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Introduction



Mathematics is a vast subject and no one can possibly know it all. What one can do is explore and find an individual pathway. The possibilities open to us here will lead to other times and different cultures and to ideas that have intrigued mathematicians for centuries.


Mathematics is both ancient and modern and is built up from widespread cultural and political influences. From India and Arabia we derive our modern numbering system but it is one tempered with historical barnacles. The ‘base 60’ of the Babylonians of two or three millennia BC shows up in our own culture – we have 60 seconds in a minute and 60 minutes in an hour; a right angle is still 90 degrees and not 100 grads as revolutionary France adopted in a first move towards decimalization.


The technological triumphs of the modern age depend on mathematics and surely there is no longer any pride left in announcing to have been no good at it when at school. Of course school mathematics is a different thing, often taught with an eye to examinations. The time pressure of school does not help either, for mathematics is a subject where there is no merit in being fast. People need time to allow the ideas to sink in. Some of the greatest mathematicians have been painfully slow as they strove to understand the deep concepts of their subject.


There is no hurry with this book. It can be dipped into at leisure. Take your time and discover what these ideas you may have heard of really mean. Beginning with Zero, or elsewhere if you wish, you can move on a trip between islands of mathematical ideas. For instance, you can become knowledgeable about Game theory and next read about Magic squares. Alternatively you can move from Golden rectangles to the famous Fermat’s last theorem, or any other path.


This is an exciting time for mathematics. Some of its major problems have been solved in recent times. Modern computing developments have helped with some but been helpless against others. The Four-colour problem was solved with the aid of a computer, but the Riemann hypothesis, the final chapter of the book, remains unsolved – by computer or any other means.


Mathematics is for all. The popularity of Sudoku is evidence that people can do mathematics (without knowing it) and enjoy it too. In mathematics, like art or music, there have been the geniuses but theirs is not the whole story. You will see several leaders making entrances and exits in some chapters only to reappear in others. Leonhard Euler, whose tercentenary occurred in 2007, is a frequent visitor to these pages. But, real progress in mathematics is the work of ‘the many’ accumulated over centuries. The choice of 50 topics is a personal one but I have tried to keep a balance. There are everyday and advanced items, pure and applied mathematics, abstract and concrete, the old and the new. Mathematics though is one united subject and the difficulty in writing has not been in choosing topics, but in leaving some out. There could have been 500 ideas but 50 are enough for a good beginning to your mathematical career.





01 Zero


At a young age we make an unsteady entrance into numberland. We learn that 1 is first in the ‘number alphabet’, and that it introduces the counting numbers 1, 2, 3, 4, 5,... Counting numbers are just that: they count real things – apples, oranges, bananas, pears. It is only later that we can count the number of apples in a box when there are none.


Even the early Greeks, who advanced science and mathematics by quantum leaps, and the Romans, renowned for their feats of engineering, lacked an effective way of dealing with the number of apples in an empty box. They failed to give ‘nothing’ a name. The Romans had their ways of combining I, V, X, L, C, D and M but where was 0? They did not count ‘nothing’.


How did zero become accepted? The use of a symbol designating ‘nothingness’ is thought to have originated thousands of years ago. The Maya civilization in what is now Mexico used zero in various forms. A little later, the astronomer Claudius Ptolemy, influenced by the Babylonians, used a symbol akin to our modern 0 as a placeholder in his number system. As a placeholder, zero could be used to distinguish between examples (in modern notation) such as 75 and 705, instead of relying on context as the Babylonians had done. This might be compared with the introduction of the ‘comma’ into language – both help with reading the right meaning. But, just as the comma comes with a set of rules for its use – there have to be rules for using zero.


The seventh-century Indian mathematician Brahmagupta treated zero as a ‘number’, not merely as a placeholder, and set out rules for dealing with it. These included ‘the sum of a positive number and zero is positive’ and ‘the sum of zero and zero is zero’. In thinking of zero as a number rather than a placeholder, he was quite advanced. The Hindu-Arabic numbering system which included zero in this way was promulgated in the West by Leonardo of Pisa – Fibonacci – in his Liber Abaci (The Book of Counting) first published in 1202. Brought up in North Africa and schooled in the Hindu-Arabian arithmetic, he recognized the power of using the extra sign 0 combined with the Hindu symbols 1, 2, 3, 4, 5, 6, 7, 8 and 9.


The launch of zero into the number system posed a problem which Brahmagupta had briefly addressed: how was this ‘interloper’ to be treated? He had made a start but his nostrums were vague. How could zero be integrated into the existing system of arithmetic in a more precise way? Some adjustments were straightforward. When it came to addition and multiplication, 0 fitted in neatly, but the operations of subtraction and division did not sit easily with the ‘foreigner’. Meanings were needed to ensure that 0 harmonized with the rest of accepted arithmetic.


How does zero work? Adding and multiplying with zero is straightforward and uncontentious – you can add 0 to 10 to get a hundred – but we shall mean ‘add’ in the less imaginative way of the numerical operation. Adding 0 to a number leaves that number unchanged while multiplying 0 by any number always gives 0 as the answer. For example, we have 7 + 0 = 7 and 7 × 0 = 0. Subtraction is a simple operation but can lead to negatives, 7 − 0 = 7 and 0 − 7 = − 7, while division involving zero raises difficulties.


Let’s imagine a length to be measured with a measuring rod. Suppose the measuring rod is actually 7 units in length. We are interested in how many measuring rods we can lie along our given length. If the length to be measured is actually 28 units the answer is 28 divided by 7 or in symbols 28 ÷ 7 = 4. A better notation to express this division is


[image: image]


and then we can ‘cross-multiply’ to write this in terms of multiplication, as 28 = 7 × 4. What now can be made of 0 divided by 7? To help suggest an answer in this case let us call the answer a so that


[image: image]


By cross-multiplication this is equivalent to 0 = 7 × a. If this is the case, the only possible value for a is 0 itself because if the multiplication of two numbers gives 0, one of them must be 0. Clearly it is not 7 so a must be a zero.


This is not the main difficulty with zero. The danger point is division by 0. If we attempt to treat 7/0 in the same way as we did with 0/7, we would have the equation


[image: image]


By cross-multiplication, 0 × b = 7 and we wind up with the nonsense that 0 = 7. By admitting the possibility of 7/0 being a number we have the potential for numerical mayhem on a grand scale. The way out of this is to say that 7/0 is undefined. It is not permissible to get any sense from the operation of dividing 7 (or any other nonzero number) by 0 and so we simply do not allow this operation to take place. In a similar way it is not permissible to place a comma in the mid,dle of a word without descending into nonsense.


The 12th-century Indian mathematician Bhaskara, following in the footsteps of Brahmagupta, considered division by 0 and suggested that a number divided by 0 was infinite. This is reasonable because if we divide a number by a very small number the answer is very large. For example, 7 divided by a tenth is 70, and by a hundredth is 700. By making the denominator number smaller and smaller the answer we get is larger and larger. In the ultimate smallness, 0 itself, the answer should be infinity. By adopting this form of reasoning, we are put in the position of explaining an even more bizarre concept – that is, infinity. Wrestling with infinity does not help; infinity (with its standard notation [image: image]) does not conform to the usual rules of arithmetic and is not a number in the usual sense.


If 7/0 presented a problem, what can be done with the even more bizarre 0/0? If 0/0 = c, by cross-multiplication, we arrive at the equation 0 = 0 × c and the fact that 0 = 0. This is not particularly illuminating but it is not nonsense either. In fact, c can be any number and we do not arrive at an impossibility. We reach the conclusion that 0/0 can be anything; in polite mathematical circles it is called ‘indeterminate’.


All in all, when we consider dividing by zero we arrive at the conclusion that it is best to exclude the operation from the way we do calculations. Arithmetic can be conducted quite happily without it.


What use is zero? We simply could not do without 0. The progress of science has depended on it. We talk about zero degrees longitude, zero degrees on the temperature scale, and likewise zero energy, and zero gravity. It has entered the non-scientific language with such ideas as the zero-hour and zero-tolerance.








All about nothing


The sum of zero and a positive number is positive


The sum of zero and a negative number is negative


The sum of a positive and a negative is their difference; or, if they are equal, zero


Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator


Brahmagupta, AD 628









Greater use could be made of it though. If you step off the 5th Ave sidewalk in New York City and into the Empire State Building, you are in the magnificent entrance lobby on Floor Number 1. This makes use of the ability of numbers to order, 1 for ‘first’, 2 for ‘second’ and so on, up to 102 for ‘a hundred and second.’ In Europe they do have a Floor 0 but there is a reluctance to call it that.


Mathematics could not function without zero. It is in the kernel of mathematical concepts which make the number system, algebra, and geometry go round. On the number line 0 is the number that separates the positive numbers from the negatives and thus occupies a privileged position. In the decimal system, zero serves as a place holder which enables us to use both huge numbers and microscopic figures.


Over the course of hundreds of years zero has become accepted and utilized, becoming one of the greatest inventions of man. The 19th-century American mathematician G.B. Halsted adapted Shakespeare’s Midsummer Night’s Dream to write of it as the engine of progress that gives ‘to airy nothing, not merely a local habitation and a name, a picture, a symbol, but helpful power, is the characteristic of the Hindu race from whence it sprang’.


When 0 was introduced it must have been thought odd, but mathematicians have a habit of fastening onto strange concepts which are proved useful much later. The modern day equivalent occurs in set theory where the concept of a set is a collection of elements. In this theory Φ designates the set without any elements at all, the so-called ‘empty set’. Now that is an odd idea, but like 0 it is indispensible.


the condensed idea


Nothing is quite something






	Timeline






	700 BC


	The Babylonians use zero as a placeholder in their number system






	
AD 628

	Brahmagupta uses zero and states rules for its use with other numerals






	830

	Mahavira has ideas on how zero interacts with other numerals






	1100

	Bhaskara uses 0 as a symbol in algebra and attempts to show how it is manipulated






	1202

	Fibonacci uses the extra symbol 0 added to the Hindu-Arabic system of numerals 1, ... , 9 but not as a number on a par with them










02 Number systems


A number system is a method for handling the concept of ‘how many’. Different cultures at differing periods of time have adopted various methods, ranging from the basic ‘one, two, three, many’ to the highly sophisticated decimal positional notation we use today.


The Sumerians and Babylonians, who inhabited present-day Syria, Jordan and Iraq around 4000 years ago, used a place-value system for their practical everyday use. We call it a place-value system because you can tell the ‘number’ by the positioning of a symbol. They also used 60 as the basic unit – what we call today a ‘base 60’ system. Vestiges of base 60 are still with us: 60 seconds in a minute, 60 minutes in an hour. When measuring angles we still reckon the full angle to be 360 degrees, despite the attempt of the metric system to make it 400 grads (so that each right angle is equal to 100 grads).


While our ancient ancestors primarily wanted numbers for practical ends, there is some evidence that these early cultures were intrigued by mathematics itself, and they took time off from the practicalities of life to explore them. These explorations included what we might call ‘algebra’ and also the properties of geometrical figures.


The Egyptian system from the 13th century BC used base ten with a system of hieroglyphic signs. Notably the Egyptians developed a system for dealing with fractions, but today’s place-value decimal notation came from the Babylonians, later refined by the Hindus. Where it has the advantage is the way it can be used to express both very small and very large numbers. Using only the Hindu-Arabic numerals 1, 2, 3, 4, 5, 6, 7, 8 and 9, computations can be made with relative ease. To see this let’s look at the Roman system. It suited their needs but only specialists in the system were capable of performing calculations with it.


The Roman system The basic symbols used by the Romans were the ‘tens’ (I, X, C and M), and the ‘halves’ of these (V, L and D). The symbols are combined to form others. It has been suggested that the use of I, II, III and IIII derives from the appearance of our fingers, V from the shape of the hand, and by inverting it and joining the two together to form the X we get two hands or ten fingers. C comes from centum and M from mille, the Latin for one hundred and one thousand respectively. The Romans also used S for ‘a half’ and a system of fractions based on 12.


The Roman system made some use of a ‘before and after’ method of producing the symbols needed but it would seem this was not uniformly adopted. The ancient Romans preferred to write IIII with IV only being introduced later. The combination IX seems to have been used, but a Roman would mean 81/2 if SIX were written! Here are the basic numbers of the Roman system, with some additions from medieval times:








Roman number system






	Roman Empire


	Medieval Appendages







	S a half


	 







	I one


	 







	V five


	[image: image] five thousand







	X ten


	[image: image] ten thousand







	L fifty


	[image: image] fifty thousand







	C hundred


	[image: image] hundred thousand







	D five hundred


	[image: image] five hundred thousand







	M thousand


	[image: image] one million















It’s not easy handling Roman numerals. For example, the meaning of MMMCDXLIIII only becomes transparent when brackets are mentally introduced so that (MMM)(CD)(XL)(IIII) is then read as 3000 + 400 + 40 + 4 = 3444. But try adding MMMCDXLIIII + CCCXCIIII. A Roman skilled in the art would have short cuts and tricks, but for us it’s difficult to obtain the right answer without first calculating it in the decimal system and translating the result back into Roman notation:








	Addition






	3444

	→

	MMMCDXLIIII






	+ 394

	→

	CCCXCIIII






	=3838

	→

	MMMDCCCXXXVIII










The multiplication of two numbers is much more difficult and might be impossible within the basic system, even to Romans! To multiply 3444 × 394 we need the medieval appendages.


[image: image]


The Romans had no specific symbol for zero. If you asked a vegetarian citizen of Rome to record how many bottles of wine he’d consumed that day, he might write III but if you asked him how many chickens he’d eaten, he couldn’t write 0. Vestiges of the Roman system survive in the pagination of some books (though not this one) and on the foundation stones of buildings. Some constructions were never used by the Romans, like MCM for 1900, but were introduced for stylistic reasons in modern times. The Romans would have written MDCCCC. The fourteenth King Louis of France, now universally known as Louis XIV, actually preferred to be known as Louis XIIII and made it a rule that his clocks were to show 4 o’clock as IIII o’clock.


[image: image]


A Louis XIIII clock


Decimal whole numbers We naturally identify ‘numbers’ with decimal numbers. The decimal system is based on ten using the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Actually it is based on ‘tens’ and ‘units’ but units can be absorbed into ‘base 10’. When we write down the number 394, we can explain its decimal meaning by saying it is composed of 3 hundreds, 9 tens and 4 units, and we could write


394 = 3 × 100 + 9 × 10 + 4 × 1


This can be written using ‘powers’ of 10 (also known as ‘exponentials’ or ‘indices’),


394 = 3 × 102 + 9 × 101 + 4 × 100


where 102 = 10 × 10, 101 = 10 and we agree separately that 100 = 1. In this expression we see more clearly the decimal basis for our everyday number system, a system which makes addition and multiplication fairly transparent.


The point of decimal So far we have looked at representing whole numbers. Can the decimal system cope with parts of a number, like 572/1000?


This means


[image: image]


We can treat the ‘reciprocals’ of 10, 100, 1000 as negative powers of 10, so that


[image: image]


and this can be written .572 where the decimal point indicates the beginning of the negative powers of 10. If we add this to the decimal expression for 394 we get the decimal expansion for the number 394572/1000, which is simply 394.572.


For very big numbers the decimal notation can be very long, so we revert in this case to the ‘scientific notation’. For example, 1,356,936,892 can be written as 1.356936892 × 109 which often appears as ‘1.356936892 × 10E9’ on calculators or computers. Here, the power 9 is one less than the number of digits in the number and the letter E stands for ‘exponential’. Sometimes we might want to use bigger numbers still, for instance if we were talking about the number of hydrogen atoms in the known universe. This has been estimated as about 1.7×1077. Equally 1.7×10−77, with a negative power, is a very small number and this too is easily handled using scientific notation. We couldn’t begin to think of these numbers with the Roman symbols.












	Powers of 2


	     Decimal







	20


	1







	21


	2







	22


	4







	23


	8







	24


	16







	25


	32







	26


	64







	27


	128







	28


	256







	29


	512







	210


	1024















Zeros and ones While base 10 is common currency in everyday life, some applications require other bases. The binary system which uses base 2 lies behind the power of the modern computer. The beauty of binary is that any number can be expressed using only the symbols 0 and 1. The tradeoff for this economy is that the number expressions can be very long.


How can we express 394 in binary notation? This time we are dealing with powers of 2 and after some working out we can give the full expression as,


394 = 1 × 256 + 1 × 128 + 0 × 64 + 0 × 32 + 0 × 16 + 1 × 8 + 0 × 4 + 1 × 2 + 0 × 1


so that reading off the zeros and ones, 394 in binary is 110001010 .


As binary expressions can be very long, other bases frequently arise in computing. These are the octal system (base 8) and the hexadecimal system (base 16). In the octal system we only need the symbols 0, 1, 2, 3, 4, 5, 6, 7, whereas hexadecimal uses 16 symbols. In this base 16 system, we customarily use 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. As 10 corresponds to the letter A, the number 394 is represented in hexadecimal as 18A. It’s as easy as ABC, which bear in mind, is really 2748 in decimal!


the condensed idea


Writing numbers down






	Timeline






	30,000 BC


	Palaeolithic peoples in Europe make number marks on bones






	2000 BC


	The Babylonians use symbols for numbers






	
AD 600

	The forerunner of our modern decimal notation is used in India






	1200

	The Hindu-Arabic system of writing numerals 1, ... , 9, and a zero, spreads






	1600

	The symbols of the decimal system take their recognizable modern forms










03 Fractions


A fraction is a ‘fractured number’ – literally. If we break up a whole number an appropriate way to do it is to use fractions. Let’s take the traditional example, the celebrated cake, and break it into three parts.


[image: image]


The person who gets two of the three parts of the cake gets a fraction equivalent to 2/3. The unlucky person only gets 1/3. Putting together the two portions of the cake we get the whole cake back, or in fractions, 1/3 + 2/3 = 1 where 1 represents the whole cake.


Here is another example. You might have been to the sales and seen a shirt advertised at four-fifths of the original price. Here the fraction is written as 4/5. We could also say the shirt has a fifth off the original price. That would be written as 1/5 and we see that 1/5 + 4/5 = 1 where 1 represents the original price.


A fraction always has the form of a whole number ‘over’ a whole number. The bottom number is called the ‘denominator’ because it tells us how many parts make the whole. The top number is called the ‘numerator’ because it tells us how many unit fractions there are. So a fraction in established notation always looks like


[image: image]


In the case of the cake, the fraction you might want to eat is 2/3 where the denominator is 3 and the numerator is 2. 2/3 is made up of 2 unit fractions of 1/3.


We can also have fractions like 14/5 (called improper fractions) where the numerator is bigger than the denominator. Dividing 14 by 5 we get 2 with 4 left over, which can be written as the ‘mixed’ number 24/5. This comprises the whole number 2 and the ‘proper’ fraction 4/5. Some early writers wrote this as 4/52. Fractions are usually represented in a form where the numerator and denominator (the ‘top’ and the ‘bottom’) have no common factors. For example, the numerator and denominator of 8/10 have a common factor of 2, because 8 = 2 × 4 and 10 = 2 × 5. If we write the fraction 8/10 = 2×4/2×5 we can ‘cancel’ the 2s out and so 8/10 = 4/5, a simpler form with the same value. Mathematicians refer to fractions as ‘rational numbers’ because they are ratios of two numbers. The rational numbers were the numbers the Greeks could ‘measure’.


Adding and multiplying The rather curious thing about fractions is that they are easier to multiply than to add. Multiplication of whole numbers is so troublesome that ingenious ways had to be invented to do it. But with fractions, it’s addition that’s more difficult and takes some thinking about.


Let’s start by multiplying fractions. If you buy a shirt at four-fifths of the original price of £30 you end up paying the sale price of £24. The £30 is divided into five parts of £6 each and four of these five parts is 4 × 6 = 24, the amount you pay for the shirt.


Subsequently, the manager of the shop discovers that the shirts are not selling at all well so he drops the price still further, advertising them at 1/2 of the sale price. If you go into the shop you can now get the shirt for £12. This is 1/2 × 4/5 × 30 which is equal to 12. To multiply two fractions together you just multiply the denominators together and the numerators together:


[image: image]


If the manager had made the two reductions at a single stroke he would have advertised the shirts at four-tenths of the original price of £30. This is 4/10 × 30 which is £12.


Adding two fractions is a different proposition. The addition 1/3 + 2/3 is OK because the denominators are the same. We simply add the two numerators together to get 3/3, or 1. But how could we add two-thirds of a cake to fourfifths of a cake? How could we figure out 2/3 + 4/5? If only we could say 2/3 + 4/5 = 2 + 4/3 + 5 = 6/8 but unfortunately we cannot.


Adding fractions requires a different approach. To add 2/3 and 4/5 we must first express each of them as fractions which have the same denominators. First multiply the top and bottom of 2/3 by 5 to get 10/15. Now multiply the top and bottom of 4/5 by 3 to get 12/15. Now both fractions have 15 as a common denominator and to add them we just add the new numerators together:


[image: image]


Converting to decimals In the world of science and most applications of mathematics, decimals are the preferred way of expressing fractions. The fraction 4/5 is the same as the fraction 8/10 which has 10 as a denominator and we can write this as the decimal 0.8.


Fractions which have 5 or 10 as a denominator are easy to convert. But how could we convert, say 7/8, into decimal form? All we need to know is that when we divide a whole number by another, either it goes in exactly or it goes in a certain number of times with something left over, which we call the ‘remainder’.


Using 7/8 as our example, the recipe to convert from fractions to decimals goes like this:




	Try to divide 8 into 7. It doesn’t go, or you could say it goes 0 times with remainder 7. We record this by writing zero followed by the decimal point: ‘0.’


	Now divide 8 into 70 (the remainder of the previous step multiplied by 10). This goes 8 times, since 8 × 8 = 64, so the answer is 8 with remainder 6 (70 − 64). So we write this alongside our first step, to make ‘0.8’


	Now divide 8 into 60 (the remainder of the previous step multiplied by 10). Because 7 × 8 = 56, the answer is 7 with remainder 4. We write this down, and so far we have ‘0.87’


	Divide 8 into 40 (the remainder of the previous step multiplied by 10). The answer is exactly 5 with remainder zero. When we get remainder 0 the recipe is complete. We are finished. The final answer is ‘0.875’.





When applying this conversion recipe to other fractions it is possible that we might never finish! We could keep going forever; if we try to convert 2/3 into decimal, for instance, we find that at each stage the result of dividing 20 by 3 is 6 with a remainder of 2. So we have again to divide 6 into 20, and we never get to the point where the remainder is 0. In this case we have the infinite decimal 0.666666… This is written 0.6 to indicate the ‘recurring decimal’.


There are many fractions that lead us on forever like this. The fraction 5/7 is interesting. In this case we get 5/7 = 0.714285714285714285... and we see that the sequence 714285 keeps repeating itself. If any fraction results in a repeating sequence we cannot ever write it down in a terminating decimal and the ‘dotty’ notation comes into its own. In the case of 5/7 we write 5/7 = 0.7 [image: image].


Egyptian fractions The Egyptians of the second millennium BC based their system of fractions on hieroglyphs designating unit fractions – those fractions whose numerators are 1. We know this from the Rhind Papyrus which is kept in the British Museum. It was such a complicated system of fractions that only those trained in its use could know its inner secrets and make the correct calculations.


[image: image]


Egyptian fractions


The Egyptians used a few privileged fractions such as 2/3 but all other fractions were expressed in terms of unit fractions like 1/2, 1/3, 1/11 or 1/168 These were their ‘basic fractions’ from which all other fractions could be expressed. For example 5/7 is not a unit fraction but it could be written in terms of the unit fractions,


[image: image]


where different unit fractions must be used. A feature of the system is that there may be more than one way of writing a fraction, and some ways are shorter than others. For example,


[image: image]


The ‘Egyptian expansion’ may have had limited practical use but the system has inspired generations of pure mathematicians and provided many challenging problems, some of which remain unsolved today. For instance, a full analysis of the methods for finding the shortest Egyptian expansion awaits the intrepid mathematical explorer.


the condensed idea


One number over another






	Timeline






	1800 BC


	Fractions are used in Babylonian cultures






	1650 BC


	The Egyptians make use of unit fractions






	
AD 100

	The Chinese devise a system for calculating with fractions






	1202

	Leonardo of Pisa (Fibonacci) popularizes the bar notation of fractions






	1585

	Simon Stevin sets out a theory of decimal fractions






	1700

	The fractional line ‘–’ is in general use (as in a/b)










04 Squares and square roots


If you like making squares with dots, your thought patterns are similar to those of the Pythagoreans. This activity was prized by the fraternity who followed their leader Pythagoras, a man best remembered for ‘that theorem’. He was born on the Greek island of Samos and his secret religious society thrived in southern Italy. Pythagoreans believed mathematics was the key to the nature of the universe.


[image: image]


Counting up the dots, we see the first ‘square’ on the left is made from one dot. To the Pythagoreans 1 was the most important number, imbued with spiritual existence. So we’ve made a good start. Continuing to count up the dots of the subsequent squares gives us the ‘square’ numbers, 1, 4, 9, 16, 25, 36, 49, 64,… These are called ‘perfect’ squares. You can compute a square number by adding the dots on the shape [image: image] outside the previous one, for example 9 + 7 = 16. The Pythagoreans didn’t stop with squares. They considered other shapes, such as triangles, pentagons (the figure with five sides) and other polygonal (many-sided) shapes.


[image: image]


The triangular numbers resemble a pile of stones. Counting these dots gives us 1, 3, 6, 10, 15, 21, 28, 36, … If you want to compute a triangular number you can use the previous one and add the number of dots in the last row. What is the triangular number which comes after 10, for instance? It will have 5 dots in the last row so we just add 10 + 5 = 15.


If you compare the square and triangular numbers you will see that the number 36 appears in both lists. But there is a more striking link. If you take successive triangular numbers and add them together, what do you get? Let’s try it and put the results in a table.


Adding two successive triangular numbers








	1 + 3

	4






	3 + 6

	9






	6 + 10

	16






	10 + 15 

	25






	15 + 21

	36






	21 + 28

	49






	28 + 36

	64










That’s right! When you add two successive triangular numbers together you get a square number. You can also see this with a ‘proof without words’. Consider a square made up of 4 rows of 4 dots with a diagonal line drawn through it. The dots above the line (shown) form a triangular number and below the line is the next triangular number. This observation holds for any sized square. It’s a short step from these ‘dotty diagrams’ to measuring areas. The area of a square whose side is 4 is 4 × 4 = 42 = 16 square units. In general, if the side is called x then the area will be x2.


[image: image]


The square x2 is the basis for the parabolic shape. This is the shape you find in satellite receiver dishes or the reflector mirrors of car headlights. A parabola has a focus point. In a receiving dish a sensor placed at the focus receives the reflected signals when parallel beams from space hit the curved dish and bounce towards the focus point.


In a car headlight a light bulb at the focus sends out a parallel beam of light. In sport, shot-putters, javelin throwers and hammer throwers will all recognize the parabola as the shape of the curved path that every object follows as it falls to the Earth.


Square roots If we turn the question around and want to find the length of a square which has a given area 16, the answer is plainly 4. The square root of 16 is 4 and written as √16 = 4.
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The symbol √ for square roots has been employed since the 1500s. All the square numbers have nice whole numbers as square roots. For example, √1 = 1, √4 = 2, √9 = 3, √16 = 4, √25 = 5, and so on. There are though many gaps along the numbers line between these perfect squares. These are 2, 3, 5, 6, 7, 8, 10, 11, …
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There is a brilliant piece of alternative notation for square roots. Just as x2 denotes a square number, we can write a square root number as x1/2, which fits in with the device of multiplying numbers together by adding powers. This is the basis for logarithms, invented after we learnt in around 1600 that a problem in multiplication could be changed into one of addition. But that is another story. These numbers all have square roots, but they are not equal to whole numbers. Virtually all calculators have a √ button, and using it we find, for instance, √7 = 2.645751311.


Let’s look at √2. The number 2 had special significance for the Pythagoreans because it is the first even number (the Greeks thought of the even numbers as feminine and the odd ones as masculine – and the small numbers had distinct personalities). If you work out √2  on your calculator you will get 1.414213562 assuming your calculator gives this many decimal places. Is this the square root of 2? To check we make the calculation 1.414213562 × 1.414213562. This turns out to be 1.999999999. This is not quite 2 for 1.414213562 is only an approximation for the square root of 2.


What is perhaps remarkable is that all we will ever get is an approximation! The decimal expansion of √2  to millions of decimal places will only ever be an approximation. The number √2  is important in mathematics, perhaps not quite as illustrious as π or e (see Chapter 5) but important enough to gets its own name – it is sometimes called the ‘Pythagorean number’.


Are square roots fractions? Asking whether square roots are fractions is linked to the theory of measurement as known to the ancient Greeks. Suppose we have a line AB whose length we wish to measure, and an indivisible ‘unit’ CD with which to measure it. To make the measurement we place the unit CD sequentially against AB. If we place the unit down m times and the end of the last unit fits flush with the end of AB (at the point B) then the length of AB will simply be m. If not we can place a copy of AB next to the original and carry on measuring with the unit (see figure). The Greeks believed that at some point using n copies of AB and m units, the unit would fit flush with the end-point of the mth AB. The length of AB would then be m/n. For example if 3 copies of AB are laid side by side and 29 units fit alongside, the length of AB would be 29/3.
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The Greeks also considered how to measure the length of the side AB (the hypotenuse) of a triangle where both of the other sides are one ‘unit’ long. By Pythagoras’s theorem the length of AB could be written symbolically as √2  so the question is whether √2 = m/n?
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From our calculator, we have already seen that the decimal expression for √2  is potentially infinite, and this fact (that there is no end to the decimal expression) perhaps indicates that √2  is not a fraction. But there is no end to the decimal 0.3333333… and that represents the fraction 1/3. We need more convincing arguments.


Is √2  a fraction? This brings us to one of the most famous proofs in mathematics. It follows the lines of the type of proof which the Greeks loved: the method of reductio ad absurdum. Firstly it is assumed that √2 cannot be a fraction and ‘not a fraction’ at the same time. This is the law of logic called the ‘excluded middle’. There is no middle way in this logic. So what the Greeks did was ingenious. They assumed that it was a fraction and, by strict logic at every step, derived a contradiction, an ‘absurdity’. So let’s do it. Suppose We can assume a bit more too.
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We can assume that m and n have no common factors. This is OK because if they did have common factors these could be cancelled before we begin. (For example, the fraction 21/35 is equivalent to the factorless 3/5 on cancellation of the common factor 7.)


We can square both sides of √2 = m/n to get 2 = m2/n2 and so m2 = 2n2. Here is where we make our first observation: since m2 is 2 times something it must be an even number. Next m itself cannot be odd (because the square of an odd number is odd) and so m is also an even number.


So far the logic is impeccable. As m is even it must be twice something which we can write as m = 2k. Squaring both sides of this means that m2 = 4k2. Combining this with the fact that m2 = 2n2 means that 2n2 = 4k2 and on cancellation of 2 we conclude that n2 = 2k2. But we have been here before! And as before we conclude that n2 is even and n itself is even. We have thus deduced by strict logic that both m and n are both even and so they have a factor of 2 in common. This was contrary to our assumption that m and n have no common factors. The conclusion therefore is that √2 cannot be a fraction.


It can also be proved that the whole sequence of numbers √n (except where n is a perfect square) cannot be fractions. Numbers which cannot be expressed as fractions are called ‘irrational’ numbers, so we have observed there are an infinite number of irrational numbers.


the condensed idea


The way to irrational numbers






	Timeline






	1750 BC


	The Babylonians compile tables of square roots






	525 BC


	The Pythagoreans study geometrically arranged square numbers






	c.300 BC


	The theory of the irrational numbers by Eudoxus is published in Book 5 of Euclid’s Elements







	
AD 630

	Brahmagupta gives methods for computing square roots






	1550

	The symbol √ is introduced for square roots






	1872

	Richard Dedekind sets out a theory of irrational numbers










05 π


π is the most famous number in mathematics. Forget all the other constants of nature, π will always come at the top of the list. If there were Oscars for numbers, π would get an award every year.


π or pi, is the length of the outside of a circle (the circumference) divided by the length across its centre (the diameter). Its value, the ratio of these two lengths, does not depend on the size of the circle. Whether the circle is big or small, π is indeed a mathematical constant. The circle is the natural habitat for π but it occurs everywhere in mathematics, and in places not remotely connected with the circle.








For a circle of diameter d and radius r :


circumference = πd = 2πr area = πr2


For a sphere of diameter d and radius r :


surface area = πd2 = 4 πr2


volume = 4/3 πr3









Archimedes of Syracuse The ratio of the circumference to the diameter of a circle was a subject of ancient interest. Around 2000 BC the Babylonians made the observation that the circumference was roughly 3 times as long as its diameter.


It was Archimedes of Syracuse who made a real start on the mathematical theory of π in around 225 BC. Archimedes is right up there with the greats. Mathematicians love to rate their co-workers and they place him on a level with Carl Friedrich Gauss (The ‘Prince of Mathematicians’) and Sir Isaac Newton. Whatever the merits of this judgment it is clear that Archimedes would be in any mathematics Hall of Fame. He was hardly an ivory tower figure though – as well as his contributions to astronomy, mathematics and physics, he also designed weapons of war, such as catapults, levers and ‘burning mirrors’, all used to help keep the Romans at bay. But by all accounts he did have something of the absent-mindedness of the professor, for what else would induce him to leap from his bath and run naked down the street shouting ‘Eureka’ at discovering the law of buoyancy in hydrostatics? How he celebrated his work on π is not recorded.


Given that π is defined as the ratio of its circumference to its diameter, what does it have to do with the area of a circle? It is a deduction that the area of a circle of radius r is πr2, though this is probably better known than the circumference/diameter definition of π. The fact that π does double duty for area and circumference is remarkable.


How can this be shown? The circle can be split up into a number of narrow equal triangles with base length b whose height is approximately the radius r. These form a polygon inside the circle which approximates the area of the circle.
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Let’s take 1000 triangles for a start. The whole process is an exercise in approximations. We can join together each adjacent pair of these triangles to form a rectangle (approximately) with area b × r so that the total area of the polygon will be 500 × b × r. As 500 × b is about half the circumference it has length πr, the area of the polygon is πr × r = πr2. The more triangles we take the closer will be the approximation and in the limit we conclude the area of the circle is. πr2.


[image: image]


Archimedes estimated the value of π as bounded between 223/71 and 220/70. And so it is to Archimedes that we owe the familiar approximation 22/7 for the value of π. The honour for designating the actual symbol π goes to the little known William Jones, a Welsh mathematician who became Vice President of the Royal Society of London in the 18th century. It was the mathematician and physicist Leonhard Euler who popularized π in the context of the circle ratio.


The exact value of π We can never know the exact value of π because it is an irrational number, a fact proved by Johann Lambert in 1768. The decimal expansion is infinite with no predictable pattern. The first 20 decimal places are 3.14159265358979323846… The value of √10 used by the Chinese mathematicians is 3.16227766016837933199 and this was adopted around AD 500 by Brahmagupta. This value is in fact little better than than the crude value of 3 and it differs in the second decimal place from π.
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