to find the square root of 12345678987654321 or anything crazy like that. In general, mathematicians don’t like to deal with numbers. All I mean is that I’ll assume you can convince yourself of basic things like the order of addition doesn’t matter. Same deal for multiplication. To say the same thing in more abbreviated form:


[image: ][image: ]


no matter what numbers (?) and (#) are.


To begin our journey into mathematics, we will not need to waste our time learning how to do boring things like calculating a specific number in decimal notation for [image: ][image: ]. All we need to know is that the funny symbol [image: ][image: ] refers to whichever number turns into 1 when we multiply it by 7. If you see something like [image: ][image: ], then don’t be fooled into thinking that there’s some mysterious thing called “division” that you have to learn random facts about. A symbol like [image: ][image: ] is just an abbreviation for [image: ][image: ], which is just multiplication. What number does [image: ][image: ] refer to? I have no idea, and you certainly don’t have to either. But we do know that it is whatever number turns into 15 when we multiply it by 72. That’s all.


Assuming that you get the basics of addition and multiplication, we’re going to take an utterly bizarre path through mathematics. After this first chapter, which largely consists of learning how to invent our own mathematical concepts, we’re going to jump straight into inventing calculus, and then use it to reinvent for ourselves all of the things that are usually thought of as prerequisites to calculus. By turning the subject on its head, we’ll discover that calculus — the art of the infinitely large and the infinitely small — can not only be invented before its so-called prerequisites, but that those “prerequisites” cannot be fully understood without calculus itself.


This approach also frees us from the need to memorize anything. Since we’ll never (intentionally) accept anything we have not created for ourselves, and since we can always look back at what we’ve already done, we find that mathematics — a field so often associated with memorization — actually requires less memorization than any other subject. While in other fields memorization may be unavoidable, in mathematics it is poison, and any mathematics teacher who makes you memorize something without apologizing for it on bended knee should be immediately teleported to the unemployment office and made to memorize the phone book.11 Mathematics is a beautiful discipline in which nothing ever needs to be memorized. It’s about time we started teaching it that way.




Author: Okay, that was too extreme. I didn’t really mean that. I just meant that memorization isn’t very helpful. But writing a book is an exciting experience, and I might occasionally get carried away. So try not to take my editorializing too seriously, okay? I mean, I’ve never written a book before, and I’m scared I might burn out along the way. I know I’ll never finish unless I make sure to enjoy the writing process. So if it’s not too much to ask, please try to tolerate my extraneous hyperbole. I promise it’s all in good fun. Anyways, let’s keep moving, dear Reader. Can I call you Reader?
Reader: Works for me.
Author: Great! You can call me Author. Or whatever you want. I’ll answer to any loud noise, really, so pick your favorite and let’s keep moving. I can’t believe I’m actually writing a book!





Our adventure will eventually lead us to some fairly “advanced” topics that typically aren’t taught until the latter half of a four-year bachelor’s degree in mathematics. We’ll see that this “advanced” stuff is really no different from the “basic” stuff, but at each stage the textbooks change the way they write things, just to confuse you.


We’re about to set out on an adventure into a beautiful world of necessary truth in which nothing is accidental. You may occasionally get discouraged (and it’ll probably be my fault). You may have to play around with ideas on your own to convince yourself that you understand them. You may have to think very hard, and you’ll have to try even harder not to be intimidated when you see symbols (abbreviations). But you won’t have to trust me. You won’t have to wonder what’s being hidden from you. And you won’t have to memorize anything. . . unless you want to. Here we go.


1.1.2   “Function” is a Ridiculous Name


            The term ‘function’ got into mathematics, I was told by Prof. K. O. May, due to a misinterpretation of a proper usage by Leibniz. Nevertheless, it has become a fundamental concept of mathematics and whatever it is called, it deserves better treatment. There is perhaps no better example in mathematical education of missed opportunities than in the treatment of functions.


            —Preston C. Hammer, Standards and Mathematical Terminology


Machines do all sorts of things. A bread-maker is a machine that eats bread ingredients and spits out bread. An oven is a machine that will eat anything and spit out that same thing at a much hotter temperature. A computer program for adding one to a number can be thought of as a machine that eats a number and spits out one plus whatever number you put in. A baby is a machine that eats things and spits them out all covered in spit.




[image: Figure 1.1: One of our machines.][image: Figure 1.1: One of our machines.]





Figure 1.1: One of our machines.


For whatever reason, mathematicians have decided to use the strange word “function” to describe machines that eat numbers and spit out other numbers. A much better name would be. . . just about anything. We’ll start by calling them “machines,” and then once we’re used to the idea, we’ll occasionally start calling them “functions,” but only occasionally.22 Let’s use the only tools we’ve got — addition and multiplication — to invent some machines that eat numbers and spit out numbers.




We’ll use certain nonstandard terms throughout the book, but I should emphasize that I don’t necessarily think my terminology is “better” than the standard terminology, and I’m certainly not arguing that other books should use it! The purpose of occasionally inventing our own terms is simply to remind ourselves that the mathematical universe we are creating is entirely our own. It’s a universe we’re building, from scratch, so we get to decide what to call things. But please don’t think that my purpose is to convert everyone to a new set of terms. The word “function” may not be the best, but it’s not all that bad once you get used to it.





       1.   The Most Boring Machine: If we feed it a number, it hands the same number back.


       2.   Add One Machine: If we feed it a number, it adds one to what it ate and spits out the result.


       3.   Times Two Machine: If we feed it a number, it multiplies that number by two and hands back the result.


       4.   Times Self Machine: If we feed it a number, it multiplies that number by itself and hands back the result.


It takes a lot of words to talk about these machines, so let’s invent some abbreviations. All of the symbols in every area of mathematics, however complicated they look, are just abbreviations for things we could be talking about in words, except we’re too lazy. Because they usually don’t tell you this, most people are really intimidated when they see a bunch of equations they don’t understand, but less intimidated when they see an abbreviation like DARPA or UNICEF or SCUBA.


But math is just lots and lots of abbreviations plus reasoning. We’ll be inventing a bunch of abbreviations on our journey, and it’s important that we invent abbreviations that remind us of what we’re talking about. For example, if you want to talk about a circle, two reasonable abbreviations would be C and [image: ][image: ]. Some good abbreviations for a square would be S and [image: ][image: ]. This is so obvious that you might wonder why I’m saying it, but when you look at a page full of equations and think “Ahhh! That’s scary!”, all you’re really looking at is a bunch of simple ideas in a highly abbreviated form. This is true for every part of mathematics: deconstructing the abbreviations is more than half the battle.


We want to talk about our machines using fewer words, so we need to invent some good abbreviations. What makes an abbreviation good? That’s for us to decide. Let’s look at some of our options. We could describe the Times Two Machine by saying:


            If we feed it 3, it spits out 6.


            If we feed it 50, it spits out 100.


            If we feed it 1.001, it spits out 2.002.


And then we could just say what it does to every possible number. But that’s a crazy waste of time, and we’d never finish. We could say that whole infinite bag of sentences at once, simply by saying “If we feed it (stuff), it spits out 2 · (stuff),” where we’re choosing to remain agnostic about which specific number (stuff) is. We could abbreviate this idea even further by writing stuff [image: ][image: ] 2 · stuff.


So, just by being agnostic about which number we were putting into a machine, we managed to collapse an infinite list of sentences down to a single sentence. Can we always do that? Well, probably not. We don’t know yet. But at this point we’ve decided to only think about machines that can be completely described in terms of addition and multiplication, and that’s what let us summarize an infinite number of sentences with just one. We can describe the rest of our machines in this abbreviated way too:


       1.   The Most Boring Machine: stuff [image: ][image: ] stuff


       2.   Add One Machine: stuff [image: ][image: ] stuff + 1


       3.   Times Two Machine: stuff [image: ][image: ] 2 · stuff


       4.   Times Self Machine:33 stuff [image: ][image: ] (stuff)2




We’re writing (stuff)2 as an abbreviation for (stuff) · (stuff). More generally, we’ll use the abbreviation (stuff)number to stand for “The thing you get when you multiply (stuff) by itself number-many times.” You’re not allowed to think “I don’t understand powers,” because at this point there’s nothing to understand. It’s just an abbreviation for multiplication.





In case that doesn’t make sense, here are some examples:


       1.   The Most Boring Machine:


             3 [image: ][image: ] 3


             1234 [image: ][image: ] 1234


       2.   Add One Machine:


             3 [image: ][image: ] 4


             1234 [image: ][image: ] 1235


       3.   Times Two Machine:


             3 [image: ][image: ] 6


             1000 [image: ][image: ] 2000


       4.   Times Self Machine:


             2 [image: ][image: ] 4


             3 [image: ][image: ] 9


             10 [image: ][image: ] 100


Let’s try to abbreviate these machines as much as we possibly can without being ridiculous. By “being ridiculous,” I mean “losing information.” For example, we could abbreviate the entire collected works of Shakespeare by the symbol ♣, but that doesn’t help very much, because we can’t extract any of the information we’re abbreviating from the abbreviation.


How many abbreviations do we need to completely describe our machines? Well, we need to come up with names for (i) the machine itself, (ii) what we’re putting in, and (iii) what we’re getting out. Then we need to do one more thing: (iv) we need to describe how the machine works.


Let’s name the machines themselves with the letter M, so we don’t forget what we’re talking about. We might want to talk about more than one machine at a time, so let’s use the letter M with different hats [image: ][image: ] to talk about different machines. We’ve been using the name stuff to refer to whatever we’re putting into the machine, but let’s abbreviate this even further and just write s (s stands for stuff). But now that we’ve got two abbreviations, we can build the third abbreviation out of the first two. This is a tricky idea, and I’ve never really heard anyone acknowledge that we’re doing it, let alone what an odd process it is, but this is where most of the confusion about “functions” comes from.


What do I mean by saying that we can build the third abbreviation out of the first two? Well, what name should we invent to talk about “the thing that the machine M spits out when I feed it some stuff s”? If we build the name for this using just the abbreviations M and s, then we don’t have to come up with any more abbreviations, and we’re using as few symbols as possible. So let’s call it M(s). Again, M(s) is the abbreviation we’re using to refer to “the thing that the machine M spits out when I feed it some stuff s.”


So we had to name three things, but instead we named two things, then we paused, looked around to see if anyone was watching, and sneakily used the two names we had already come up with as the “letters” to write down the third name. That’s a really weird idea, but it helps tremendously once we get used to it. If you’ve been confused about “functions” before, don’t worry. It’s all simple stuff about machines and abbreviations. They just don’t tell you that.


Okay, so we’ve got our three names, but we still haven’t described any particular machines in this new abbreviated language we invented. Let’s re-describe the four machines from earlier. I won’t list them in the same order. See if you can figure out which machine is which (i.e., which is the Add One Machine, which is the Times Self Machine, etc.)


[image: ][image: ]


The reason this intense abbreviation can be confusing is that, in one sense, we’re only describing the output, or what the machines spit out. Both sides of an equation44 a sentence like M(s) = s2 are talking about the thing that the machine M spits out. But in another sense, this sentence is talking about all three things at once: the machine itself, the stuff we put in, and the stuff we get out. Take another look at this crazy abbreviation:




The term “equation” causes most people to experience a discomforting combination of fear and boredom, a mixture of emotions that anyone familiar with the sympathetic nervous system might have thought impossible. So what is an “equation”? We’ve already talked about how mathematical symbols are just abbreviations for things that we could be describing with words. Against this background, “equations” are just sentences. Abbreviated ones. Once we realize that, the term “equation” doesn’t seem quite so bad. We’ll use both terms throughout the book.





 


 


M(s) = s2


We’re talking about the output on both sides, sure. But our abbreviation for the output — namely M(s) — is a weird hybrid that we built out of the two other abbreviations: the abbreviation for the machine itself, which was M, and the abbreviation for the stuff we put in, which was s. So the sentence M(s) = s2 has three abbreviations just on the left side. As if that weren’t enough, we then go on to describe the operation of the machine. The right side of this sentence, s2, is a description of the machine’s output, written in terms of the input.


We’ve said the same thing in two ways: the M(s) on the left side is our name for the output, and the s2 on the right side is a description of the output. Since we’ve said the same thing in two ways, we throw an equals sign between them, and we’ve described this particular machine in a way that expresses infinitely many different sentences in a few symbols! It expresses infinitely many different sentences because it tells us: If you feed 2 to the machine M, it spits out 4. If you feed 3 to the machine M, it spits out 9. If you feed 4.976 to the machine M, it spits out whatever (4.976) · (4.976) is, and so on.


1.1.3   Things We Rarely Hear


The idea of these machines is very simple. Like I mentioned before, they’re usually called “functions,” which is an odd name, and it doesn’t convey the idea very well. Not only is the word “function” a bit confusing at first, but the common abbreviations used to talk about functions can be pretty counterintuitive when we first encounter them. Here are some reasons such a simple idea can be so confusing:


       1.   They don’t always explain that we’re talking about machines.


       2.   They don’t always explain that everything we’re saying about these machines could be expressed in words, but we’re lazy (the good kind of lazy!), so we’re doing it in a highly abbreviated form.


       3.   They don’t always explain that we’re using the shortest abbreviations we can, or how we built a weird hybrid abbreviation out of two other abbreviations.


       4.   They don’t always distinguish between the name of a machine, M, and the name for its output, M(s). Sometimes books will talk about “the function f(x),” which isn’t really what they mean. To be fair, sometimes it’s useful to use our language incorrectly like this (it is our language after all, so we’re allowed to), but we’ll try not to do that until we’re much more familiar with the idea.


We rarely hear all this. A sizable proportion of textbooks and lectures just say that a function is “a rule that assigns one number to another number,” then they draw some graphs, pace back and forth a bit, and start writing stuff like f(x) = x2 a lot. For some (including myself when I was first exposed to the idea), this is a rather confusing conceptual leap.


I want to draw your attention to something puzzling in the previous sentence. Why do they write x? We wrote s instead of stuff because we got tired of writing out the whole word. But then what on earth is x an abbreviation for? Maybe it’s not an abbreviation for anything. There’s no law that all of the names we give things have to be abbreviations. Maybe the x is like Harry S. Truman’s middle name: it looks like an abbreviation, but it’s really not! Maybe the letter is the name itself. As it turns out, the letter x is an abbreviation for something. What? Let’s take a break and find out.


1.1.4   The Unbearable Inertia of Human Conventions


Why do textbooks always use x? The answer is pretty funny.55 It’s actually a bastardized translation from Arabic. See, back in the old days, some Arabic mathematicians went through a train of thought similar to the one we’ve gone through here, and they decided to use the word “something” for the same reason that we used “stuff.” Perfectly reasonable. The idea is to always choose abbreviations that remind you of the thing you’re abbreviating, so that you don’t have to memorize anything. Up to this point, everything made sense. Then came the problem. The first letter of the word “something” in Arabic makes a sound similar to the sound “sh” in English. It turns out that the Spanish language has no “sh” sound, so when all of this Arabic mathematics was translated into Spanish, the Spanish translators chose the closest thing they could think of. This was the Greek letter “chi,” which makes a “ch” sound (as in Bach, not Cheerios). The letter chi looks like this:


χ




This explanation comes from a guy named Terry Moore, in his wonderful short talk “Why is ‘x’ the Unknown?” So credit goes to him.
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Figure 1.2: Generally speaking, humans are slow to change things.




Look familiar? Later, as you might expect, this χ turned into the familiar letter x from the Latin alphabet. . . and this bastardized abbreviation continues to haunt our textbooks as the most common abbreviation for stuff.


The Arabic mathematicians were smart folks, and they chose their abbreviations well. They could do so because they were essentially in the same type of situation we are: in a world without much mathematics, inventing it as they go. Like them, we can always abbreviate things however we want. For example, consider the following two problems. Don’t bother doing them. Just stare at them for a few seconds.


       1.   Here’s a description of the f machine:


             f(x) = x2 − (5 · x) + 17


             What does the f machine spit out when we feed it the number 1?


       2.   Here’s a description of the [image: ][image: ] machine:


             [image: ][image: ]


             What does the [image: ][image: ] machine spit out when we feed it the number 1?


We don’t have to do either of these problems to see that they have the same answer (it’s 13, but that’s not the point). We’re describing the same machine, and we’re feeding it the same number in both cases, so we know they have the same answer, even if we didn’t bother to figure out what that answer is. Everyone knows that we can abbreviate things however we want. And yet when I’m explaining some piece of mathematics to someone, and I change abbreviations so that we can remember what we’re talking about, one of the most common things I hear is “Oh! I didn’t know we could do that!” It’s important that we practice changing abbreviations, because a lot of ideas in mathematics look scary and complicated when we use one set of abbreviations, but suddenly seem obvious when we use another. We’ll see some funny examples of this later.


1.1.5   The Different Faces of Equality


There is another widespread problem with standard mathematical notation that causes tremendous unnecessary confusion to newcomers. That is the need to use different-looking versions of the equals symbol to remind ourselves why things are true.


When we use the normal equals symbol = in this book, we will mean the same thing that all mathematics books mean: A = B means that A and B refer to the same thing, even though they might look different. Therefore, the symbol = just tells you that something is true, but it doesn’t tell you why it’s true. We can do better by occasionally using different-looking symbols. In the rest of the book, these three symbols


[image: ][image: ]


will all mean the same thing. They all mean “the things on either side of me are the same,” but they’re different ways of reminding us why those two things are the same.


By far the most common alternative version of the equals symbol that I’ll use is ≡, and it says that two things are equal because of some abbreviation we’re using. A few examples will illustrate what I mean. One of the cases where the symbol ≡ will show up is whenever we’re defining something. For example, in the above discussion when we wrote M(s) = s2, we really could have written M(s) ≡ s2. I only used = because we hadn’t talked about ≡ yet. The ≡ symbol in the above sentence says “M(s) and s2 are the same thing, but not because of some mathematics that you missed. We’re just using M(s) as an abbreviation for s2 until we say otherwise.”


Now, using the ≡ symbol for definitions isn’t unique to this book. Lots of books do that.66 However, in an attempt to get the most explanatory bang for our notational buck, we’ll use this symbol in a slightly more general way. We will use ≡ in any equality that is true simply because of some abbreviation that we’re using, and not because of any mathematics that you missed. Just to choose a completely contrived example that refers to absolutely nothing, I might say something like this: Using the fact that M(s) ≡ s2, we can write




Ironically, this seems to be more common in advanced books than it is in introductions, where it’s most needed.





 


 


[image: ][image: ]


Just to stress the point, you should be able to understand the above pile of symbols even if you had never heard of addition, multiplication, or numbers! Since it involves ≡, all it is really saying is that the thing on the left and the thing on the right are equal because of some abbreviation we’re using, and not because of some mathematics that you missed. As such, whenever you see this kind of equals sign, you’re not allowed to be intimidated. There’s nothing to be scared about, because equations with ≡ aren’t really saying anything. However, we’ll see throughout the book how helpful it can be to change back and forth between different abbreviations, so it’s worth having a special kind of “equals” to remind ourselves when that’s all we’re doing.


Another way of using equals shows up whenever we’re forcing something to be true, and seeing what happens as a result. This is the version of equals that people are using when they say something like “Set yadda yadda equal to zero.” This is a strange concept, so it’s worth looking at a simple example. When a textbook insists that you “solve x = x2 for x,” it’s not always clear what that means. The equals sign is clearly being used in an odd way here. First, the sentence x = x2 isn’t even true, at least not in general. After all, if the sentence x = x2 were always true, then 2 would equal 4, and 10 would equal 100, and so on. Here’s the idea:


            What they say: Solve x = x2 for x.


            What they mean: Figure out which particular stuff makes the sentence (stuff) = (stuff) · (stuff) true. Ignore all the stuff that makes it false.


Since this meaning of equals is so different from ≡, we’ll write it a different way. How about this:


[image: ][image: ]


To reiterate, all of these different versions of “equals” mean the same thing as the the normal = symbol. The new ones just remind us of why something is true. Even if distinguishing between these different kinds of equals seems unnecessary now, we’ll see soon how much easier it makes things.


Attention Reader! This is important! Whatever you do, please don’t agonize about learning exactly when you should use which type of equals symbol! And if any teachers are reading this, please, for the love of mathematics, do not assign exercises where you make people determine whether = or ≡ or [image: ][image: ] should be used in some equation or another. This isn’t a pedantic distinction we’re making because of a compulsive overattention to irrelevant details. It’s just a quick and easy way to remind ourselves why something is true. For the same reasons, I’ll also occasionally throw a number above an equals sign, like this:


[image: ][image: ]


What that means is “Blah = Blee because of equation 3.” By doing this, each equation can become a way to check and see if you understand an idea, but only if you want to. That is, you can try to figure out why something is true on your own, but whenever you get sick of that, the equals symbol tells you where you can look to find the reason why. I always wished more textbooks would do this. But enough about notation. Time for creation!


1.2   How to Invent a Mathematical Concept


            What I cannot create, I do not understand.


            —Richard Feynman, from his blackboard at the time of his death


Before we invent calculus, we’ll need to know how to invent things in the first place. Specifically, we’ll need to know how to invent mathematical concepts. We’ll illustrate the creation process with two simple examples: the area of a rectangle and the steepness of a line.77 It doesn’t matter if you already know how to compute both of those things. Everyone has something to gain from a discussion of these issues, whether in their own understanding or in their teaching, because the invention process is so rarely discussed.




We’ll later find that these two concepts form the backbone of all of calculus. The latter is the basis of the “derivative,” and the former is the basis of the “integral.” These concepts are opposites, and the precise sense in which they’re opposites is described by the so-called “fundamental theorem of calculus.”





When we’re inventing mathematics from scratch, we always start with an intuitive, everyday human concept. The process of inventing a mathematical concept consists of attempting to translate that vague qualitative idea into a precise quantitative one. No one can really visualize anything in five dimensions, or seventeen dimensions, or infinitely many dimensions, so how do mathematicians define something like “curvature” in a way that allows them to talk about the curvature of higher-dimensional objects? How do human mathematicians arrive at their definitions, when these definitions are often so abstract that it seems as if one would have to be endowed with superhuman capacities of higher-dimensional intuition in order to “see” the truth?


This process is not as mysterious as it seems. Creation is simply translation, from qualitative to quantitative. Hopefully, explicit education in the creation process, at all levels of mathematics, will one day find its rightful place in the curriculum alongside lesser concerns like addition, multiplication, lines, planes, circles, logarithms, Sylow groups, fractals and chaos, the Hahn-Banach theorem, de Rham cohomology, sheaves, schemes, the Atiyah-Singer index theorem, the Yoneda embedding, topos theory, hyper inaccessible cardinals, reverse mathematics, the constructible universe, and everything else we teach students in mathematics from elementary school to the postdoctoral level. It is so much more important.


1.2.1   Mining Our Minds: Inventing Area


In this section we’ll illustrate the essence of how to invent a mathematical concept by examining the concept of area, in the simplest possible case: the area of a rectangle. The fact that a rectangle with length ℓ and width w has area ℓw is a simple idea, and you almost certainly know it already. But try to forget it. Let’s imagine that we have no idea that the area of a rectangle is its length times its width.
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