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Praise for The Man Who Knew Too Much


‘A painful and slightly deranged story, a case history to illustrate Freud’s notion that modern man is a “prosthetic god”, immortalised by his technological appliances. It is guaranteed to make you feel tenderly towards the martyred Turing’


Observer


‘[Leavitt’s] description of Turing’s great paper on computable numbers really does explain what it was about and why it was important’


The Times


‘Turing . . . showed that no mathematical system can provide a general method for testing the truth or falsehood of its theorems’


Spectator


‘Alan Turing’s story will still fascinate those who come to it through this book’


Independent


‘A peculiarly British tragedy, where genius is subordinate to the status quo and conformity prized above all’


Time Out


‘Leavitt provides fascinating insights into cryptography’


Daily Telegraph


‘Advanced mathematics is a hard sell, but David Leavitt’s biography of Alan Turing … will give even the most innumerate reader an idea of the beautiful and fascinating world he is missing’


Economist


‘Leavitt provides a sympathetic novelist’s take on a brilliant eccentric’


Guardian


‘Leavitt deals decently with Turing’s maths . . . but the biography’s real strength is the sympathy Leavitt brings to describing his subject’s mental state. The repeated parallels he draws between Turing’s status as a homosexual and his writings on why artificial intelligence was not necessarily less intelligent for being un-human are deft and convincing’


Sunday Times


David Leavitt is the author of several novels, including most recently The Body of Jonah Boyd, and story collections. He teaches creative writing at the University of Florida, Gainesville, where he lives.




The Man Who
Knew Too Much


Alan Turing and the
Invention of the Computer


DAVID LEAVITT


[image: Image]




Dedication


For Mark—friend, comrade, partner




The Man Who
Knew Too Much




1


The Man in the White Suit


In Alexander Mackendrick’s 1951 Ealing comedy The Man in the White Suit, Alec Guinness plays Sidney Stratton, a dithery, even childlike chemist who creates a fabric that will never wear out or get dirty. His invention is heralded as a great step forward—until the owners of the textile mills at which he was employed, along with the members of the unions representing his fellow workers, realize that it will put them all out of business. Soon enough, these perennial antagonists join forces to trap Stratton and destroy his fabric, which he is wearing in the form of a white suit. They chase him down, corner him, and seem about to murder him, when at the very last moment, the suit begins to disintegrate. Failure thus saves Stratton from the industry he threatens, and saves the industry from obsolescence.


It goes without saying that any parallel drawn between Sidney Stratton and Alan Turing—the English mathematician, inventor of the modern computer, and architect of the machine that broke the German Enigma code during World War II—must by necessity be inexact. For one thing, such a parallel demands that we view Stratton (especially as portrayed by the gay Guinness) as at the very least a protohomosexual figure, while interpreting his hounding as a metaphor for the more generalized persecution of homosexuals in England before the 1967 decriminalization of acts of “gross indecency” between adult men. This is obviously a reading of The Man in the White Suit that not all of its admirers will accept, and that more than a few will protest. To draw a parallel between Sidney Stratton and Alan Turing would also require us to ignore a crucial difference between the two scientists: while Stratton is hounded because of his discovery, Turing was hounded in spite of it. Far from the failure that is Stratton’s white suit, Turing’s machines—both hypothetical and real—not only initiated the age of the computer but played a crucial role in the Allied victory over Germany in World War II.


Why, then, labor the comparison? Only because, in my view, The Man in the White Suit has so much to tell us about the determining conditions of Alan Turing’s short life: homosexuality, the scientific imagination, and England in the first half of the twentieth century. Like Stratton, Turing was naïve, absent-minded, and oblivious to the forces that threatened him. Like Stratton, he worked alone. Like Stratton, he was interested in welding the theoretical to the practical, approaching mathematics from a perspective that reflected the industrial ethos of the England in which he was raised. And finally, like Stratton, Turing was “hounded out of the world” by forces that viewed him as a danger, much as the eponymous hero of E. M. Forster’s Maurice fears that he will be “hounded out of the world” if his homosexuality is discovered. Dubbed a security risk because of his heroic work during World War II, Turing was arrested and tried a year after the opening of The Man in the White Suit on charges of committing acts of gross indecency with another man. As an alternative to a prison sentence, he was forced to endure a humiliating course of estrogen injections intended to “cure” him. Finally, in 1954, he committed suicide by biting into an apple dipped in cyanide—an apparent nod to the poisoned apple in one of his favorite films, the Disney version of Snow White and the Seven Dwarfs, and one which writers on Turing in subsequent years have made much of.


In a letter written to his friend Norman Routledge near the end of his life, Turing linked his arrest with his accomplishments in an extraordinary syllogism:




Turing believes machines think


Turing lies with men


Therefore machines cannot think





His fear seems to have been that his homosexuality would be used not just against him but against his ideas. Nor was his choice of the rather antiquated biblical locution “to lie with” accidental: Turing was fully aware of the degree to which both his homosexuality and his belief in computer intelligence posed a threat to organized religion. After all, his insistence on questioning humankind’s exclusive claim to the faculty of thought had brought on him a barrage of criticism in the 1940s, perhaps because his call for “fair play” to machines encoded a subtle critique of social norms that denied to another population— that of homosexual men and women—the right to a legitimate and legal existence. For Turing—remarkably, given the era in which he came of age—seems to have taken it as a given that there was nothing at all wrong with being homosexual; more remarkably, this conviction came to inform even some of his most arcane mathematical writings. To some extent his ability to make unexpected connections reflected the startlingly original—and at the same time startlingly literal—nature of his imagination. Yet it also owed, at least in part, to his education at Sherborne School, at King’s College during the heyday of E. M. Forster and John Maynard Keynes, and at Princeton during the reign of Einstein; to his participation in Wittgenstein’s famous course on the foundations of mathematics; and to his secret work for the government at Bletchley Park, where the necessity of contending with an elusive German cipher on a daily basis exercised his ingenuity and compelled him to loosen up his already limber mind.


The fallout of his arrest and suicide was that for years his contribution to the development of the modern computer was minimized and in some instances erased altogether, with John von Neumann, his teacher at Princeton, often being given credit for ideas that really originated with Turing.* Indeed, only after the declassification of documents relating to his work at Bletchley Park, and the subsequent publication of Andrew Hodges’ magisterial 1983 biography, did this great thinker begin to receive his due. Now he is acknowledged as one of the most important scientists of the twentieth century. Even so, most popular accounts of his work either fail to mention his homosexuality altogether or present it as a distasteful and ultimately tragic blot on an otherwise stellar career.


I first heard about Alan Turing in the mid-eighties, when he was often recalled as a sort of martyr to English intolerance. Although I had taken a basic course in calculus in high school, in college and afterward I’d made a point of avoiding mathematics. I’d made an even greater point of steering clear of computer science, even as I grew, like most Americans, increasingly dependent on computers. Then I started to read more about Turing, and to my own surprise, I found myself becoming as fascinated by the work he’d done as by the life he’d led. Within the daunting morass of Greek and German letters, logic symbols, and mathematical formulae that enwebbed the pages of his papers, there lay the prose of a speculative and philosophical writer who thought nothing of asking whether a computer could enjoy strawberries and cream, or of resolving an old and bothersome problem in logic by means of an imaginary machine writing 1’s and 0’s on an endless tape, or of putting the principles of pure mathematics to the practical goal of breaking a cipher.


Alan Turing bridged the gap between the delightfully useless and (for most people) remote landscape of pure mathematics and the factory world of industry in which the ability of a machine to multiply together giant prime numbers, or go through tens of thousands of possible letter substitutions in search of a match, or assist in the engineering of a bridge, meant the difference between financial success and failure, and in some cases between life and death. Yet it would be misleading to claim that Turing saw it as his duty or calling to effect such a bridging; on the contrary, the road he took from mathematical logic to machine building was an accidental one, and the only map he used was the one provided by his very particular, in some ways peculiar, in every way eccentric brain. He was the polar opposite of a company man, and had he been, in some sense, more “normal,” he might never have made the advances that he did. It was his status as an outsider that allowed him to make the creative leaps that marked his career, and changed the world.


In a brief recollection published in the late fifties, Lyn Irvine, a novelist and the wife of the mathematician Max Newman, wrote of Turing, “Alan certainly had less of the eighteenth and nineteenth centuries in him than most of his contemporaries. One must go back three centuries (or on two perhaps) to place him….” Her recognition of Turing as a figure who belonged to the past and the future is an insightful one, in that it emphasizes his failure to find a place for himself in the age in which he was born. “He never looked right in his clothes,” she adds a few paragraphs later,




neither in his Burberry, well-worn, dirty, and a size too small, nor when he took pains and wore a clean white shirt or his best blue tweed suit. An Alchemist’s robe, or chain mail would have suited him, the first one fitting in with his abstracted manner, the second with that dark powerful head, with its chin like a ship’s prow and its nose short and curved like the nose of an enquiring animal. The chain mail would have gone with his eyes too, blue to the brightness and richness of stained glass.





The alchemist took logical principles, wire, and electronic circuits, and made a machine. The knight defended the right of that machine to a future.


If only he had been able to save himself.


*Martin Davis must be credited with setting the record straight on this account.
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Watching the Daisies Grow


1.


He was a child of empire, and of the English middle class. His father, Julius, was in the Indian civil service, and it was in Chatrapur, near Madras, that Turing was conceived. Julius and Ethel Sara Turing then returned to England, where their second son was born on June 23, 1912, in a nursing home at Paddington. His full name was Alan Mathison Turing. According to his mother, “Alan was interested in figures—not with any mathematical association—before he could read and would study the numbers on lamp posts, etc.” He also showed a fondness for inventing words: “quockling” for the noise made by seagulls fighting over food, “greasicle” for “the guttering of a candle caught in a draught,” “squaddy” for squat and square. He seems to have had a hard time grasping the principle of the calendar, however, and later admitted that as a small child he was “quite unable to predict when [Christmas] would fall. I didn’t even realize that it came at regular intervals.”


When he was six, he was sent to a small school called Hazelhurst. Already he had begun to show an incipient interest in science, once, again according to his mother, carefully concocting “a mixture in which the chief ingredient was pounded dock leaves for the cure of nettle stings, the formula for which he wrote down in all seriousness with a sense of its importance.” He also set out to compile an “encyclopaedio” [sic] and at eight wrote what his mother calls “the shortest scientific work on record,” About a Microscope, the entire text of which consisted of the line “First you must see that the lite is rite.” Mrs. Turing goes on to report, rather modestly, that she herself taught him long division, noting that “as a child he always sought to know underlying principles, and apply them. Having at school learnt how to find the square root of a given number, he deduced for himself how to find the cube root.” A drawing of him that she made in the spring of 1923 shows young Alan standing on the hockey field, stick in hand, bent over to gaze at some flowers—the caption reads, “Hockey, or Watching the Daisies Grow”—while a Hazelhurst end-of-term song included a couplet as indicative of his talents as of his attitude toward games:




Turing’s fond of the football field


For geometric problems the touch lines yield.





In 1922 he received as a gift a book called Natural Wonders Every Child Should Know, by Edwin Tenney Brewster. In explaining biology, evolution, and nature, Brewster used the metaphor (very much contrary to his title) of machines. The idea that the body—and particularly the brain—could be thought of as a machine stayed with Turing and influenced the course of his future work. Brewster’s book may also have jump-started his allergy to imprecision, evidenced when he complained in a letter to his brother, John, that the mathematics master at Hazelhurst had given “a quite false impression of what is meant by x.” As his mother explains, the master’s determination to pin x “down to something much too determinate and concrete for Alan’s dawning logician’s mind” disturbed her son at least in part because he feared that the other boys in his form might be misled.
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“Hockey, or Watching the Daisies Grow,” drawn by Sara Turing and sent to Miss Dunwall, matron at Hazelhurst School, in the spring of 1923. (King’s College, Cambridge)


After Hazelhurst, he was sent to Sherborne, one of the original public schools and the subject of Alec Waugh’s 1917 novel The Loom of Youth. Like most public schools, Sherborne aspired to be what E. M. Forster called a “world in miniature,” striving to invest in its students the political and social values of empire-building Britain and replicating most of its hypocrisies, prejudices, and double standards. Sexual experimentation, as well as romances between older and younger boys, figured prominently in the life of the public schools, even as their administrations decried such behavior as indecent. Indeed, in 1908 C. K. Scott-Moncrieff, later to become the first English translator of Proust’s À la recherche de temps perdu, was expelled from his own public school, Winchester, after he published a story called “Evensong and Morwe Song” in New Field, the school’s literary magazine. The story dealt explicitly with romantic and sexual intrigue among male students, as well as the violent reaction of the headmaster once the intrigue is exposed.


Turing’s first term at Sherborne began just as the general strike of 1926 was breaking out; he had spent the summer in France, and as no trains were running, he had to bicycle the sixty miles to Sherborne from Southampton, a labor he undertook cheerfully and with no great anxiety. According to a report by his housemaster, Mr. O’Hanlon, his mathematics, in which he had started out well, was by the summer term of 1927 “not very good. He spends a great deal of time in investigations in advanced mathematics to the neglect of his elementary work.” Thus he took the time to work out, entirely on his own, Gregory’s series for tan-1x, without realizing that Gregory had beaten him to the punch by two centuries. As Mrs. Turing recalls, this discovery “was a cause of satisfaction to Alan himself. . . . On his asking if the series was correct, Colonel Randolph, his mathematics master, at first thought Alan must have got it from a book in the Library.” The colonel later told his mother that despite its originality, Turing’s form master “complained that his work was so ill-presented that he ought to be sent down.”


Mr. Nowell Smith, the headmaster at Sherborne, called him “the Alchemist,” in part because of a report from the end of the Michaelmas term of 1927 in which O’Hanlon wrote, “No doubt he is very aggravating: and he should know by now that I don’t care to find him boiling heaven knows what witches’ brew by the aid of two guttering candles on a naked windowsill.” According to Mrs. Turing, “Alan’s only regret was that Mr. O’Hanlon had missed seeing at their height the very fine colours produced by the ignition of the vapour given off by super-heated candle grease.” Had the wind blown the candle out, the result would have been, to borrow Turing’s own term, a “greasicle.” Of course, no one could have foreseen the ominous relevance that the term “witches’ brew” would have both for Turing’s life and for his death.


It was at Sherborne that he first began to display the stubborn literal-mindedness that would later get him into so much trouble even as it led to some of his most startling intellectual advances. For instance, when asked in an examination, “What is the locus of so and so?” (the shorthand is his mother’s), instead of providing the expected proof, he simply wrote, “The locus is such and such.” Later, when Mrs. Turing asked why he had not bothered to write out the proof, he replied that all he had been asked was “What is the locus?” That question he had answered. He was simply doing what he had been told.


Such episodes punctuate his life. During the Second World War, he enrolled in the infantry section of the home guard so that he could learn to shoot. Asked on a form, “Do you understand that by enrolling in the Home Guard you place yourself liable to military law?” he answered no, since he could conceive of no advantage to be gained in answering yes. He underwent the training and became a first-class marksman, his friend Peter Hilton later recalled, but as the war drew to a close, he lost interest in the home guard and stopped attending parades, at which point he was summoned before the authorities to explain his absences. Naturally the officer interviewing him reminded him that as a soldier it was his duty to attend parades, to which Turing replied, “But I am not a soldier.” And he was not. Because he had answered no to the question on the form, he was in fact not subject to military law, and hence under no obligation to attend parades. As Andrew Hodges observes, this “Looking Glass ploy of taking instructions literally” led to a similar ruckus when Turing’s identity card was found unsigned; he argued “that he had been told not to write anything on it.”


Of course, from the standpoint of mathematical logic, in each of these instances Turing was behaving with utmost correctness. Mathematical logic is distinct from ordinary human discourse in that its statements both mean what they say and say what they mean, which is why a sentence like “Don’t worry about picking me up, I’ll just walk home through the sleet on my bad leg” is unlikely to find its way into a logic textbook. Star Trek’s Mr. Spock was notoriously insensitive to implication, double entendre, and passive aggression, and there was more than a touch of Mr. Spock in Turing, who often got into trouble because of his inability to “read between the lines.”


All told, he did not do badly at Sherborne. He was a passable athlete, and though on one occasion he had to contend with a master who shouted, “This room smells of mathematics! Go out and fetch a disinfectant spray!” his teachers and his fellow students as a rule appreciated his talents and encouraged him in them. (The teachers, however, complained routinely that his work was untidy.) He even made a few friends, among them Victor Beuttell, whose father, Alfred Beuttell, had in 1901 invented something called the “Linolite electric strip reflector lamp.” In 1927 Beuttell was at work on a new invention, the “K-ray Lighting System,” which was intended to provide uniform illumination for pictures or posters. When he asked Turing to help him find a formula for determining what should be the proper curvature of the glass used, the boy not only came up with one immediately but pointed out that the thickness of the glass would also affect the illumination—something no one else had noticed. Beuttell gratefully made the necessary changes, and the lighting system was soon put into production.


A few years later, at Cambridge, Turing would give his friend Fred Clayton “the impression that public schools could be relied upon for sexual experiences.” How much experience he actually had at Sherborne remains unclear, despite an ambiguous reference, in Mrs. Turing’s memoir, to his having kept a “private locked diary” that another boy “out of mischief or from some other motive” stole and forced open. The unnamed perpetrator “irreparably damaged the book, in which was probably entered mathematical research. This piece of wantonness has deprived us of valuable records from which his early development might have been traced.” Mrs. Turing concludes by recalling that the loss “very much distressed Alan” but does not consider what “other motive” might have been at play.


Turing’s closest friend at Sherborne was Christopher Morcom, a boy, like him, prodigiously gifted in the sciences, whom he met in 1928. Their relationship blossomed along the classic trajectory of nineteenth-century “romantic friendship,” marked by flurries of rhapsodic emotion—Turing wrote that he “worshipped the ground [Morcom] trod on”—but with a dose of mathematics thrown in; that is to say, when they were together, the boys were more likely to talk about relativity and the value of π—which Turing, in his spare time, had calculated to thirty-six decimal points—than about poetry. Despite their seemingly dry subject matter, these conversations hummed, at least for Turing, with poetic intensity. Ironically, a few decades earlier an American doctor had recommended the study of mathematics as a cure for homosexuality.


Christopher Morcom was probably not homosexual. Had the relationship progressed beyond Sherborne School to Cambridge, where Morcom had won the place at Trinity College that Turing coveted, it might well have come to the same end that met so many of his friendships, with the physical advance gently but firmly repulsed. But then in 1930, before he was even able to begin Trinity, Christopher Morcom died of tuberculosis. The loss devastated Turing. “I feel that I shall meet Morcom again somewhere and that there will be some work for us to do together,” he wrote to his mother, “as there was for us to do here. . . . It never seems to have occurred to me to make other friends besides Morcom, he made everyone else seem so ordinary.” Mrs. Turing herself might have been saying more than she realized when in a note to Morcom’s mother, who had let Alan have some of Christopher’s things, she wrote that her son was “treasuring with the tenderness of a woman the pencils and the beautiful star map and other souvenirs you gave him.”


Not surprisingly, the loss of this beau ideal had the effect of fixing in Turing’s imagination an ideal of romantic love before that ideal could have time either to sour or to transmute itself into an adult relationship. In E. M. Forster’s novel Maurice (1914), the eponymous hero’s love for Clive Durham first resolves into a sustained and presumably sustainable partnership (but, significantly, one that excludes sex, at Clive’s insistence) and then dissolves into rancor when Clive decides to marry. Turing, by contrast, was never given the chance to follow his attraction to Chris Morcom through to whatever its inevitable outcome might have been. Perhaps as a result, he spent much of the rest of his short life seeking to replicate this great and unfulfilled love.


In the fall of 1931 Turing matriculated at King’s College, Cambridge, where he was given rooms in Bodley’s Court. At first glance King’s might seem an ideal place for a young homosexual mathematician to have landed. The college was ornately beautiful, rich (thanks in part to the stewardship of the economist John Maynard Keynes), and renowned for an attitude of liberal tolerance. It had a very “gay” reputation. Forster, as infamous for his homosexuality as he was famous for his novels, lived within spitting distance of Turing’s rooms. Had he been less shy, Turing might have made Forster’s acquaintance and perhaps been invited to one of the evening gatherings in which the author, now getting on in years, read aloud from the manuscript of Maurice, which he had decided not to publish until after his death.* From Cambridge’s flourishing aesthetic and philosophical circles, however, Maurice himself, in Forster’s novel, feels shut out, and Turing in many ways bore a closer resemblance to Maurice than to his creator. Though he lacked Maurice’s blokishness, not to mention his instinct for practical life, he was, like Maurice, bourgeois and unfinished.* Also like Maurice, he felt no shame or doubt about his own homosexuality, and was even linked with another undergraduate for whom he had “longings” by some crossword puzzle clues in a King’s magazine. In the novel, it is Clive, Maurice’s first love and a self-proclaimed aesthete, who ends up backing away from his own homosexuality and marrying. Maurice, the more outwardly conventional of the pair, remains firm in his identity, as Turing would.


The climate for homosexual men and women in England in the 1930s was far from tolerant. “England has always been disinclined to accept human nature,” Mr. Lasker-Jones, the hypnotist whom he consults in order to go straight, tells Maurice—an assertion evidenced by the Labouchere amendment of 1885, which criminalized unspecified “acts of gross indecency” between adult men in public or private and which would remain law until 1967. Under the terms of the amendment, Oscar Wilde had been arrested, tried, and sent to Reading Gaol. More recently, the withdrawal from circulation of Radclyffe Hall’s lesbian novel The Well of Loneliness (1928) had provoked Forster to collect signatures in support of the book, which he privately loathed. (James Douglas of the Sunday Express had written of The Well of Loneliness, “I would rather give a healthy boy or a healthy girl a phial of prussic acid than this novel. Poison kills the body, but moral poison kills the soul.”) Even within the protective walls of King’s, to be as open about one’s homosexuality as Turing was either insane or revolutionary. Or perhaps it was simply logical— further evidence of his literal-mindedness, his obliviousness to the vagaries of “the world.” Turing neither glorified nor pathologized his own homosexuality. He simply accepted it and assumed (wrongly) that others would as well.


Despite this openness, or perhaps because of it, his experience of King’s was remote from the ones described by its more luminary graduates in the many memoirs and novels they would afterward write. The college was famous for its links to Bloomsbury, to the world of the arts and theater. Although Turing went to see a production of George Bernard Shaw’s play Back to Methuselah, however, he wasn’t the sort of undergraduate likely to be invited to tea parties at which Shaw might be a guest. He was too shy to lend intellectual cachet, too awkward and ill-dressed to qualify as a beauty. Timidity probably kept him from approaching the dazzling sophisticates with whom he ate his meals, some of whom belonged to the famous university conversation society known as the Apostles. (Its members included Forster, Bertrand Russell, John Maynard Keynes, Lytton Strachey, Ludwig Wittgenstein, and Leonard Woolf.) Turing was not asked to join. Nor was he asked to join either the play-reading Ten Club or the Massinger Society, the members of which talked philosophy late into the night. Forster’s Cambridge novel, The Longest Journey (1907), opens with a similar gathering: Ansell, Rickie, and their friends sit before a fire, arguing over whether a hypothetical cow remains in a field after her observer leaves (a variation on the old “if a tree falls in a forest” game). Their dialogue is at once flirtatious, idealistic, and rambunctiously boyish. Then Rickie says, “I think I want to talk,” and tells the story of his youth. Turing, even if he had been invited to one of these meetings, would probably have been too shy to make such a claim on other people’s time.


The problem was not that entrée into such circles was by definition closed to mathematicians: the number theorist G. H. Hardy (also homosexual) and “Bertie” Russell traveled in much the same milieu as Forster and Keynes. Both, however, possessed a worldliness and savoir faire that Turing could not hope to match. Instead, he stood on the sidelines, and watched, and read. Among other things, he read Samuel Butler’s Erewhon (1871), with its warning against machines taking over the world from mankind. By nature a nonconformist, he flouted Cambridge’s traditional division between aesthetes and athletes, and took up rowing. (He was in the college trial eights in 1931, 1933, and 1934.) He also took up the violin (after a fashion). He read The New Statesman and came under the influence of the King’s economist Arthur Pigou, who, along with Keynes, advocated more equal distribution of wealth. He joined the Anti-War Council, the purpose of which was to organize chemicals and munitions workers to strike if war was declared, and gave a talk on “Mathematics and Logic” before the Moral Science Club. True, he did not travel with the Lytton Stracheys of his day, choosing instead to forge friendships (one of them sexual) with boys who, like him, were interested in the sciences, even if, unlike him, they knew how to tie their ties properly.* And yet he was as much a citizen of King’s as Risley, the Wilde-like pundit (modeled on Strachey) who so dazzles and intimidates Maurice. “At Trinity he would have been a lonelier figure,” Hodges writes. Nor did Trinity welcome questioning as King’s did. If Turing got as far as he did in mathematics, it was because, in Hodges’ words, he was willing to “doubt the axioms,” and that willingness was an essential part of the King’s legacy.


To the extent that King’s preached a philosophy, it was a creed of moral autonomy that had its origins in the philosophical writings of G. E. Moore (1873–1958) and, in particular, his Principia Ethica (1903). Moore’s refutation of absolute idealism and advocacy of “goodness” as a simple, self-defining quality that should serve as the basis for daily conduct provided an ethical underpinning for the philosophy of the burgeoning Bloomsbury movement and put the crowd at King’s at a significant remove from the English intellectual mainstream. As John Maynard Keynes would later recall, while he and his fellows accepted “Moore’s religion, so to speak,” they discarded his “morals.” They were thus able to transform Moore’s somewhat quaint utopianism into a credo of sexual and aesthetic liberation, according to which “nothing mattered except states of mind, our own and other people’s of course, but chiefly our own. These states of mind were not associated with action or achievement or with consequences. They consisted in timeless, passionate states of contemplation and communion, largely unattached to ‘before’ and ‘after.’” Keynes is notably careful to elide gender specification when he adds, “The appropriate subjects of passionate contemplation and communion were a beloved person, beauty and truth, and one’s prime objects in life were love, the creation and enjoyment of aesthetic experience and the pursuit of knowledge. Of these love came a long way first.”


Nor did such a philosophy exclude mathematics. Russell’s influence is obvious in Keynes’s assertion




I have called this faith a religion, and some sort of relation of neo-platonism it surely was. But we should have been very angry at the time with such a suggestion. We regarded all this as entirely rational and scientific in character. Like any other branch of science, it was nothing more than the application of logic and rational analysis to the material presented as sense-data. Our apprehension of good was exactly the same as our apprehension of green, and we purported to handle it with the same logical and analytical technique which was appropriate to the latter*…. Russell’s Principles of Mathematics came out in the same year as Principia Ethica; and the former, in spirit, furnished a method for handling the material provided by the latter.





Keynes then gives an example that is as extraordinary for its appropriation of the language of mathematical logic as for its evasion (once again) of gender:




If A was in love with B and believed that B reciprocated his feelings, whereas in fact B did not, but was in love with C, the state of affairs was certainly not so good as it would have been if A had been right, but was it worse or better than it would have become if A discovered his mistake? If A was in love with B under a misapprehension as to B’s qualities, was this better or worse than A’s not being in love at all? If A was in love with B because A’s spectacles were not strong enough to see B’s complexion, did this altogether, or partly, destroy the value of A’s state of mind?





Clearly this world, with its spectacled A’s and good (or bad) complexioned B’s, was one in which a homosexual mathematician should have thrived. Cambridge in general (and King’s in particular) provided an ideal environment for intellectual and erotic experimentation, encouraging dissent while protecting the incipient dissident from the sort of violent counterreaction that his ideas and behavior might have provoked in a more public forum. None of this, in other words, was real—and as a testing ground, it allowed these young men to flex the muscles with which they would eventually challenge British complacency. “We entirely repudiated a personal liability on us to obey general rules,” Keynes writes. “. . . This was a very important part of our faith, violently and aggressively held, and for the outer world it was our most obvious and dangerous characteristic.” Such a philosophy jibed well with Forster’s famous ethic of personal relations, which he voiced most controversially when he asserted that, given the choice between betraying his friend or his country, he hoped he would have the courage to betray his country. His was “the fearless uninfluential Cambridge that sought for reality and cared for truth,” as he wrote in an introduction to The Longest Journey, yet it was also the Cambridge that took for granted its own elite removal from the ordinary world, and if Turing, as Hodges shows, was a less than ideal citizen of this Cambridge, it was at least in part because Sherborne’s “dowdy, Spartan amateurism,” as well as “its anti-intellectualism,” had contributed to make him a man who “did not think of himself as placed in a superior category by virtue of his brains.” One suspects that Turing would have appreciated the much more even-keeled portrait of the university that the novelist Forrest Reid provided in his 1940 memoir Private Road, in which he wrote plainly, “Cambridge, I cannot deny, disappointed me.”


Indeed, it is in his mathematical research, more than in the record of his life, that one sees most vividly the fruits of Turing’s tenure at King’s. His initial work was in pure mathematics, specifically group theory. (A 1935 publication has the daunting title “Equivalence of Left and Right Almost Periodicity.”) Early on, as at Sherborne, he was proving what had already been proven: “I pleased one of my lecturers rather the other day by producing a theorem,” he wrote to his mother in January 1932, “which he had found had previously only been proved by one Sierpinski, using a rather difficult method. My proof is quite simple so Sierpinski is scored off.” (The theorem was probably one from 1904, concerning lattice points.) A course on the methodology of science, given in 1933 by the astrophysicist Arthur Eddington (1882–1944), took him in the same direction, leading him to undertake— and find—a proof for why measurements, when plotted on a graph, tend to form the famous “bell curve” of statistics. Alas, Turing soon discovered that his result—the “central limit theorem”—had also already been proven, in 1922. His failure to check before starting off reflected, once again, both his solitariness and his tendency to be reckless. Nonetheless, he was encouraged to include the result in his dissertation, “On the Gaussian Error Function,” the bulk of which he had finished by the end of 1934, and on March 16, 1935, on the basis of this dissertation, he was elected a fellow of King’s College. Because he was still only twenty-two, a bit of doggerel circulated in Sherborne circles:




Turing


Must have been alluring


To get made a don


So early on.





The fellowship brought with it £300 per annum—not a lot, but enough to keep him going while he conducted his research. It was at this point that he first started to think about one of the core problems of mathematics: the Entscheidungsproblem, or, as it was known in English, the decision problem.


2.




Turing believes machines think


Turing lies with men


Therefore machines do not think





When Alan Turing included this mordant syllogism in a 1952 letter to his friend Norman Routledge, he was not only alluding to the fearful possibility that his behavior would lead to the suppression of his ideas; he was also calling up—particularly through his use of the locution “to lie with”—the famed “liar’s paradox.” This paradox can be traced back to the fourth century BC, when the Cretan philosopher Epimenides declared, “All Cretans are liars, as a Cretan poet has told me.” Later Eubulides refined (which in mathematics often means generalized) this paradox to the statement “I am lying,” and still later, in the fourteenth century AD, the French philosopher Jean Buridan refined it further by writing, “All statements on this page are false,” on an otherwise blank page.


In essence, the liar’s paradox works like this. Take the statement “All statements on this page are false.” If this statement is true, then the one statement written on the page—“All statements on this page are false”—is false. But if it is false, then the statement written on the page must be true—and it is on the page on which all statements are false . . . and on and on.* Stoned undergraduates have for years stared up at ceilings pondering the implications of the paradox, which I first learned about in the late 1960s, from an episode of Star Trek called “I, Mudd.” At episode’s end, the eponymous villain, Harry Mudd, incapacitates a superandroid called Norman by compelling him to process a version of the liar’s paradox. As Norman spits out the running loop of contradictions (“everything I say is a lie, therefore I am lying, therefore everything I say is the truth”), his speech gets faster and his voice gets higher in the manner of a tape being played at an accelerated speed. Eventually he more or less explodes, then shuts down—and that is the point. Absurd, contradictory statements are disabling. If you think about the liar’s paradox too much, like Norman, it’ll blow your mind.


Of course, a certain kind of astute reader who believes in the “real world” (someone, in fact, rather like Wittgenstein) will here raise an objection or two, pointing out that when I implement the liar’s paradox in its most watertight form—when I say, “I am lying”—I am neither telling the truth in the sense that I tell the truth when I say, “I am writing a book about Alan Turing,” nor lying in the sense that I lie when I tell my editor I’m further along on that book than I actually am. Instead, I am making an intellectual parry in an arena where statements are symbols, and where meanings matter less than the relations between them. This is the arena in which the battle to establish a solid foundation for mathematical thought has generally been fought—a battle in the course of which many luminaries have fallen. Still more mathematicians have refused to venture anywhere near the place. When I asked a Portuguese mathematician of my acquaintance whether he had any insight to offer me on the subject, he replied, “The foundations of mathematics are full of holes and I never felt comfortable dealing with such things.”


Full of holes. Earlier generations of mathematicians assumed that the stability of the landscape on which mathematical structures were built was guaranteed by God or nature. They strode in like pioneers or surveyors, their task to map the fundamentals and in so doing secure the territory that future generations would colonize. But then the holes— of which the liar’s paradox is merely one—started popping up, and the mathematicians started falling in. Never mind! Each hole could be plugged. But soon enough another would open, and another, and another . . .


Bertrand Russell (1872–1970) spoke for any number of idealistic mathematicians when he wrote in 1907,




The discovery that all mathematics follows inevitably from a small collection of fundamental laws, is one which immeasurably enhances the intellectual beauty of the whole: to those who have been oppressed by the fragmentary and incomplete nature of most existing chains of deduction, this discovery comes with all the overwhelming force of a revelation: like a palace emerging from the autumn mist as the traveller ascends an Italian hill-side, the stately storeys of the mathematical edifice appear in their due order and proportion, with a new perfection in every part.





I remember that when I read George Eliot’s Middlemarch in college, I was particularly fascinated by the character of Mr. Casaubon, whose lifework was a Key to All Mythologies that he could never finish. If Mr. Casaubon’s Key was doomed to incompletion, my astute professor observed, it was at least in part because “totalizing projects,” by their very nature, ramify endlessly; they cannot hope to harness the multitude of tiny details demanded by words like “all,” just as they cannot hope to articulate every generalization to which their premises (in this case, the idea that all mythologies have a single key) give rise. Perhaps without realizing it, my professor was making a mathematical statement—she was asserting the existence of both the infinite and the infinitesimal—and her objections to Mr. Casaubon’s Key hold as well for any number of attempts on the part of mathematicians to establish a Key to All Mathematics.


Consider, for instance, the never-written project of which G. W. Leibniz (1646–1716) dreamed at the end of the seventeenth century: to create a sort of encyclopedia comprising all human knowledge and then to translate it into mathematical symbols that could be manipulated according to rules of deduction. Leibniz called this program a calculus ratiocinator. “If controversies were to arise,” Russell wrote (ventriloquizing Leibniz), “there would be no more need of disputation between two philosophers than between two accountants. For it would suffice to take their pens in their hands, to sit down to their desks, and to say to each other (with a friend as witness, if they liked), ‘Let us calculate.’”


Doomed to failure though it was, Leibniz’s “grand program” did at the very least give rise to the discipline of symbolic logic as it was later developed by George Boole (1815–1864) and Gottlob Frege (1848–1925). Boole was a schoolmaster before he became professor of mathematics at Queen’s College, Cork, and perhaps for this reason his writings—principally The Mathematical Analysis of Logic, published in 1847—display little of Leibniz’s ostentation; on the contrary, an appealing modesty and remoteness from worldly ambition (also seen in Turing) are evident in his work. In essence, Boole’s objective was to establish a system for transforming logical propositions into equations. Thus, even as he employed real-world examples (white things, horned things, sheep, horned white sheep), his emphasis was in fact on the dissociation of the symbols he used from the situations they described; in his hands, episodes that required deductive reasoning or decision making were reduced to basic procedures in which the operative terms were “and” and “not,” while the white sheep and the horned sheep were w and h.* In such a system, Boole wrote, “every process will represent deduction, every mathematical consequence will express a logical inference. The generality of the method will even permit us to express arbitrary operations of the intellect, and thus lead to the demonstration of general theorems of ordinary mathematics.”


Frege* took Boole’s ideas a step farther, not just by complicating them but by using them to lay the foundations for “logicism,” the principal thesis of which was “that arithmetic is a branch of logic and need not borrow any ground of proof whatever from either experience or intuition.” His Begriffsschrift, published in 1879, sought to establish “a formal language, modeled on that of arithmetic, for pure thought.” With such a language, stories about the stuff of the world—teapots, cars, dogs, wicked queens, apples, not to mention Boole’s white sheep and horned sheep—could be distilled into strings of symbols the sense of which was completely beside the point. Frege also provided a strict definition of mathematical proof that has not been challenged, and in his 1884 Die Grundlagen der Arithmetik (The Foundations of Arithmetic) took on the question of what cardinal numbers actually are,† defining each number n as the class or set of all collections with n members: “7,” for example, would be defined as the set of all collections with seven members, everything from the Seven Dwarfs to the Seven Hills of Rome to the seven letters in the word “letters.” In such a system, as Russell later explained, a “particular number is not identical with any collection of terms having that number: the number 3 is not identical with the trio consisting of Brown, Jones, and Robinson. The number 3 is something which all trios have in common, and which distinguishes them from all other collections.” This definition was more rigorous than those which preceded it, in that it drew a distinction between the collection itself (Brown, Jones, and Robinson) and its category (3); it also contributed significantly toward Frege’s goal of constructing an axiomatic theory of arithmetic.


The first volume of Frege’s magnum opus, Die Grundgesetze der Arithmetik (The Basic Laws of Arithmetic), was published in 1893. In contrast to the Grundlagen, which included no symbolism and only sketches of proofs (as opposed to proofs that would meet Frege’s own rigorous standard), the Grundgesetze aspired to achieve the goal of using logic to establish a foundation for the practice of mathematics. But then on June 16, 1902, just as the second volume was about to go to press, Russell sent Frege a letter (in German) in which, having first praised the Grundgesetze, he noted, “There is just one point where I have encountered a difficulty.” He then effectively undermined Frege’s entire program.


The problem, in essence, had to do with the idea of sets of sets. Already Frege had defined the number 7 as the set of all sets with seven members: the Seven Deadly Sins, the Seven Hills of Rome, the Seven Dwarfs, etc. This set might be imagined as a box labeled “Sets with 7 Members.” A similar box might be labeled “Sets with an Even Number of Members,” another simply “Couples.” Some sets could be members of themselves, and some could not. Consider, for instance, the set of all dogs, of which my fox terrier, Tolo, is a member. Is this set a member of itself? No: as Russell put it, mankind is not a man, just as “all dogs” is not any particular dog. Other sets, however—for example, the set consisting of “things that are not a dog”—are members of themselves, since whatever “a thing that is not a dog” is, it is most emphatically not Tolo or any other particular dog. Likewise “the set of all sets with infinite members” is a member of itself, since it has infinite members.


This was where the “difficulty” entered in. Imagine a set labeled “Sets That Are not Members of Themselves.” Is this set a member of itself? If it is, then by definition it is one of the sets that are not members of themselves, in which case it is not a member of itself. If it is not, then it is not one of the sets that are not members of themselves, in which case it is a member of itself. Russell liked to phrase this cousin of the liar’s paradox, which would come to be known as Russell’s paradox or Russell’s antimony, by positing a male barber who daily shaves every man in his town who does not shave himself, and no one else. If the barber does not shave himself, he is one of the men who do not shave themselves, and thus must shave himself. On the other hand, if he does shave himself, he is one of the men who do shave themselves, and therefore he must not shave himself.


Russell’s letter devastated Frege, who had to hurry to insert an appendix into the second volume of the Grundgesetze acknowledging the contradiction (or as Russell called it, more ominously, the “Contradiction”). Naturally distraught, he replied on June 22,




Your discovery of the contradiction caused me the greatest surprise and, I would almost say, consternation, since it has shaken the basis on which I intended to build arithmetic. . . . It is all the more serious since, with the loss of my Rule V, not only the foundations of my arithmetic, but also the sole possible foundations of arithmetic, seem to vanish.





Subsequently Frege and Russell worked together to try to resolve the paradox or, short of that, to find a means of keeping it from infecting the foundational system that they were trying to build. Frege, however, soon gave up on this ambition, focusing his attention instead on the philosophy of language, while after much effort Russell did find a rather serpentine route around the paradox he himself had brought into the world. Unfortunately, the complexities of the jerry-rigging that Russell had to perform meant that his magnum opus—the three-volume Principia Mathematica, coauthored with Alfred North Whitehead, and describing a formalized mathematical system based on a set of axioms (general propositions the truth of which is self-evident) and rules of inference through which any piece of correct mathematical reasoning could be expressed*—was both unwieldy and difficult to use.


Still, the Principia Mathematica did work—and well enough that in 1928, when the German mathematician David Hilbert (1862–1943) gave a famous address calling for proofs of the completeness, consistency, and decidability of mathematics, PM, as it was commonly called, provided the testing ground on which Kurt Gödel and, later, Alan Turing tried their hands. Gödel tackled completeness and consistency, Turing decidability. The results changed mathematics irrevocably— and took it in directions of which Frege had not dreamed.


3.


Hilbert’s ambition was to establish and secure the foundations of formalized mathematical systems. PM, for all its cumbersomeness, is the classic example of such a system, in that it was designed so that from its axioms and rules of inference any true mathematical sentence could be derived. Yet Hilbert’s program differed from Russell’s and Frege’s on two key philosophical points. First, Hilbert repudiated what Hardy called “the extreme Russellian doctrine, that all mathematics is logic and that mathematics has no fundamentals of its own,” allying himself instead with Kant, who argued “that mathematics has at its disposal a content secured independently of all logic and hence can never be provided with a foundation by means of logic alone.” Second, whereas Russell viewed logic and mathematics, in Hardy’s words, as “substantial sciences which in some way give us information concerning the form and structure of reality” and argued that “mathematical theorems have meanings, which we can understand directly, and this is just what is important about them,” Hilbert viewed mathematics as a formalized system, in which the elementary signs were drained of all meaning. Postulates and theorems would thus be regarded as strings of meaningless marks that could be put together, taken apart, and put together again in a new way simply by applying a preestablished set of rules.


Hilbert’s invocation of Kant provoked skepticism in Hardy, who made rather facetious fun of his faith in “concrete signs,” writing, “I had better state at once what is to me a fatal objection to this view. If Hilbert has made the Hilbert mathematics with a particular series of marks on a particular sheet of paper, and I copy them on another sheet, have I made a new mathematics? Surely it is the same mathematics and that even if he writes in pencil and I in ink, and his marks are black and mine are red . . .” For Hardy, the axioms of formalist mathematics could be likened to “the chessmen, the bat, ball and stumps, the material with which we play. . . . To use Weyl’s illustration, we are playing chess. The axioms correspond to the given position of the pieces; the process of proof to the rules for moving them; and the demonstrable formulae to all possible positions which can occur in the game.” But the game has no meaning in the sense that the king has no kingdom, the queen no lover, and the pawns no land to till; it is “cardinal in Hilbert’s logic that, however the formulae of the system may have been suggested, the ‘meanings’ which suggested them lie entirely outside the system, so that the ‘meaning’ of a formula is to be forgotten immediately it is written down.”
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