

[image: image]

My Revision Notes: Digital Production, Design and Development T Level Boost eBook

Boost eBooks are interactive, accessible and flexible. They use the latest research and technology to provide the very best experience for students and teachers.

●Personalise. Easily navigate the eBook with search, zoom and an image gallery. Make it your own with notes, bookmarks and highlights.

●Revise. Select key facts and definitions in the text and save them as flash cards for revision.

●Revisit. Select key facts and definitions in the text and save them as flash cards for recap and revision.

●Listen. Use text-to-speech to make the content more accessible to students and to improve comprehension and pronunciation.

●Switch. Seamlessly move between the printed view for front-of-class teaching and the interactive view for independent study.

●Download. Access the eBook offline on any device – in school, at home or on the move – with the Boost eBooks app (available on Android and iOS).

To subscribe or register for a free trial, visit
hoddereducation.co.uk/tlevels-digital

[image: image]

‘T-LEVELS’ is a registered trade mark of the Department for Education. ‘T Level’ is a registered trade mark of the Institute for Apprenticeships and Technical Education. The T Level Technical Qualification is a qualification approved and managed by the Institute for Apprenticeships and Technical Education.

The Publishers would like to thank the following for permission to reproduce copyright material.

Photo credits

p.48 © https://creativecommons.org/policies, p. 53 © Gorodenkoff/stock.adobe.com

Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked, the Publishers will be pleased to make the necessary arrangements at the first opportunity.

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Hachette UK Distribution, Hely Hutchinson Centre, Milton Road, Didcot, Oxfordshire, OX11 7HH. Telephone: +44 (0)1235 827827. Email education@hachette.co.uk Lines are open from 9 a.m. to 5 p.m., Monday to Friday. You can also order through our website: www.hoddereducation.co.uk

ISBN: 978 1 3983 8 4507
eISBN: 978 1 3983 8 4279

© George Rouse 2023

First published in 2023 by
Hodder Education,
An Hachette UK Company
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ

www.hoddereducation.co.uk

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2027 2026 2025 2024 2023

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © AStockphoto - stock.adobe.com

Illustrations by Integra

Typeset in India by Integra Software Services Pvt., Ltd.

Printed in Spain

A catalogue record for this title is available from the British Library.

[image: image]

Get the most from this book

Everyone has to decide their own revision strategy, but it is essential to review your work, learn it and test your understanding. These Revision Notes will help you to do that in a planned way, topic by topic. Use this book as the cornerstone of your revision and do not hesitate to write in it – personalise your notes and check your progress by ticking off each section as you revise.

Tick to track your progress

Use the revision planner on page 4 to plan your revision, topic by topic. Tick each box when you have:

	✚ revised and understood a topic

	✚ tested yourself

	✚ practised the exam questions and gone online to check your answers.

You can also keep track of your revision by ticking off each topic heading in the book. You may find it helpful to add your own notes as you work through each topic.

Features to help you succeed

Exam tips

Expert tips are given throughout the book to help you polish your exam technique in order to maximise your chances in the exam.

Typical mistakes

The author identifies the typical mistakes candidates make and explains how you can avoid them.

Now test yourself

These short, knowledge-based questions provide the first step in testing your learning.

Definitions and key words

Clear, concise definitions of essential key terms are provided where they first appear. Key words from the specification are highlighted in bold throughout the book.

Revision activities

These activities will help you to understand each topic in an interactive way.

Exam practice

Exam practice questions are provided for each topic. Use them to consolidate your revision and practise your exam skills.

Summary

The summaries provide a quick-check bullet list for each topic.

Online

Go online to check your answers to the Now test yourself and Exam practice questions at www.hoddereducation.co.uk/myrevisionnotesdownloads

Countdown to my exams

From September

Attend class in person or via the internet if necessary; listen and enjoy the subject; make notes. Make friends in class and discuss the topics with them. Watch the news.

6–8 weeks to go

	✚ Start by looking at the specification – make sure you know exactly what material you need to revise and the style of the examination. Use the revision planner on page 4 to familiarise yourself with the topics.

	✚ Organise your notes, making sure you have covered everything on the specification. The revision planner will help you to group your notes into topics.

	✚ Work out a realistic revision plan that will allow you time for relaxation. Set aside days and times for all the subjects that you need to study and stick to your timetable.

	✚ Set yourself sensible targets. Break your revision down into focused sessions of around 40 minutes, divided by breaks. These Revision Notes organise the basic facts into short, memorable sections to make revising easier.

2–6 weeks to go

	✚ Read through the relevant sections of this book and refer to the exam tips, summaries, typical mistakes and key terms. Tick off the topics when you feel confident about them. Highlight those topics that you find difficult and look at them again in detail.

	✚ Test your understanding of each topic by working through the ‘Now test yourself’ questions in the book.

	✚ Make a note of any problem areas as you revise and ask your teacher to go over these in class.

	✚ Look at past papers. These provide one of the best ways to revise and practise your exam skills. Write or prepare planned answers to the ‘Exam practice’ questions provided in this book.

	✚ Use the revision activities to try out different revision methods. For example, you can make notes using mind maps, spider diagrams or flash cards.

	✚ Track your progress using the revision planner and give yourself a reward when you have achieved your target.

	✚ Check your answers to the Now test yourself and Exam practice questions online at www.hoddereducation.co.uk/myrevisionnotesdownloads

One week to go

	✚ Try to fit in at least one more timed practice of an entire past paper and seek feedback from your teacher, comparing your work closely with the mark scheme.

	✚ Check the revision planner to make sure you have not missed out any topics. Brush up on any areas of difficulty by talking them over with a friend or getting help from your teacher.

	✚ Attend any revision classes put on by your teacher. Remember, they are an expert at preparing people for examinations.

The day before the examination

	✚ Flick through these Revision Notes for useful reminders – for example, the exam tips, summaries, typical mistakes and key terms.

	✚ IMPORTANT: Check the time (is it morning or afternoon?) and place of your examination. Keep in touch with other students in your class.

	✚ Make sure you have everything you need for the exam – for example, pens, highlighters and water.

	✚ Allow some time to relax and have an early night to ensure you are fresh and alert.

My exams

Paper 1

Date:...

Time: ..

Location: ..

Paper 2

Date:...

Time: ..

Location: ..

Introduction

Assessing T Level Digital Production, Design and Development

This book supports the assessment of the Core Component:

	✚ Paper 1 (Digital Analysis, Legislation and Emerging Issues)

	✚ Paper 2 (The Business Environment).

In addition to these papers there is an employer-set project that contributes to the overall core grade. Each of these is worth one-third of the marks towards the Core Component grade.

In addition, in the second year, there is a synoptic assessment: Occupational Specialist Component. This is a 67-hour externally assessed project. It is an extended design, development and implementation project completed during an assessment window and includes some supervised assessment sessions. The purpose is to demonstrate competence in the full range of skills required for the course.

Command words

Familiarity with the relevant command words is important and helps you to avoid wasting time in the exam room, for example by trying to evaluate when there is no requirement for it. The most frequently used command words used for the T Level papers are:

	✚ Identify, State: These require just one or two words or a short phrase, and typically there is just 1 mark per point required. For example: Identify two variables. [2 marks]

	✚ Describe: This requires a longer response and is typically worth 2 marks.

	✚ Justify: This is often used together with Identify and requires you to justify the answer you have given. For example: Identify a constant and justify why it is declared as a constant. [3 marks]

	✚ Explain: This is asking for more than a description of something and requires a more detailed explanation. It may be worth 2, 3 or even more marks. Look for the same number of valid, different points in your response as the number of marks available. For example: Explain a benefit of pattern recognition. [3 marks]. You could, for example, describe one benefit, then go on to explain why it is a benefit.

	✚ Compare: This means you will need to describe or explain two things and directly compare the features of the two items.

	✚ Discuss, Evaluate, Analyse: These indicate a long answer is required and are typically worth 6 or more marks. These questions will not be marked simply on the statement of facts but on the depth of the discussion in the response. It is important that all aspects of the question are answered in some detail, and it is a good idea to identify the component parts of the question before starting a response.

If asked to give examples, make sure they are relevant to the scenario. For program code or diagrams, plan these before committing to the response. Make sure any planning is identified so that it is clear to the examiner which is planning and which is the response to be marked (a single diagonal line through the planning should be sufficient).

This exam includes many technical topics and you should use the appropriate technical terminology accurately.

The T Level exam papers

The two exams covered by this book are each 2 hours and 30 minutes long and each is worth 100 marks.

Paper 1 Digital Analysis, Legislation and Emerging Issues

	1 Problem solving

	2 Introduction to programming

	3 Emerging issues and impact of digital

	4 Legislation and regulatory requirements

Paper 2 The Business Environment

	5 Business context

	6 Data

	7 Digital environments

	8 Security

Always read the question carefully before starting a response. The key words used in the questions will provide some clues to what the examiner is expecting from the answer.

1 Problem solving

In order to solve a problem, it is necessary to understand it. Faced with a complex problem there is a range of techniques designed to change that problem into something that can be understood, formally represented and solved.

1.1 Computational thinking

Computer professionals use computational thinking techniques to solve real-world problems in order to create computer solutions. This does not require a computer but can be implemented on one. The same techniques can be applied to all manner of real-world problems, including those not involving computer programs.

Computational thinking is important because it makes it possible to understand and solve complex and messy problems.

Computational thinking A problem-solving technique developed by computer scientists that can be applied to real-world problems to make them understandable and solvable.

Messy problems Clusters of interrelated, interdependent complex problems, where it is difficult to provide a definitive statement of the problem. Examples might include pandemics, climate change, international crime activities and natural hazards.

1.1.1 Top-down, bottom-up and modularisation approaches to solving problems

Top-down analysis

Top-down analysis attempts to break down a large problem into its component parts.

	✚ The main problem is broken down into the main components.

	✚ Each of the main components is analysed and broken down into a series of sub-problems.

	✚ Each sub-problem is broken down further until an easily solvable solution is available.

	✚ The top-down approach is mainly associated with structured programming languages such as C, Pascal and Python.

Key point

Python supports both the procedural, or structured, approach and the object-oriented approach to programming.

Bottom-up solution

This approach builds a solution by solving smaller problems and integrating them into a larger solution.

	✚ The smaller parts of the problem should be easier to understand.

	✚ By solving each of the individual elements it is possible to create a solution to the bigger problem.

	✚ The bottom-up solution is mainly associated with object-oriented programming (OOP) languages such as C++, C# and Python.

Modularisation

Top-down design and bottom-up solutions support the widespread use of modular programming (modularisation).

Modularisation Separating the functional parts of a problem or program into independent modules that can be recombined to create a solution.

This has some advantages:

	✚ The elements can be allocated to different programmers to speed up the process.

	✚ Programmers can be allocated to solve those parts of the problem requiring specialist skills.

	✚ Debugging the elements individually is more effective.

Debug To locate and fix errors in a program.

There are some drawbacks:

	✚ This approach assumes that the whole solution is knowable in advance.

	✚ With event-driven programming this neat top-down structure is not always appropriate.

However, the techniques can be applied to parts of the problem, and it remains a useful problem-solving tool.

1.1.2 Solve problems using decomposition

The top-down approach to problem solving uses decomposition. This is the process of breaking a problem down into smaller parts until each part can be easily solved.

Decomposition Breaking down a complex problem into its component parts, which are easier to understand and solve.

In order to decompose a problem, the original problem needs to be understood and the main components identified. Each of these main components is then broken down into a series of sub-problems.

[image: image]
Figure 1.1 Decomposing a problem into its main components and sub-problems

Decomposition can be applied at various levels in computing scenarios, to the whole problem or to specific parts of the problem. We can break down a problem into different functional components that lead to:

	✚ modules or program procedures

	✚ processes, data stores and data flows.

The advantage of this approach is that:

	✚ each sub-problem can be understood

	✚ each sub-problem can be developed separately

	✚ each sub-problem can be tested separately.

Combining these functional sub-problems should provide a solution to the original, more complex, problem.

There are some drawbacks:

	✚ The original problem must be fully understood for this to produce a solution.

	✚ The sub-problems may not provide a fully functional solution to the original problem.

1.1.3 Use pattern recognition

Once a problem has been decomposed it is possible to identify patterns. Pattern recognition is the process of looking for trends and similarities within and between problems or processes. It can be used to identify solutions that exist or can be modified, or to predict how a solution might be used effectively.

	✚ There may be existing solutions for some sub-problems that can be reused.

	✚ There may be existing solutions to similar problems that can be modified.

	✚ There may be a group of similar problems for which a common core solution can be created and modified.

Pattern recognition Looking for patterns or trends in order to identify potential solutions.

The advantages of using pattern recognition include:

	✚ Existing code can be used; this means that a section of code works and is fully tested.

	✚ Existing code only needs to be modified to create a working solution, with only the new features needing to be tested.

	✚ The same basic code can be created for several elements and only needs to be tested once.

	✚ This newly created code, once tested, can be modified to create solutions for similar elements with only the modifications needing to be tested.

This saves time and improves reliability.

1.1.4 Use abstraction

Abstraction is the process of taking a real-life problem and removing or hiding any unnecessary detail so that it can be analysed.

Abstraction The process of extracting the key features of a problem and ignoring the unnecessary detail.

Abstraction is a representation of reality leaving just the key elements of the problem. This means the programmer can concentrate on the important aspects of the problem and not be distracted by unnecessary detail.

For example, a programmer may use a data structure without needing to know how it is implemented.

Large projects developed by teams often use elements developed by other programmers without needing to know how these work.

The advantages of this approach include:

	✚ The programmer can focus on the important aspects of the problem and ignore non-essential detail.

	✚ Teams of programmers can work on different aspects of the same problem.

	✚ Programmers can use pre-written or built-in functions without worrying about how they work.

A computer program is an abstraction of reality and when developing a program, we need to consider various things.

Key features of the program

	✚ How will it be used?

	
✚ Who will be using it?

	✚ What is the skill set of the target user groups?

	✚ What features are required by the target audience?

We need to think ahead and identify:

	
✚ the ‘output’ from the system, including:

	✚ on-screen information

	✚ printed data

	✚ stored data

	✚ actions for the computer to complete

	✚ the input required to create the necessary output

	✚ the processes to turn the input into the required output.

When using abstraction, we create several layers, with each layer hiding the complexity of the previous one (layering). This means that only the detail required to solve one sub-problem is necessary for the programmer of that program element. Each layer should include the following.

	
✚ What inputs are needed:

	✚ including any validation and the data format.

	
✚ What outputs are expected:

	✚ including type, location (for example, on-screen, stored on disk, printed) and the format of that output.

	
✚ What things will vary:

	✚ variables (that is, the values that will change as a result of any input or process).

	
✚ What things will remain constant:

	✚ the constant values that must not be allowed to vary.

	
✚ What key actions the program must perform:

	✚ the processes to turn the input into the required output from the system.

	
✚ What repeated processes the program will perform:

	✚ the processes that are called more than once in the system.

Layering Organising a solution into segments that only interact with the previous and following segments.

Variable A value that will change as a result of another action.

Constant A value that does not change.

Revision activity

Think about making a nesting box for birds.

	✚ Identify the elements/features required for a nesting box (top-down analysis).

	✚ Identify the raw materials required (decomposition).

	✚ Research plans for making the bird box and select appropriate elements to use or modify (pattern recognition).

	✚ Identify the unnecessary detail and discard it (abstraction).

	✚ Write a brief set of details for how to make the bird box.

Now test yourself

	1 What is computational thinking?

	2 What are the advantages of the top-down approach?

	3 What is meant by pattern recognition?

	4 What are the advantages of using a modular approach (modularisation)?

	5 Why is layering an advantage for the programmer?

	6 Why might decomposition not provide a solution to a problem?

1.2 Algorithms

1.2.1 Algorithms, what they are and how they are expressed

Computers are only able to solve problems if they are given the right set of instructions to follow. An algorithm is a set of step-by-step instructions that describe solutions to problems.

Algorithm A set of instructions describing a solution to a problem.

Algorithms can be expressed in terms of flowcharts, written descriptions, pseudocode and program code.

1.2.2 Expressing an algorithm using flowcharts and pseudocode, and the use of these when planning a digital solution

Writing algorithms that describe a solution to a problem can be a complex process, which is why we often use computational thinking to derive them.

An algorithm must:

	✚ be precise enough to define a problem accurately

	✚ contain all the necessary steps in the process

	✚ identify clearly the instructions that need to be followed and in what order

	✚ identify what decisions need to be made, when they need to be made, and what to do based on the result of those decisions.

The advantages of using algorithms include:

	✚ They don’t need specialist knowledge to understand the processes.

	✚ They provide a detailed breakdown of the solution.

	✚ They provide an outline for a coded solution.

	✚ They are language independent.

The disadvantages include:

	✚ Some constructs can be quite difficult to represent.

	✚ They can be quite time-consuming to create.

	✚ An algorithm can be expressed in several ways.

There are several ways to represent algorithms. Written descriptions are often the starting point when creating an algorithm.

Algorithms are written as a set of descriptors or instructions in standard English, requiring no formal syntax or structure. This means anyone can create an algorithm using a set of brief descriptors.

Syntax The formal structure for a statement.

A written description of an algorithm:

	✚ should use short sentences or statements

	✚ does not require specific details of how the solution will be coded

	✚ must include all the parts of the solution to the problem.

It can, however, be quite difficult to express some technical structures in detail using written descriptions, particularly decisions and the follow-up actions and loops, so graphical representations such as flowcharts may be used instead.

Loop A sequence of commands that is repeatedly executed until a condition is reached.

Flowcharts use standard shapes to represent the various features of an algorithm.

Flowcharts Diagrammatic representations of algorithms.

[image: image]
Figure 1.2 Standard flowchart shapes

Revision activity

Write a description for a program that checks a password for length, for the inclusion of numbers, and for upper- and lower-case letters.

	✚ All flowcharts start and end with the terminal shape.

	✚ Inputs and outputs are represented by a parallelogram.

	✚ Decisions are represented by a diamond shape with two outgoing paths: Yes/No or True/False.

	✚ Processes are represented by rectangles.

	✚ The symbol to call a subroutine is a rectangle with two vertical lines.

Subroutine Code that can be called from within the program. After the subroutine completes, control is returned to the main program.

Revision activity

Use your written description of the password program to create a flowchart to describe it.

Flowcharts have some advantages:

	✚ Using a standard set of symbols means they can be easily followed and understood by many people.

	✚ The clear structure is able to show the flow through a program.

They also have some disadvantages:

	✚ Being graphical they can become large very quickly, making complex problems difficult to represent and follow.

	✚ Any modifications require a significant amount of work to amend or even redraw the diagram.

Pseudocode is a technical representation of an algorithm. The choice of flowchart or pseudocode depends upon the audience requirements. Flowcharts are useful for communicating between technical and non-technical people, pseudocode between technical people and programmers. It is often the next stage in the process, turning the flowchart into a coded solution. While it does not use any programming language syntax, it is written in a format similar to a high-level language.

Pseudocode A more structured form of English used to describe algorithms.

The advantages of pseudocode include:

	✚ The structure makes it relatively easy to convert pseudocode to program code.

	✚ It can be modified quite easily (unlike a flowchart).

	✚ It is reasonably easy to follow.

Revision activity

Turn the flowchart you created into pseudocode.

The disadvantages include:

	✚ It can be a time-consuming process.

	✚ In some cases, it can be hard to follow data flows.

Program code is the code that can be executed on a computer, but if the person writing the algorithm has the necessary coding skills, they might choose to write the pseudocode in a draft version using their chosen programming language.

This has some advantages:

	✚ It shortens the step from pseudocode to code.

	✚ Syntax errors are not important at this stage and can be corrected at the coding stage.

	✚ All the program constructs and built-in functions can be used.

Typical mistake

In this case program code does not refer to code that can be executed but merely a more precise form of pseudocode based on a specific language.

There are some disadvantages:

	✚ The process may end up trying to write the program code without fully analysing the problem, meaning it does not lead to an effective solution to the problem.

	✚ The algorithm will not be language independent.

	✚ Some knowledge of the language will be required to understand the algorithm.

1.2.3 Algorithms for the key programming constructs

There are three standard constructs used in computer programs:

	1 Sequence

	2 Selection

	3 Iteration.

Sequence

Sequence executes the instructions one after the other.

Sequence Code that executes one instruction after another.

Note how the order in the two programs below is important. The programs produce different outputs.

Worked example

	
Program 1

x = 9

x = x + 6

x = x / 3

print(x)

	
Program 2

x = 9

x = x / 3

x = x + 6

print(x)

Selection

Selection is the construct that decides how to proceed based on the result of a decision (Figure 1.3).

[image: image]
Figure 1.3 Selection based on the result of a decision

Selection The code to execute is determined by the outcome of a condition.

Worked example

	
A simple algorithm might be:

Set a value for num1

Set a value for num2

If num1 is bigger than num2

Print num1 is bigger

	
In the specification pseudocode:

RECEIVE num1 FROM (INTEGER) KEYBOARD

RECEIVE num2 FROM (INTEGER) KEYBOARD

IF num1 > num2 THEN

 SEND 'num1 is bigger' TO DISPLAY

END IF

	
In Python, the code for this is:

num1 = int(input())

num2 = int(input())

if num1 > num2:

 print('num1 is bigger')

	

In Python you must indent code within a loop or a conditional statement. It is also good practice to do this when writing algorithms, especially in pseudocode. By indenting the code within these structures, it makes it much easier to see what code is being repeated or relates to the conditional statement.

Exam tip

In the examination you should expect to see questions using pseudocode to be written using the specification style. Unless specifically told to use the specification pseudocode style, any responses in a more general pseudocode should be acceptable, providing they clearly describe the solution.

Iteration

Iteration is a construct that repeats a process either until a condition is true, while a condition is true, or a set number of times.

Iteration (often called a loop) The code executed depends on a condition being met or executed a set number of times.

Repeat until executes a code segment until the value of a condition is true (Figure 1.4).

[image: image]
Figure 1.4 A repeat until loop – note that the loop executes until a condition is met

The structure means that a repeat until condition must execute at least once since the condition is not checked until one iteration has been completed.

Worked example

	In pseudocode we can create an algorithm to print the values 1 to 5:

	In the specification pseudocode:

	
x = 1

repeat

 print(x)

 x = x +1

until x = 6

	
SET x TO 1

REPEAT

 SEND x TO DISPLAY

 SET x TO x + 1

UNTIL x = 6

Note that Python does not support the repeat until structure.

While is a construct that executes a code segment while a condition is true.

[image: image]
Figure 1.5 A while loop – note that the condition is checked before any code can execute

In this structure the condition is checked before any code in the loop is executed and might not execute at all if the condition is met initially.

Worked example

	
In pseudocode the algorithm becomes:

x = 1

while x < 6

 print(x)

 x = x + 1

endwhile

	
In the specification pseudocode:

SET x TO 1

WHILE x < 6 DO

 SEND x TO DISPLAY

 SET x TO x + 1

END WHILE

	
Python does support the while construct:

x = 1

while x < 6:

 print(x)

 x = x + 1

	

For next loops execute a code segment a set number of times. The value of the loop index is incremented until it reaches the end of the specified range, where it exits the loop (Figure 1.6).

Increment The process of increasing a numeric value by another value, often 1. For example, the sequence 1,2,3 …

[image: image]
Figure 1.6 A for next loop will execute a fixed number of times, exiting the loop once the index value reaches the end of the specified range

Worked example

	In pseudocode we can create an algorithm to print the values 1 to 5.

	In the specification pseudocode:

	
for x = 1 to 5

 print(x)

next x

	
FOR x FROM 1 TO 5 DO

 SEND x TO DISPLAY

END FOR

In Python:

for x in range(1,6):

 print(x)

Note how the range is 1 to 6, not 1 to 5. If you look at the flowchart you can see that once the value reaches 6 it does not execute the loop again. In the Python range it executes the loop with values up to one less than the top of the range.

Revision activity

Turn your pseudocode algorithm into a coded solution.

1.2.4 Understand the purpose for a given algorithm and how the algorithm works

There may be several different ways to approach the same problem, generating a number of different algorithms. The best way to determine what the algorithm does, the output it produces and if there are any errors in it is to dry run it.

1.2.5 Determine the correct output of an algorithm

Dry running an algorithm can be as straightforward as simply following it through line by line to determine the purpose. For a written description, turning it into pseudocode or a flowchart might provide more insight.

A more rigorous approach would be to use a trace table to follow through what happens to each variable as the program executes.

Trace table A table used to track the state of variables in an algorithm or program, to check how it works and that it works as expected.

A trace table consists of a table with a row for each line of code and a column for each variable. By following the algorithm through line by line, the values of each variable are recorded at each stage.

Worked example

For the pseudocode:

RECEIVE num1 FROM (INTEGER) KEYBOARD

RECEIVE num2 FROM (INTEGER) KEYBOARD

IF num1 > num2 THEN

 SEND 'num1 is bigger' TO DISPLAY

END IF

IF num2 > num1 THEN

 SEND 'num2 is bigger' TO DISPLAY

ELSE

 SEND 'both numbers the same' TO DISPLAY

END IF

The trace table needs eight rows for the eight lines of instructions, and columns for line number, num1, num2, results of condition, output and a comment.

The trace table would be used to check a range of possible inputs to see if it works as required:

	✚ one set with num1 bigger than num2

	✚ one with num2 bigger than num1

	✚ one with num1 and num2 the same value.

The result when num1 is 6 and num2 is 7 is:

	
Line number

	
num1

	
num2

	
Condition

	
Output

	
Comment

	
1

	
6

	
	
	
	

	
2

	
6

	
7

	
	
	

	
3

	
6

	
7

	
False

	
	

	
6

	
6

	
7

	
True

	
	
Lines 4 and 5 skipped

	
7

	
6

	
7

	
True

	
num2 is bigger

	
Program ends

Revision activity

Complete the trace table in the Worked example with values for num1 bigger than num2 and num1 the same value as num2.

1.2.6 Identify and correct errors in an algorithm

You can check an algorithm by using a trace table or by following a flowchart. Using a range of values for the variables, or otherwise, you can identify how the algorithm works - more importantly, if it does not do what it is supposed to.

If an error is identified, the algorithm should be modified and checked again.

Remember to include comments when writing algorithms, to explain each section of code, so that when it is checked for errors or needs to be modified, there is no confusion about what the algorithm is meant to do.

Now test yourself

	1 What is an algorithm?

	2 What is meant by the term ‘syntax’?

	3 State two disadvantages of representing algorithms using flowcharts.

	4 Describe the differences between a repeat loop and a while loop.

	5 Why would you dry run an algorithm?

	6 Why do we use comments in an algorithm?

Summary

In this chapter you learned about:

	✚ Computational thinking

	✚ Top-down, bottom-up and modularisation approaches to solving problems

	✚ Solving problems using decomposition

	✚ Using pattern recognition

	✚ Using abstraction

	✚ Algorithms

	✚ What algorithms are and how they are expressed

	✚ Expressing an algorithm using flowcharts and pseudocode, and the use of these when planning a digital solution

	✚ Writing algorithms for the key programming constructs

	✚ The purpose of a given algorithm and how the algorithm works

	✚ Determining the correct output of an algorithm

	✚ Identifying and correcting errors in an algorithm

Exam practice

		1 Explain why computational thinking is used to design solutions to complex problems.

	[6]

		2 State and describe two computational thinking principles and how they are used when developing a computing solution to a problem.

	[6]

		3 A local transport organisation is designing a map for the local bus routes and interchanges.

	

		a Explain what is meant by abstraction.

	[2]

		b Identify two things from the real world that will remain in the map.

	[2]

		c Identify two things from the real world that will be missing from the map.

	[2]

		4 Three main ways of writing an algorithm are: written in plain English, flowcharts and pseudocode. Discuss the relative merits of these three approaches.

	[8]

		5 An employer wants to know how its staff travel to work in the mornings. The employer needs a program to ask each member of staff if they travel by bus, train, bicycle, car or walk. The program should then output the totals for each mode of transport. Write an algorithm in any form of pseudocode to represent this program.

	[6]

		6 There are three major ways to create an iterative loop in a program.

	

		a Describe how a repeat loop works in a program.

	[3]

		b Describe how a while loop works in a program.

	[3]

		c The repeat loop described by the pseudocode below adds together three numbers input by the user and prints the result. Modify this to use a while loop.

	[4]

	
SET count TO 1

SET total TO 0

REPEAT

 RECEIVE num FROM (INTEGER) KEYBOARD

 SET total TO total + num

 SET count TO count +1

UNTIL count > 3

SEND total TO DISPLAY

	

		7 A programmer is writing a program to calculate the average of a set of values input by the user. The user should be asked to input a value, then asked if they wish to add another one. If they answer Yes, then the program asks for another value, adds it to the total and adds one to the count of values added. This repeats until the user enters No. At this point the program divides the total by the count and prints the average value. Using a flowchart, write an algorithm to describe this process.

	[6]

		8 The algorithm below is part of a hangman game. It is supposed to ask for an input from the user to guess a letter that might be in the word. It then checks each letter in the word and prints found at position x or Not found. Using a trace table, dry run this algorithm using the word car and the input a.

	[8]

	
RECEIVE word FROM (STRING) KEYBOARD

RECEIVE guess FROM (STRING) KEYBOARD

SET flag TO 'Not found'

FOR index FROM 1 TO length of word DO

IF guess = letter in word at position index THEN SEND guess, 'found at position', index TO DISPLAY SET flag TO 'Found'

END IF

END FOR

IF flag = 'Not found' THEN SEND 'Not found' TO DISPLAY

END IF

	

