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PREFACE

The idea for this book began over four decades ago when Edward Teller began teaching physics appreciation courses at the University of Chicago.

Then, as now, Dr. Teller believes that illiteracy in science is an increasingly great danger to American society, not only for our children but also for our growing adult population.

On one hand, the future of every individual on this globe is closely related to science and its applications. Fear of the results of science, which has become prevalent in much of the Western World, leads to mistaken decisions in important political affairs. But this book speaks of no fears and of no decisions—only of the facts that can prevent one of them and indirectly guide the others.

From the perspective of this book, a second point is even more  significant. The first quarter of this century has seen the most wonderful and philosophically most important transformation in our thinking. The intellectual and aesthetic values of the points of view of Einstein and Bohr cannot be overestimated. Nor should they be hidden at the bottom of tons of mathematical rubble.

Our young people must be exposed to science both because it is useful and because it is fun. Both of these qualities should be taken at a truly high value.

Adults should be interested in science because it is a part of our cultural heritage and because the new technologies that are entering our society should be understood by as many of us as is possible.

It is our hope that this book will enable many otherwise-educated adults to catch up on the new physics so that they can properly contribute to the dialogue on the scientific and technological decisions that will shape our future. Also, we invite them to join us in an appreciation in the sheer joy of science.

The reader will find that equations are used in the text. Some writers avoid any and all equations, fearing that they will frighten off readers. We have deliberately included them to summarize the words in the text, and the lay reader need not be afraid to glance at them and even make a small attempt to decode them (the key to the code is always provided in the text). Like the sketches which also illustrate the words in this book, equations should be thought of as a form of summary.

 



To capture the essence of his lectures, Dr. Teller and his daughter, Wendy, began working on a manuscript. (As you will see, the footnotes in the text sometimes contain a dialogue between ET and WT.) They were joined in their effort by Wilson Talley (who also appears in the footnotes, joining the original WT).

The precipitating event that led to the completion of this book was an action by the Fannie and John Hertz Foundation. The Foundation, established by the founder of the Hertz Corporation and the Yellow Cab Company, began a series of experiments in undergraduate education, including students at primary and secondary schools. Among other projects, it was decided that Dr. Teller would be supported  in teaching an updated “Physical Sciences Appreciation” course to high school students and teachers in the Livermore Valley area of California. The course was sponsored by the Foundation, the University of California, Davis/Livermore Department of Applied Science, and the Lawrence Livermore National Laboratory. We are indebted to those literally hundreds of students, as well as the thousands who have heard Dr. Teller speak on the appreciation of science over the past decades.

Along the way to completing this book, we owe a particular debt to several individuals. Paul Teller, Edward’s son, read portions of the manuscript. Joanne Smith, Patty French, and Judy Shoolery took dictation, typed, and retyped various parts. Helen Talley, Wilson’s wife, entered much of the original manuscript into the Macintosh and then gamely read subsequent versions for intelligibility. Because the “proof of concept” of the book was the course given at Livermore, we should credit Sue Anderson, Matt DiMercurio, Tom Harper, Barbara Nichols, Jaci Nissen, Maria Parish, Kathryn Smith, and Charlie Westbrook for their assistance in keeping that activity on line.






PROLOGUE—A WARNING


“. . . Denn die Bücher ohne Formeln
 Haben meistens keinen Sinn . . . ”
 —From an apocryphal adaptation1
 of the Three Penny Opera




I will use mathematics because physics without mathematics is meaningless. Some readers don’t know mathematics so I will try not to use mathematics without explaining it, and those readers who already know it will have to be patient and might even enjoy it, since I will try to explain in an unusual way. I want to warn you—I will say quite a few things that everybody understands and I will say a few things that nobody understands and even some things that nobody can understand. I take this liberty because it is an actual picture of what scientists do. If somebody follows everything I say (it may   happen) I will be very pleased. But I do not expect it, because the world is usually so put together that everyone runs into something he doesn’t understand and experiences the limit of what he can understand. I would like to demonstrate that these limits exist.

I have one more philosophical (i.e., irrelevant) remark. It is often claimed that knowledge multiplies so rapidly that nobody can follow it. I believe that this is incorrect. At least in science it is not true. The main purpose of science is simplicity and as we understand more things, everything is becoming simpler. This, of course, goes contrary to what everybody accepts.

I will start by explaining Einstein which is considered the most complicated of tasks. Nobody can understand Einstein. An American soap advertisement claims its product is 99.44% pure. This, in America, is a very good standard. I claim that 99.44% of the western intellectuals have no idea what Einstein’s theory is, what it means. I want you to join the remaining 0.56%.

I claim that relativity and the rest of modern physics is not complicated. It can be explained very simply. It is only unusual or, put another way, it is contrary to common sense.

The human mind is made in such a way that if I say something that you think is absurd the automatic reaction is that your earflaps come down and you stop listening. You should make an effort and continue to listen, remembering that I am going to say things that are “obviously” wrong; in fact, they are true.






Chapter 1

RELATIVITY

 Space and Time of the Physicist


In which a simple, absurd but correct proposal
 of Einstein’s is described which establishes
 the framework for physics.



I begin with the theorem of Pythagoras. As you probably know, Pythagoras was a Greek who lived in southern Italy. He was a philosopher, which, at that time, meant he was also a mathematician. He was a physicist. Unfortunately, he became involved in politics and therefore got into trouble. (In that, as in many other regards, some followed in his footsteps.)

The theorem of Pythagoras was known to the Babylonians a thousand years before Pythagoras, but to our knowledge Pythagoras was the first to prove it. The proof I will give is different from the one that Pythagoras found. It is also not precise, but it can be made precise if anybody is really interested in precision.

In Figure 1, we have a triangle with sides of length a, b, and c. The sides a and b form a right angle. Squares have been drawn on each of the sides. The area of the square constructed on the side of length a is a2 (a2 means a times a). Similarly, the area of the square constructed on the side of length b is b2 and the area of the square constructed on the side of length c is c2. The theorem of Pythagoras says that a2 + b2 = c2, that is, the sum of the areas of the two smaller squares is equal to the area of the big square.
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Figure 1. The Pythagorean theorem says that the sum of the squares of the legs of a right triangle is equal to the square of the hypotenuse.

To prove the theorem I draw two equal squares as in Figure 2. From each I will subtract four triangles, all equal in size but arranged differently. The four triangles are equal in area and the two big squares are equal in area, so the shaded area in the first square must be equal to the shaded area in the second square. Now the little square in Figure 2a has an area of a2 and the larger square has an area of b2. The shaded area in Figure 2b has an area of c2. Thus we see that a2 + b2 = c2.

The next statement, which we shall not prove, is, in a way, much more difficult, in a way much simpler. What is simple, what is difficult is different for different people.

As an introduction I want to draw in Figure 3 what is known as a Cartesian Coordinate system, named after the French philosopher Descartes. We have two perpendicular lines on a plane. Suppose we have a point labeled P. If one starts at the intersection of the two lines, called the origin, one can reach P by moving a certain distance x along the horizontal line and then moving a certain distance y, parallel to the vertical axis. Then the two numbers x and y determine the point P. According to Pythagoras, the distance r between the point P and origin is r2 = x2 + y2.
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Figure 2. Copies of the triangle of Figure 1 can be rotated and flipped without changing the area. We can then rearrange these copies as in the two large squares to demonstrate that (a) the square of side a plus the square of side b will equal (b) the square of side c.
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Figure 3. In the Cartesian coordinate system, the point P is reached by moving x units along the horizontal axis and y units up the vertical axis.

Unfortunately, space has three dimensions. If you want to fix a position in space and if you start at some “origin,” then you have to say how far you go north, how far you have to go east, and how far you have to go up to reach the point. These three dimensions will be called x, y, and z. Now I ask the question: how far have I gone from the origin if I have gone x to the north, y to the east, and z up to the point P? The answer is r2 = x2 + y2 + z2.


To see how I get this answer, I look at point P’, directly below P in Figure 4. By using Pythagoras, I know that the distance r’ between P’ and the origin is obtained from (r’)2 = x2 + y2. Now I consider the three points P, P’, and the origin. If I connect these points with lines, they form a right-angled triangle and I can apply Pythagoras again, obtaining the answer

r2 = (r’)2 + z2 = x2 + y2 + z2.
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Figure 4. The Pythagorean theorem allows us to find r, the distance from the origin to the point P, in three dimensions as well as two.
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Figure 5. Rotation of the axes x and y into x’ and y’, does not alter the distance from the origin to the point P; r is an invariant in this case.



So far I have dealt only with equations. Now I want to introduce an idea and this idea is an “invariant.” An invariant is a quantity that does not change if you do certain things. For example, the distance between two points is an invariant under certain conditions. Consider the distance r in Figure 5. I could change the coordinate system. I will rotate the x and y lines (or axes, as they are called) and get the new x’ and y’ axes which are perpendicular to each other. Then I can get to the point P by going a distance x′ along the x’ axis and then going a distance y′ parallel to the y’ axis.2 Then you can see that in the new coordinate system the numbers x′ and y′ which characterize P are different from x and y, but r remains the same. Therefore, I can say that I have an invariant (x′)2 + (y′)2 = x2 + y2 = r2. No matter how I rotate my coordinate system, I get the same value of r, even though my values for x and y have changed.

Having discussed a little mathematics, we can start to talk about relativity. I now will discuss events, instead of points. In order to specify an event, I need four numbers: x, y, and z to specify the position and t to specify the time of the event. Four numbers are needed to describe each point and therefore we are discussing four dimensions. You may think that I am cheating, because time is very different from space. You will soon see that time is not all that different from space and this is the main point of Einstein’s special relativity.

Let us start from the view that time and space are quite different. Suppose I am driving a car at 60 mph on a straight road. I push in my cigarette lighter and at the same instant I pass a hitchhiker. The cigarette lighter takes 15 seconds to pop out. I have two events; the first is my pressing the cigarette lighter in and the second is the cigarette lighter popping out. The hitchhiker will tell you (with few kind words for me) that the two events occurred 1/4 mile apart (since in 15 seconds, 1/4 of a minute, I have traveled 1/4 mile). I, on the other hand, will tell you that both events happened in the same place, about one foot from me, forward, and a little to the right. As far as I am concerned, I can say that the car is at rest and the world is moving backward.

The hitchhiker and I disagree on the distance between the two events. In this four dimensional world, in this geometry of space and time, r is no longer an invariant!

The circumstance that r is not an invariant was discussed very thoroughly several hundred years ago. This discussion is a part of what is called Galileo’s principle, which says that the laws of physics are the same whether you describe the events as seen by an observer at rest or an observer in motion. But while the distance r is no longer an invariant, the time t, 15 seconds, that has passed between the two events is an invariant. The time is 15 seconds according to the watch that the hitchhiker is using and according to the watch that I am using. On that we all agree. It was true from the beginning, whenever that happened, up to the year 1905.

In the year 1905, the view that time is an invariant was changed by Einstein. This is the absurdity that I will discuss, namely, the  time measured by me and the time measured by the hitchhiker are not the same. Einstein claims that the times don’t agree, but he also says that there exists, instead, a different invariant.

Take two events. Suppose that t is the time between the two events, as measured by some observer, whether it is by me or the hitchhiker or some other observer who moves with respect to both me and the hitchhiker. We will call the speed of light c, it is 3 X 1010 cm/sec. Then ct is the distance that light can travel in the time between the two events, for instance, in 15 seconds. That is a big distance, a little more than a dozen times the distance to the moon. We shall, as before, call the observed distance between the two events r. Then we take the distance ct, square it, and subtract from it the square of the distance between the two events. We have then (ct)2 - (r)2.

In Einstein’s theory, r is not an invariant, t is not an invariant, but (ct)2 — (r)2 is an invariant. This means that (ct)2 — (r)2 always has the same value, no matter whether I use my values for t and r or the hitchhiker’s values for t and r or some other observer’s values for t and r.

In the case we have been discussing from my viewpoint, (ct)2 is very large (about twelve times the distance to the moon, squared) and r2 is zero. From the hitchhiker’s point of view, r2 is (1/4 mile)2, which is very small compared to my value for (ct)2. Thus the difference between the time he observes and the time I observe is very small, so small that no one can measure it. So why all the fuss?

Let me jump to a case where Einstein’s theory makes all the difference in the world. Let us say, for simplicity, that the moon is one light second away. (Actually, its distance is a little more than one light second.) That means that light takes just one second to go from the earth to the moon. Now I will send a light beam to the moon. I have two events: the first is the light beam leaving the earth, the second is the light beam arriving on the moon. I take the first event to be my initial point; the second event is 1 second later and 3 X 1010 cm away. That is, c = 3 X 1010 cm/sec, t = 1 sec, and r = 3 X 1010 cm, so (ct)2 = (3 X 1010)2, r2 = (3 X 1010)2, and (ct)2—r2 = (3 X 1010)2 - (3 X 1010)2 = 0.

Since (ct)2—r2 is an invariant, then for every observer this expression must be zero. Imagine an astronaut who leaves at the same time as the light beam and travels at 1/2 the speed of light.3 For him the distance between the two events, which we will call r′, will be smaller. The time, t′, may also be different for him. But for him (ct′)2—(r′)2 = 0. This means that ct’ = r’. For our astronaut, the speed at which he sees light travel, r‘/t’ = c. We have our first absurd conclusion: the astronaut sees light traveling at the same speed as an observer on the earth. He ran after the light beam with 1/2 the speed of light. Common sense would suggest that he sees light moving ahead more slowly because he is running after it. However, if Einstein is right, light moves with the same velocity relative to any observer. No matter how fast you run after a light beam, it will gain on you and always gain with the same velocity. Thus the speed of light turns out to be an invariant.

The recognition that the velocity of light is the same for every observer was the outcome of an experiment designed to prove the opposite result. It is called the Michelson-Morley experiment. At the time of Michelson (up to 1887), people believed that light is a wave motion and that there is a substance in which these waves propagate, a substance that nobody had (or has) seen, called “ether.” It was assumed then that we move relative to the ether and that this motion should express itself in an apparent change in the velocity of light. This change is what Michelson and Morley wanted to measure.

In order to measure the possible difference in light velocity, Michelson set up a device that split a light beam. Part of the light traveled along the direction of the earth’s motion, the other part traveled perpendicular to the direction of the earth’s motion.

To understand the problem, consider the analogous problem of two boys who are equally good swimmers who race in a river 1 km wide. Boy A will swim across the river and back. Boy B will swim upstream to a point 1 km up the river and then swim downstream  1 km to the starting point. Suppose that the river flows at 4 km/hr and the boys swim at 5 km/hr. Which boy will win the race?

Boy B, when he swims against the river, is actually progressing with a difference which is 1 km/hr and he will take one whole hour to get one km upstream. On the way back, he comes with (4 + 5) km/hr, that is, 9 km/hr. He makes the return trip in 1/9 hour or 6 2/3 minutes. Altogether, he takes 1 hr 6 2/3 min.

What about Boy A who swims across the river? How do you add the velocity of 5 km/hr that the boy swims upstream aslant to the 4 km/hr that is the current of the river? We draw the right triangle shown in Figure 6. The triangle is formed by the 5 km/hr velocity of the boy and the 4 km/hr velocity of the river and gives a net velocity of 3 km/hr perpendicular to the current, since by Pythagoras’s theorem 32 + 42 = 52. The boy’s net velocity is 3 km/hr across the river. The river is only 1 km across and so he can swim across in 20 min and swim back in 20. He needs only 40 min and he wins the race easily.

In the actual case of the motion of the earth and propagation of light, the “boys” swim much faster and, by comparison, the “river of ether” is quite slow. So the difference in the race is small. But Michelson’s sensitive apparatus could measure it.

Michelson expected that, when he was racing his light beams, the “across” light beam would win. This did not happen. The race was a precise tie. The experiment was repeated again and again, from 1881 to 1887. The more it was repeated, the more precise the tie became. Light was always moving with the same velocity. What would be the situation if we assumed that light is not a wave moving through ether?
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Figure 6. To swim from point A to point C, the boy must swim upstream, as well as across the river.

Assume that instead of being a wave, light consists of particles. The light should move with light velocity relative to the source which emitted it—that is, the light should arrive at the same time whether it traveled against or across the moving ether. Thus, no surprise that the race was a tie. But this gave rise to more trouble.

We observe double stars which rotate around each other. We see them at a distance of many light years. We see these stars, if they are ten light years away, with a ten year delay. If we assume that light consists of particles, then the light from star B (in Figure 7), which is moving away from us, would arrive later than the light coming from star A. That is, the light would come toward us with light velocity minus the velocity with which star B is moving away from us, and the light from star A would come toward us at light velocity plus the velocity with which star A is moving toward us. Then the delay of light from star B would be more than the delay of light from star A, and the pattern of the motion of the double star, as we see it, would be very complicated.
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Figure 7. Binary stars offer us an opportunity to verify that light velocity does not depend on the velocity of the body emitting it.

But it isn’t complicated. We see both stars with almost the same delay. Thus the idea that the velocity of light must depend on the velocity of the emitter cannot be correct. Now we have seen that light does not behave like a wave propagated in “ether” nor does it behave as we expect particles to do.

We are in trouble with either hypothesis as long as we stick to the usual description of space and time. But, according to Einstein, either the wave theory or the particle theory would work.4 The velocity of light will appear the same to any observer, as long as (ct)2 —r2 is an invariant.

I have talked about a case where the invariant (ct)2—r2 is positive. In fact, I have talked about another case, the light beam traveling to the moon, where the invariant was zero. There is a third case where the invariant is negative.

Consider two events which as far as you know are precisely simultaneous. The one occurs in Tel Aviv, the other occurs in New York. Both events occur at the same instant, say, 12:00 A.M. Tel Aviv time and 6:00 P.M. New York time. Then for these two events t will be zero, r will be 6,000 miles. Then (ct)2—r2 will be negative. From this there follows a funny statement that Einstein himself made: Nobody can travel faster than light. Why?

If you believe that (ct)2 —r2 is an invariant, then I can show that it is impossible to travel faster than light. Assume you have two events that are not simultaneous. One happens a very short time after the other, but their distance is very great. Let us say the first event takes place on earth, the second event takes place on the moon, 1/10 sec later. What is the invariant? From our point of view, r is 3 X 1010 cm, t is 1/10 sec, ct = 3 X 109. Therefore the invariant is negative. Assume somebody could travel from the earth to the moon in 1/10 sec. As far as he is concerned, r is zero so (ct)2—r2 is positive. For us the invariant is negative, for him the invariant is positive and   therefore the invariant is not an invariant. If you believe (ct)2 —r2 is an invariant, then it follows that one cannot travel faster than light.

You might say “this is all very nice mathematics, but why should I believe that (ct)2—r2 is an invariant and that no one can travel faster than light?” We have made machines that accelerate particles to very high speeds. We find when we do this that, as the particles approach the light velocity, it gets harder and harder to accelerate them. You don’t know yet, from this chapter, what energy is, but the fact is that we can give the particles more and more energy without any limit, but cannot give arbitrarily more velocity. We just approach the velocity of light. There are very accurate measurements proving Einstein’s conclusion that no matter how you try to accelerate the particles, they won’t go faster than light. This conclusion is verified.

So you say, “The conclusion is verified. I’ll believe that, but why should I believe this invariant business? You haven’t verified the invariant in a direct fashion.” What scientists do is to make an assumption about how the world is put together, like the assumption that (ct)2—r2 is the same for all observers. Then, if this assumption can explain verified facts, like the fact that light seems to travel at the same velocity for every observer or that particles cannot be accelerated to light velocity, the scientists accept the statement: “(ct)2 —r2 is an invariant” as a fact, at least until somebody comes along with a conclusion from this statement that seems to be contrary to what actually happens in the world. So the best we can do is to say: “Accept the ‘fact’ that (ct)2—r2 is the same for all observers, because it leads to conclusions that agree with observations in the real world.”

I have difficulty drawing in three dimensions and even more difficulty drawing four dimensions. So I will draw only two dimensions in Figure 8, the t dimension and the x dimension. Consider the two points P and Q. These two points occur at the same time t = 0. Their separation is x. The invariant for these two points will be negative. The two points P and Q will be called spacelike because there is a spatial difference between them.

On the other hand, P’ and Q’ occur at the same place, but there is a time difference between them. The invariant for P′ and Q’ will be positive and the two points will be called timelike.
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Figure 8. The points P and Q are “spacelike,” because they occur at two different points in space; points P’ and Q’ are “timelike,” because they happen at different times.

In Figure 9 I have changed the t axis to the ct axis, that is, I plot on the vertical coordinate ct. I have drawn the line x = ct in Figure 9. Along this line, x = ct, the invariant is zero. The invariant is also zero along the line x = -ct. These lines, x = ct and x = -ct form what is known as the light cone.5


As you know, a cone is a point and straight lines radiating from this point in such a way as to include a fixed angle with one direction. I have not really drawn a cone, but I could have gone in the y direction or the z direction or any combination of x, y, and z directions; therefore, I am really talking about all the points or events which light could have reached in any direction. These points form the light cone. I will define regions, as pictured in Figure 9, as the future and the past. The points outside the light cone I will call the present, not just the points on the line t = 0, which was the way people thought before Einstein’s revolution. Why do we call points that are outside the light cone the present? Clearly a point like P has a positive t coordinate and seems to be in my future. However, one can show that as long as the invariant is negative, that is, as long as r is greater than ct, there will be an observer from whose point of view t will be zero. From his point of view P will be simultaneous with his present. He must move with respect to you with a velocity less than c to accomplish this.
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Figure 9. If we had included the y and z axes, the dashed lines would have formed a cone, the “light cone.” All events within the upper cone are the future; all those within the lower cone are the past; all those outside the light cone, such as P and Q, are in the present.

This is one of Einstein’s most famous statements. It is the first real statement of his original paper. He criticized the idea of simultaneity. He called his theory “relativity” and his prime example was that the statement “two events are simultaneous” is true relative to one observer, but may not be so relative to another observer. I have oversimplified the situation. Consider the points P and Q in Figure 9. They are spacelike with respect to me, that is, with respect to the  origin. With respect to each other they are timelike. Thus although the events P and Q are in my present, they may not be in the present of each other. Similarly, if I have two timelike events from my point of view, they may be simultaneous to each other.

Space and time are different in this sense, that the two timelike regions can at least be clearly separated into the future and the past. The spacelike regions form one continuous body and they cannot be naturally separated. We live in an assembly of stars, a hundred billion suns we call the Milky Way galaxy. There is another system of this kind known as the Andromeda Nebula. For the sake of simplicity, assume that the Andromeda Nebula is two million light years away; I always had the ambition to go there. (Actually, it is 1.8 million light years away, but this would make my numbers too complicated.) I want to go to Andromeda but, unfortunately, Einstein said that no one can move faster than light moves. My doctor says that it is unlikely that I will live two million years, so I cannot get there. Too bad for me.

But according to Einstein, I can get there in spite of what I have said. All I need to understand is the invariance of (ct)2—r2. I will take off in a spaceship and I will assume that, though I cannot go faster than light, I can go almost as fast as light. The engineers tell me that this cannot be done and the engineers are right—for now; maybe we will invent something yet. At any rate, engineering is engineering and we are discussing physics. Let me assume that I can go almost as fast as light and I will take just a shade longer than two million years to get there. That is, you, who stayed at home, believe that I took a little more than two million years to get there and that I have gone a distance of two million light years. This means that ct will be a little bigger than r, but if I am very close to the velocity of light, then ct will only be a very little bit bigger than r. Therefore, the invariant will be positive, but small.

How do I feel about it? I will say that my departure and arrival are two events that occur in the same place, namely, inside the spaceship. Thus r is zero. The invariant must be the same and therefore must be small. The ct must be small and t must be small. From my point of view, the time that has passed is small. I can make it!

Now comes the really interesting part. I go to Andromeda and look around, take some scientific notes, turn around and, again with very great speed, come back. Let us assume that I do all this in one year flat, my time. I hope that there will be a big reception in New York. I will be a hero for having been to Andromeda and having come back.

I shall be disappointed, because I come back and here on earth four million years have passed, two million while I was going and two million returning. All of you shall be dead. Anybody who talks as I do, Hungarian, German, or English, shall be dead. The human race will have evolved into something entirely horrible, but something they imagine to be better. I believe they will be very tolerant. They will understand me, I will not understand them; they will be interested in me and very kindly and gently put me in a zoo.

This is all clearly nonsense. Does the time actually pass more slowly for me? This is a complicated question. As I leave earth and get further and further away, I get signals from earth with greater and greater delay. I make corrections for these delays according to my own watch. When we compare time, I already take into account not what I as the astronaut see, but what I have obtained from the earth and how I have corrected it. It is this complicated situation that then gives the final comparison when, with mission accomplished, I arrive back home.

If all these corrections are made and if you from the earth observe, you will see that my watch moves very slowly; you will see that my heart beats very slowly. For me, it is the real time, but for you, who look at me from the earth, you have to say: “How funny, his movements are slow, his heart beats slowly, his watch has almost stopped!”

As I move away from the earth very fast, I see the people on the earth move away from me very fast. While you see that my heart has slowed down very greatly, I should see that your hearts have slowed down just as much. Why is it, then, that in the end result you have aged much more than I? Where is the asymmetry in our situations? Why is it that when I come back and we can compare  our clocks directly, it is I who have stayed young and you who have progressed in time four million years?

There are three occasions for lack of symmetry. While I travel at a uniform speed, there is no lack of symmetry, but when there is an acceleration, when I start to have a high speed, when I turn around in Andromeda, and when I stop at the end of the trip, these are the opportunities for asymmetries.

Now, two of these don’t count: when I start and when I stop. At those times we can compare clocks without any corrections; there can be nothing wrong. But when I turn around in Andromeda, I have a big acceleration and that is a physical effect, something I experience and you back home do not. At that point we cannot compare watches directly, only distantly and we must apply correction factors. That is where the effective asymmetry comes in. This situation, together with some other ideas that Einstein put forward later, are the elements from which Einstein’s magic created the theory of gravitation. I will return to this in a later lecture. For now it suffices to state that, while I turn around in Andromeda, the earth has jumped ahead of me four million years (from my point of view).

There is one more point that should be mentioned while we are discussing relativity. We have particles coming from outer space with very high energies and velocities very close to light velocity. These particles that arrive are stable particles, protons. As they hit particles in the air, nitrogen nuclei, for instance, they generate other particles, like mesons (called π mesons) which are unstable. These live only 10-8 seconds, that is, 10 times a billionth of a second. Then they turn into more stable mesons (called μ-mesons) with a lifetime of 2 X 10-6 seconds, that is, two millionths of a second. This life span has been measured in the laboratory. In two millionths of a second, a particle moving with approximately light velocity—3 X 1010 cm/ sec—could travel 6 X 104 cm or 0.6 km, yet these particles generated 10 km over our heads arrive down here. How do they do it? They should have vanished after a relatively short distance. The explanation for the mesons’ apparently long life is time extension. If you move along with the particle, it lives 2 × 10-6 seconds. If you view  the particle from the earth, its lifetime is extended—like my life time was in my travel to Andromeda. This is the most direct proof of extension in time predicted by relativity.

Now I can stop with good conscience. I have proved relativity, or at least I have indicated a way such a proof is usually given.

But have I convinced you? Do you understand? Relativity is unconventional—is it also absurd?

To understand means (in functional terms) to know your way around. In this sense, you do not understand, if you are a novice. Perhaps you are on your way to understanding.




QUESTIONS 

1. The proof in the text of the Pythagorean Theorem is incomplete. Improve it.

 



2. To make life easy on an astronaut, his craft accelerates at just one g until his velocity is approximately that of light. How long will this take?

 



3. In the Michelson-Morley experiment, the river’s current is analogous to the speed at which the earth moves, which is approximately 3 X 106 cm/sec. The speed of the swimmer is analogous to the speed of light which is 3 X 1010 cm/sec. If the distance of the race is one meter, calculate who wins the race and by how much.





Chapter 2

STATICS

The Science of No Motion


In which Archimedes takes a bath and thinks
 of buoyancy, vectors, and other concepts
 for which the Greeks, then, had no words.



In Chapter 1 we did not discuss physics. Instead, we discussed the framework into which physics seems to fit in a most appropriate way. The beginnings of what we now call physics can be easily traced back to the Greeks, although they were not interested in the erratic and “unnatural” behavior of matter in motion. Their interest was in statics.

Archimedes lived 200 years before Christ, which is quite a jump backward from Einstein. I discussed Einstein first because he clarified the geometry of space and time. In many things that I’m going to write later, I will have to refer back to him because he has made  physics simpler.6 You will see as we proceed that the laws of conservation of energy and the conservation of momentum become a single law if you look at them from the point of view of Einstein. The laws of electricity and the laws of magnetism become unified and simpler if you look at them from the point of view of Einstein. Basically, everything I’m going to say will become simpler if we understand Einstein.

While relativity applies to almost all parts of physics it is, in a sense, not physics. It belongs to the mathematical (or perhaps geometrical) framework into which physics fits. The most elementary part of true physics may well be statics, the manner in which forces balance. This is the field in which the Greeks were interested and in which the greatest Greek mathematician and scientist, Archimedes, made his permanent contribution to physics.

There is a good story about Archimedes, which I recently discovered was not true, but that will not prevent me from repeating it. It is true that Archimedes lived in the Greek town on Sicily called Syracuse. The ruler, Heron, was a friend of Archimedes. Heron hired a goldsmith to make a crown for him and when the crown was finished, Heron suspected that the crown was made of gilded silver, instead of gold. Heron would have beheaded the goldsmith if the crown was not gold, but he wanted to be sure whether or not he was cheated. He asked Archimedes to help him, but he would not allow the crown to be harmed. He demanded what is now called “nondestructive testing.”

To think about the problem, Archimedes decided to take a bath, since he did his best thinking in the bath.7 Archimedes filled the bath   to the brim, got in, and you won’t be surprised to hear that the water spilled. At this point, Archimedes jumped out of the bath and ran through the streets of Syracuse naked, yelling, “Eureka! I have found it!”

You may wonder what Archimedes had found. Perhaps, you say, he wanted a good excuse to split from the house before his wife found the mess in the bathroom. Actually, he could measure the weight of the water that the crown displaced. He knew the density of the water, so he could find the volume of the displaced water, which was equal to the volume of the crown. Since he could also measure the weight of the crown, he could divide this weight by the volume of the crown to find its density. Gold and silver have different densities, so he could find out whether the crown was made of gold or silver.

I cannot tell whether the goldsmith lost his head, because I do not know what Archimedes found (and, besides, the story is not true).

There is another solution to the problem which is more instructive and which is a proper part of statics. Undoubtedly, Archimedes was not the first to use this method, but he thought about it more clearly than anybody before him. The solution involved is buoyancy and the solution is called Archimedes’s principle. Take a crown and immerse it in water. Attach a string to the crown and measure its apparent weight while immersed. The pull on the string is not the same as in the absence of water. The water presses on the crown from all directions and, if you add up all the forces of the water pressure, you get the buoyancy which makes the crown appear lighter. Archimedes’s principle is that the crown will lose as much weight as the weight of the water it displaces. Now gold has a density 18 times the density of water and the weight of the immersed crown should be 17/18 of the weight of the free crown.

To prove Archimedes’s principle, imagine that the water that was displaced by the crown is put back into its original location. Now if you could attach a string to this “watery crown,” it would not pull on the string. If, instead of the “watery crown,” we put in a different solid having the same density as the water, the pull will  still be zero. Since the buoyancy depends only on the pressure, the “watery crown” should lose just as much weight as the gold crown.

Archimedes also worked with other inventions. He actually helped Syracuse in its military defense against the Romans. With his own hands, Archimedes managed to lift a big ship. He did this with levers and pulleys, but before we discuss levers, we must discuss vectors and forces.

The concept of a vector is something that Archimedes did not deal with, but it will be very important in understanding forces. A vector is usually defined as something that has a magnitude and a direction. That is a poor definition. I would like to give an example of a vector, namely a displacement. A displacement is characterized by two points in space, A and B, and an arrow from A to B (Figure 1). I add that all displacements are equal, no matter where they start, as long as they are parallel (point in the same direction) and have the same length.

Suppose I have two displacements, a and b (vectors are denoted by writing them in boldface). How can I add them? I will add them by transporting the start of b to the end of a. Then the sum of the two vectors will be the vector c which starts at the start of a and ends at the end of b, as in Figure 2.

Would it make any difference if I started with b and then added a? It would not make any difference. Draw the addition of a + b. If we rotate the figure by 180° around the midpoint of c, we get the addition of b + a = c with a change in the direction of the arrows (hence the “—” signs), as in Figure 3. This law of addition of displacements, that b + a = a + b, is called the parallelogram law, because a figure showing b + a and a + b forms a parallelogram.

[image: 011]


Figure 1. The arrow represents a displacement from the point A to the point B.


 [image: 012]


Figure 2. The vector c is formed by adding the displacements a and b; c = a + b.


[image: 013]


Figure 3. The law that c = a + b = b + a is called the “parallelogram law,” because the four displacements a, b, – a, and – b form a parallelogram.

A vector is a generalization of the concept of a displacement. (Generalization is a bad habit that physicists have picked up from mathematicians.) Physicists will tell you that forces are vectors. What they mean is that forces can be added (among other things) the same way in which displacements can be added.

Now a force is something that pushes or pulls in some direction with some strength. This definition sounds similar to the definition of a displacement, so it is not so surprising that forces are added together the same way displacements are. Still, it would be nice to have some sort of proof that the addition must be performed in the same way.

I will not prove that forces add like displacements, I will only indicate that all objects sharing some simple properties (like displacements and vectors) must add in the same way. I will do this in a very dirty manner, namely, by adding assumptions as I need them, but I will demand that all the assumptions be reasonable. This, you may say, is like the cook who decides to make dinner and, every time she8 realizes she needs something, runs to the store to get it. It is not a very efficient way to cook dinner, or to prove a theorem, but at least the cook understands why she will need each ingredient and hopefully we will understand why we need each assumption.
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