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When old age shall this generation waste,


Thou shalt remain, in midst of other woe


Than ours, a friend to man, to whom thou say’st,


“Beauty is truth, truth beauty,”—that is all


Ye know on earth, and all ye need to know.


—JOHN KEATS, Ode on a Grecian Urn
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PREFACE



The date is 13 May 1832. In the dawn mist, two young Frenchmen face each other, pistols drawn, in a duel over a young woman. A shot is fired; one of the men falls to the ground, fatally wounded. He dies two weeks later, from peritonitis, aged 21, and is buried in the common ditch—an unmarked grave. One of the most important ideas in the history of mathematics and science very nearly dies with him.


The surviving duelist remains unknown; the one who died was Évariste Galois, a political revolutionary and a mathematical obsessive whose collected works fill a mere sixty pages. Yet Galois left a legacy that revolutionized mathematics. He invented a language to describe symmetry in mathematical structures, and to deduce its consequences.


Today that language, known as “group theory,” is in use throughout pure and applied mathematics, where it governs the formation of patterns in the natural world. Symmetry also plays a central role at the frontiers of physics, in the quantum world of the very small and the relativistic world of the very large. It may even provide a route to the long-sought “Theory of Everything,” a mathematical unification of those two key branches of modern physics. And it all began with a simple question in algebra, about the solutions of mathematical equations—finding an “unknown” number from a few mathematical clues.


Symmetry is not a number or a shape, but a special kind of transformation—a way to move an object. If the object looks the same after being transformed, then the transformation concerned is a symmetry. For instance, a square looks the same if it is rotated through a right angle.


This idea, much extended and embellished, is fundamental to today’s scientific understanding of the universe and its origins. At the heart of Albert Einstein’s theory of relativity lies the principle that the laws of physics should be the same in all places and at all times. That is, the laws should be symmetric with respect to motion in space and the passage of time. Quantum physics tells us that everything in the universe is built from a collection of very tiny “fundamental” particles. The behavior of these particles is governed by mathematical equations—“laws of nature”—and those laws again possess symmetry. Particles can be transformed mathematically into quite different particles, and these transformations also leave the laws of physics unchanged.


These concepts, and more recent ones at the frontiers of today’s physics, could not have been discovered without a deep mathematical understanding of symmetry. This understanding came from pure mathematics; its role in physics emerged later. Extraordinarily useful ideas can arise from purely abstract considerations—something that the physicist Eugene Wigner referred to as “the unreasonable effectiveness of mathematics in the natural sciences.” With mathematics, we sometimes seem to get more out than we put in.


Starting with the scribes of ancient Babylon and ending with the physicists of the twenty-first century, Why Beauty Is Truth tells how mathematicians stumbled upon the concept of symmetry, and how an apparently useless search for what turned out to be an impossible formula opened a new window on the universe and revolutionized science and mathematics. More broadly, the story of symmetry illustrates how the cultural influence and historical continuity of big ideas can be brought into sharp relief by occasional upheavals, both political and scientific.
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The first half of the book may seem at first sight to have nothing to do with symmetry and precious little to do with the natural world. The reason is that symmetry did not become a dominant idea by the route one might expect, through geometry. Instead, the profoundly beautiful and indispensable concept of symmetry that mathematicians and physicists use today arrived via algebra. Much of this book, therefore, describes the search for solutions of algebraic equations. This may sound technical, but the quest is a gripping one, and many of the key players led unusual and dramatic lives. Mathematicians are human, even though they are often lost in abstract thought. Some of them may let logic rule their lives too much, but we shall see time and again that our heroes could in fact be all too human. We will see how they lived and died, read of their love affairs and duels, vicious priority disputes, sex scandals, drunkenness, and disease, and along the way we will see how their mathematical ideas unfolded and changed our world.


Beginning in the tenth century BCE and reaching its climax with Galois in the early nineteenth century, the narrative retraces the step-by-step conquest of equations—a process that eventually ground to a halt when mathematicians tried to conquer the so-called “quintic” equation, involving the fifth power of the unknown. Did the methods break down because there was something fundamentally different about the quintic equation? Or might there be similar, yet more powerful methods that would lead to formulas for its solution? Were mathematicians stuck because of a genuine obstacle, or were they just being obtuse?


It is important to understand that solutions to quintic equations were known to exist. The question was, can they always be represented by an algebraic formula? In 1821 the young Norwegian Niels Henrik Abel proved that the quintic equation cannot be solved by algebraic means. His proof, however, was rather mysterious and indirect. It proved that no general solution is possible, but it did not really explain why.


It was Galois who discovered that the impossibility of solving the quintic stems from the symmetries of the equation. If those symmetries pass the Galois test, so to speak—meaning that they fit together in a very specific way, which I will not explain just yet—then the equation can be solved by an algebraic formula. If the symmetries do not pass the Galois test, then no such formula exists.


The general quintic equation cannot be solved by a formula because it has the wrong kind of symmetries.
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This epic discovery created the second theme of this book: that of a group—a mathematical “calculus of symmetry.” Galois took an ancient mathematical tradition, algebra, and reinvented it as a tool for the study of symmetry.


At this stage of the book, words like “group” are unexplained jargon. When the meaning of such words becomes important to the story, I will explain them. But sometimes we just need a convenient term to keep track of various items of baggage. If you run into something that looks like jargon but is not immediately discussed, then it will be playing the role of a useful label, and the actual meaning won’t matter very much. Sometimes the meaning will emerge anyway if you keep reading. “Group” is a case in point, but we won’t find out what it means until the middle of the book.


Our story also touches upon the curious significance of particular numbers in mathematics. I am not referring to the fundamental constants of physics but to mathematical constants like π (the Greek letter pi). The speed of light, for instance, might in principle be anything, but it happens to be 186,000 miles per second in our universe. On the other hand, π is slightly larger than 3.14159, and nothing in the world can change that value.


The unsolvability of the quintic equation tells us that like π, the number 5 is also very unusual. It is the smallest number for which the associated symmetry group fails the Galois test. Another curious example concerns the sequence of numbers 1, 2, 4, 8. Mathematicians discovered a series of extensions of the ordinary “real” number concept to complex numbers and then to things called quaternions and octonions. These are constructed from two copies of the real numbers, four copies, and eight copies, respectively. What comes next? A natural guess is 16, but in fact there are no further sensible extensions of the number system. This fact is remarkable and deep. It tells us that there is something special about the number 8, not in any superficial sense, but in terms of the underlying structure of mathematics itself.


In addition to 5 and 8, this book features appearances by several other numbers, most notably 14, 52, 78, 133, and 248. These curious numbers are the dimensions of the five “exceptional Lie groups,” and their influence pervades the whole of mathematics and much mathematical physics. They are key characters in the mathematical drama, while other numbers, seemingly little different, are mere bit players.


Mathematicians discovered just how special these numbers are when modern abstract algebra came into being at the end of the nineteenth century. What counts is not the numbers themselves but the role they play in the foundations of algebra. Associated with each of these numbers is a mathematical object called a Lie group with unique and remarkable properties. These groups play a fundamental role in modern physics, and they appear to be related to the deep structure of space, time, and matter.
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That leads to our final theme: fundamental physics. Physicists have long wondered why space has three dimensions and time one—why we live in a four-dimensional space-time. The theory of superstrings, the most recent attempt to unify the whole of physics into a single coherent set of laws, has led physicists to wonder whether space-time might have extra “hidden” dimensions. This may sound like a ridiculous idea, but it has good historical precedents. The presence of additional dimensions is probably the least objectionable feature of superstring theory.


A far more controversial feature is the belief that formulating a new theory of space and time depends mainly on the mathematics of relativity and quantum theory, the two pillars on which modern physics rests. Unifying these mutually contradictory theories is thought to be a mathematical exercise rather than a process requiring new and revolutionary experiments. Mathematical beauty is expected to be a prerequisite for physical truth. This could be a dangerous assumption. It is important not to lose sight of the physical world, and whatever theory finally emerges from today’s deliberations cannot be exempt from comparison with experiments and observations, however strong its mathematical pedigree.


At the moment, though, there are good reasons for taking the mathematical approach. One is that until a really convincing combined theory is formulated, no one knows what experiments to perform. Another is that mathematical symmetry plays a fundamental role in both relativity and quantum theory, two subjects where common ground is in short supply, so we should value whatever bits of it we can find. The possible structures of space, time, and matter are determined by their symmetries, and some of the most important possibilities seem to be associated with exceptional structures in algebra. Space-time may have the properties it has because mathematics permits only a short list of special forms. If so, it makes sense to look at the mathematics.


Why does the universe seem to be so mathematical? Various answers have been proposed, but I find none of them very convincing. The symmetrical relation between mathematical ideas and the physical world, like the symmetry between our sense of beauty and the most profoundly important mathematical forms, is a deep and possibly unsolvable mystery. None of us can say why beauty is truth, and truth beauty. We can only contemplate the infinite complexity of the relationship.
 




1



THE SCRIBES OF BABYLON


Across the region that today we call Iraq run two of the most famous rivers in the world, and the remarkable civilizations that arose there owed their existence to those rivers. Rising in the mountains of eastern Turkey, the rivers traverse hundreds of miles of fertile plains, and merge into a single waterway whose mouth opens into the Persian Gulf. To the southwest they are bounded by the dry desert lands of the Arabian plateau; to the northeast by the inhospitable ranges of the Anti-Taurus and Zagros Mountains. The rivers are the Tigris and the Euphrates, and four thousand years ago they followed much the same routes as they do today, through what were then the ancient lands of Assyria, Akkad, and Sumer.


To archaeologists, the region between the Tigris and Euphrates is known as Mesopotamia, Greek for “between the rivers.” This region is often referred to, with justice, as the cradle of civilization. The rivers brought water to the plains, and the water made the plains fertile. Abundant plant life attracted herds of sheep and deer, which in turn attracted predators, among them human hunters. The plains of Mesopotamia were a Garden of Eden for hunter-gatherers, a magnet for nomadic tribes.


In fact, they were so fertile that the hunter-gatherer lifestyle eventually became obsolete, giving way to a far more effective strategy for obtaining food. Around 9000 BCE, the neighboring hills of the Fertile Crescent, a little to the north, bore witness to the birth of a revolutionary technology: agriculture. Two fundamental changes in human society followed hard on its heels: the need to remain in one location in order to tend the crops, and the possibility of supporting large populations. This combination led to the invention of the city, and in Mesopotamia we can still find archaeological remains of some of the earliest of the world’s great city-states: Nineveh, Nimrud, Nippur, Uruk, Lagash, Eridu, Ur, and above all, Babylon, land of the Hanging Gardens and the Tower of Babel. Here, four millennia ago, the agricultural revolution led inevitably to an organized society, with all the associated trappings of government, bureaucracy, and military power. Between 2000 and 500 BCE the civilization that is loosely termed “Babylonian” flourished on the banks of the Euphrates. It is named for its capital city, but in the broad sense the term “Babylonian” includes Sumerian and Akkadian cultures. In fact, the first known mention of Babylon occurs on a clay tablet of Sargon of Akkad, dating from around 2250 BCE, although the origin of the Babylonian people probably goes back another two or three thousand years.


We know very little about the origins of “civilization”—a word that literally refers to the organization of people into settled societies. Nevertheless, it seems that we owe many aspects of our present world to the ancient Babylonians. In particular, they were expert astronomers, and the twelve constellations of the zodiac and the 360 degrees in a circle can be traced back to them, along with our sixty-second minute and our sixty-minute hour. The Babylonians needed such units of measurement to practice astronomy, and accordingly had to become experts in the time-honored handmaiden of astronomy: mathematics.


Like us, they learned their mathematics at school.
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“What’s the lesson today?” Nabu asked, setting his packed lunch down beside his seat. His mother always made sure he had plenty of bread and meat—usually goat. Sometimes she put a piece of cheese in for variety.


“Math,” his friend Gamesh replied gloomily. “Why couldn’t it be law? I can do law.”


Nabu, who was good at mathematics, could never quite grasp why his fellow students all found it so difficult. “Don’t you find it boring, Gamesh, copying all those stock legal phrases and learning them by heart?”


Gamesh, whose strengths were stubborn persistence and a good memory, laughed. “No, it’s easy. You don’t have to think.”


“That’s precisely why I find it boring,” his friend said, “whereas math—”


“—is impossible,” Humbaba joined in, having just arrived at the Tablet House, late as usual. “I mean, Nabu, what am I supposed to do with this?” He gestured at a homework problem on his tablet. “I multiply a number by itself and add twice the number. The result is 24. What is the number?”


“Four,” said Nabu.


“Really?” asked Gamesh. Humbaba said, “Yes, I know, but how do you get that?”


Painstakingly, Nabu led his two friends through the procedure that their math teacher had shown them the week before. “Add half of 2 to 24, getting 25. Take the square root, which is 5—”


Gamesh threw up his hands, baffled. “I’ve never really grasped that stuff about square roots, Nabu.”


“Aha!” said Nabu. “Now we’re getting somewhere!” His two friends looked at him as if he’d gone mad. “Your problem isn’t solving equations, Gamesh. It’s square roots!”


“It’s both,” muttered Gamesh.


“But square roots come first. You have to master the subject one step at a time, like the Father of the Tablet House keeps telling us.”


“He also keeps telling us to stop getting dirt on our clothes,” protested Humbaba, “but we don’t take any notice of—”


“That’s different. It’s—”


“It’s no good!” wailed Gamesh. “I’ll never become a scribe, and my father will wallop me until I can’t sit down, and mother will give me that pleading look of hers and tell me I’ve got to work harder and think of the family. But I can’t get math into my head! Law, I can remember. It’s fun! I mean how about ‘If a gentleman’s wife has her husband killed on account of another man, they shall impale her on a stake’? That’s what I call worth learning. Not dumb stuff like square roots.” He paused for breath and his hands shook with emotion. “Equations, numbers—why do we bother?”


“Because they’re useful,” replied Humbaba. “Remember all that legal stuff about cutting off slave’s ears?”


“Yeah!” said Gamesh. “Penalties for assault.”


“Destroy a common man’s eye,” prompted Humbaba, “and you must pay him—”


“One silver mina,” said Gamesh.


“And if you break a slave’s bone?”


“You pay his master half the slave’s price in compensation.”


Humbaba sprung his trap. “So, if the slave costs sixty shekels, then you have to be able to work out half of sixty. If you want to practice law, you need math!”


“The answer’s thirty,” said Gamesh immediately.


“See!” yelled Nabu. “You can do math!”


“I don’t need math for that, it’s obvious.” The would-be lawyer flailed the air, seeking a way to express the depth of his feelings. “If it’s about the real world, Nabu, yes, I can do the math. But not artificial problems about square roots.”


“You need square roots for land measurement,” said Humbaba.


“Yes, but I’m not studying to become a tax collector, my father wants me to be a scribe,” Gamesh pointed out. “Like him. So I don’t see why I have to learn all this math.”


“Because it’s useful,” Humbaba repeated.


“I don’t think that’s the real reason,” Nabu said quietly. “I think it’s all about truth and beauty, about getting an answer and knowing that it’s right.” But the looks on his friends’ faces told him that they weren’t convinced.


“For me it’s about getting an answer and knowing that it’s wrong,” sighed Gamesh.


“Math is important because it’s true and beautiful,” Nabu persisted. “Square roots are fundamental for solving equations. They may not be much use, but that doesn’t matter. They’re important for themselves.”


Gamesh was about to say something highly improper when he noticed the teacher walking into the classroom, so he covered his embarrassment with a sudden attack of coughing.


“Good morning, boys,” said the teacher brightly.


“Good morning, master.”


“Let me see your homework.”


Gamesh sighed. Humbaba looked worried. Nabu kept his face expressionless. It was better that way.
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Perhaps the most astonishing thing about the conversation upon which we have just eavesdropped—leaving aside that it is complete fiction—is that it took place around 1100 BCE, in the fabled city of Babylon.


Might have taken place, I mean. There is no evidence of three boys named Nabu, Gamesh, and Humbaba, let alone a record of their conversation. But human nature has been the same for millennia, and the factual background to my tale of three schoolboys is based on rock-hard evidence.


We know a surprising amount about Babylonian culture because their records were written on wet clay in a curious wedge-shaped script called cuneiform. When the clay baked hard in the Babylonian sunshine, these inscriptions became virtually indestructible. And if the building where the clay tablets were stored happened to catch fire, as sometimes happened—well, the heat turned the clay into pottery, which would last even longer.


A final covering of desert sand would preserve the records indefinitely. Which is how Babylon became the place where written history begins. The story of humanity’s understanding of symmetry—and its embodiment in a systematic and quantitative theory, a “calculus” of symmetry every bit as powerful as the calculus of Isaac Newton and Gottfried Wilhelm Leibniz—begins here too. No doubt it might be traced back further, if we had a time machine or even just some older clay tablets. But as far as recorded history can tell us, it was Babylonian mathematics that set humanity on the path to symmetry, with profound implications for how we view the physical world.
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Mathematics rests on numbers but is not limited to them. The Babylonians possessed an effective notation that, unlike our “decimal” system (based on powers of ten), was “sexagesimal” (based on powers of sixty). They knew about right-angled triangles and had something akin to what we now call the Pythagorean theorem—though unlike their Greek successors, the mathematicians of Babylon seem not to have supported their empirical findings with logical proofs. They used mathematics for the higher purpose of astronomy, presumably for agricultural and religious reasons, and also for the prosaic tasks of commerce and taxation. This dual role of mathematical thought—revealing order in the natural world and assisting in human affairs—runs like a single golden thread throughout the history of mathematics.


What is most important about the Babylonian mathematicians is that they began to understand how to solve equations.


Equations are the mathematician’s way of working out the value of some unknown quantity from circumstantial evidence. “Here are some known facts about an unknown number: deduce the number.” An equation, then, is a kind of puzzle, centered upon a number. We are not told what this number is, but we are told something useful about it. Our task is to solve the puzzle by finding the unknown number. This game may seem somewhat divorced from the geometrical concept of symmetry, but in mathematics, ideas discovered in one context habitually turn out to illuminate very different contexts. It is this interconnectedness that gives mathematics such intellectual power. And it is why a number system invented for commercial reasons could also inform the ancients about the movements of the planets and even of the so-called fixed stars.


The puzzle may be easy. “Two times a number is sixty: what is the number we seek?” You do not have to be a genius to deduce that the unknown number is thirty. Or it may be much harder: “I multiply a number by itself and add 25: the result is ten times the number. What is the number we seek?” Trial and error may lead you to the answer 5—but trial and error is an inefficient way to answer puzzles, to solve equations. What if we change 25 to 23, for example? Or 26? The Babylonian mathematicians disdained trial and error, for they knew a much deeper, more powerful secret. They knew a rule, a standard procedure, to solve such equations. As far as we know, they were the first people to realize that such techniques existed.
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The mystique of Babylon stems in part from numerous Biblical references. We all know the story of Daniel in the lion’s den, which is set in Babylon during the reign of King Nebuchadnezzar. But in later times, Babylon became almost mythical, a city long vanished, destroyed beyond redemption, that perhaps had never existed. Or so it seemed until roughly two hundred years ago.


For thousands of years, strange mounds had dotted the plains of what we now call Iraq. Knights returning from the Crusades brought back souvenirs dragged from the rubble—decorated bricks, fragments of undecipherable inscriptions. The mounds were clearly the ruins of ancient cities, but beyond that, little was known.


In 1811, Claudius Rich made the first scientific study of the rubble mounds of Iraq. Sixty miles south of Baghdad, beside the Euphrates, he surveyed the entire site of what he soon determined must be the remains of Babylon, and hired workmen to excavate the ruins. The finds included bricks, cuneiform tablets, beautiful cylinder seals that produced raised words and pictures when rolled over wet clay, and works of art so majestic that whoever carved them must be ranked alongside Leonardo da Vinci and Michelangelo.


Even more interesting, however, were the smashed cuneiform tablets that littered the sites. We are fortunate that those early archaeologists recognized their potential value, and kept them safe. Once the writing had been deciphered, the tablets became a treasure-trove of information about the lives and concerns of the Babylonians.


The tablets and other remains tell us that the history of ancient Mesopotamia was lengthy and complex, involving many different cultures and states. It is customary to employ the word “Babylonian” to refer to them all, as well as to the specific culture that was centered upon the city of Babylon. However, the heart of Mesopotamian culture moved repeatedly, with Babylon both coming into, and falling out of, favor. Archaeologists divide Babylonian history into two main periods. The Old Babylonian period runs from about 2000 to 1600 BCE, and the Neo-Babylonian period runs from 625 to 539 BCE. In between are the Old Assyrian, Kassite, Middle Assyrian, and Neo-Assyrian periods, when Babylon was ruled by outsiders. Moreover, Babylonian mathematics continued in Syria, throughout the period known as Seleucid, for another five hundred years or more.


The culture itself was much more stable than the societies in which it resided, and it remained mostly unchanged for some 1200 years, sometimes temporarily disrupted by periods of political upheaval. So any particular aspect of Babylonian culture, other than some specific historical event, probably came into existence well before the earliest known record. In particular, there is evidence that certain mathematical techniques, whose first surviving records date to around 600 BCE, actually existed far earlier. For this reason, the central character in this chapter—an imaginary scribe to whom I shall give the name Nabu-Shamash and whom we have already met during his early training in the brief vignette about three school friends—is deemed to have lived sometime around 1100 BCE, being born during the reign of King Nebuchadnezzar I.


All the other characters that we will meet as our tale progresses were genuine historical figures, and their individual stories are well documented. But among the million or so clay tablets that have survived from ancient Babylon, there is little documented evidence about specific individuals other than royalty and military leaders. So Nabu-Shamash has to be a pastiche based on plausible inferences from what we have learned about everyday Babylonian life. No new inventions will be attributed to him, but he will encounter all those aspects of Babylonian knowledge that play a role in the story of symmetry. There is good evidence that all Babylonian scribes underwent a thorough education, with mathematics as a significant component.


Our imaginary scribe’s name is a combination of two genuine Babylonian names, the scribal god Nabu and the Sun god Shamash. In Babylonian culture it was not unusual to name ordinary people after gods, though perhaps two god-names would have been considered a bit extreme. But for narrative reasons we are obliged to call him something more specific, and more atmospheric, than merely “the scribe.”


When Nabu-Shamash was born, the king of Babylonia was Nebuchadnezzar I, the most important monarch of the Second Dynasty of Isin. This was not the famous Biblical king of the same name, who is usually referred to as Nebuchadnezzar II; the Biblical king was the son of Nabopolassar, and he reigned from 605 to 562 BCE.


Nebuchadnezzar II’s reign represented the greatest flowering of Babylon, both materially and in regional power. The city also flourished under his earlier namesake, as Babylon’s power extended to encompass Akkad and the mountainous lands to the north. But Akkad effectively seceded from Babylon’s control during the reigns of Ahur-resh-ishi and his son Tiglath-Pileser I, and it strengthened its own security by taking action against the mountain and desert tribes that surrounded it on three sides. So Nabu-Shamash’s life began during a stable period of Babylonian history, but by the time he became a young man, Babylon’s star was beginning to wane, and life was becoming more turbulent.
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Nabu-Shamash was born into a typical “upper-class” household in the Old City of Babylon, not far from the Libil-hegalla canal and close to the justly famed Ishtar Gate, a ceremonial entrance decorated with colored ceramic bricks in fanciful forms—bulls, lions, even dragons. The road through the Ishtar Gate was impressive, reaching a width of 20 meters; it was paved with limestone flags on top of a bed of asphalt, with a brick foundation. Its name was “May the enemy not have victory”—rather typical of Babylon’s main street names—but it is generally known as the Processional Way, being used by the priests to parade the god Marduk through the city when ceremony so decreed.


The family home was built of mud brick, with walls six feet thick to keep out the sun. The external walls had few openings—mainly a doorway at street level—and rose to a height of three stories, with lighter materials, mainly wood, being used for the top floor. The family owned many slaves, who performed routine household tasks. Their quarters, along with the kitchen, were to the right of the entrance. The family rooms were to the left: a long living room, bedrooms, and a bathroom. There was no bathtub in Nabu-Shamash’s time, though some have survived from other eras. Instead, a slave would pour water over the bather’s head and body, approximating a modern shower. A central courtyard opened to the sky, and toward the back were storerooms.


Nabu-Shamash’s father was an official in the court of a king, name unknown, whose reign preceded Nebuchadnezzar I. His duties were largely bureaucratic: he was responsible for administering an entire district, ensuring that law and order were maintained, that the fields were properly irrigated, and that all necessary taxes were collected and paid. Nabu-Shamash’s father had also been trained as a scribe, because literacy and numeracy were basic skills for anyone in the Babylonian equivalent of the civil service.


According to a decree attributed to the god Enlil, every man should follow in his father’s footsteps, and Nabu-Shamash was expected to do just that. However, scribal abilities also opened up other career paths, notably that of priest, so his training paved the way to a choice of professions.


We know what Nabu-Shamash’s education was like because extensive records, written in Sumerian by people who were trained as scribes, have survived from roughly the period concerned. These records make it plain that Nabu-Shamash was fortunate in his choice of parentage, for only the sons of the well-to-do could hope to enter the scribal schools. In fact, the quality of Babylonian education was so high that foreign nobles sent their sons to the city to be educated.


The school was called the Tablet House, presumably referring to the clay tablets used for writing and arithmetic. It had a head teacher, referred to as the “Expert” and as the “Father of the Tablet House.” There was a class teacher, whose main task was to make the boys behave themselves; there were specialist teachers in Sumerian and mathematics. There were prefects, called “Big Brothers,” whose job included keeping order. Like all students, Nabu-Shamash lived at home and went to school during the day, for around 24 days each 30-day month. He had three days off for recreation, and a further three for religious festivals.


Nabu-Shamash began his studies by mastering the Sumerian language, especially its written form. There were dictionaries and grammatical texts to be studied, and long lists to be copied—legal phrases, technical terms, names. Later, he progressed to mathematics, and it was then that his studies became central to our tale.
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What did Nabu-Shamash learn? For everyone but philosophers, logicians, and professional mathematicians who are being pedantic, a number is a string of digits. Thus the year in which I write this sentence is 2006, a string of four digits. But as the pedants will jump to remind us, this string of digits is not the number at all but only its notation, and a rather sophisticated form of notation at that. Our familiar decimal system employs just ten digits, the symbols 0 through 9, to represent any number, however large. An extension of that system also permits the representation of very small numbers; more to the point, it permits the representation of numerical measurements to very high levels of precision. Thus the speed of light, according to the best current observations, is approximately 186,282.397 miles per second.


We are so familiar with this notation that we forget how clever it is—and how difficult to grasp when we first encounter it. The key feature on which all else rests is this: the numerical value of a symbol, such as 2, depends on where it is placed relative to the other symbols. The symbol 2 does not have a fixed meaning independent of its context. In the number representing the speed of light, the digit “2” immediately before the decimal point does indeed mean “two.” But the other occurrence of “2” in that number means “two hundred.” In the date 2006, that same digit means “two thousand.”


We would be exceedingly unhappy to have a system of writing in which the meaning of a letter depended on where it occurred in a word. Imagine, for instance, what reading would be like if the two a’s in “alphabet” had totally different meanings. But positional notation for numbers is so convenient and powerful that we find it hard to imagine that anyone really used any other method.


It was not always thus. Our present notation dates back no more than 1500 years, and was first introduced into Europe a little more than 800 years ago. Even today, different cultures use different symbols for the same decimal digits—look at any Egyptian banknote. But ancient cultures wrote numbers in all sorts of strange ways. The most familiar to us is probably the Roman system, in which 2006 becomes MMVI. In ancient Greek it would be [image: images]ζ. In place of our 2, 20, 200, and 2000, the Romans wrote II, XX, CC, and MM, and the Greeks wrote β, κ, α, and [image: images].


[image: images]


Babylonian base–60 numerals.


The Babylonians were the earliest known culture to use something akin to our positional notation. But there was one significant difference. In the decimal system, every time a digit is moved one place to the left, its numerical value is multiplied by ten. So 20 is ten times 2, and 200 is ten times 20. In the Babylonian system, each move to the left multiplies a number by sixty. So “20” would mean 2 times 60 (120 in our notation) and “200” would mean 2 times 60 times 60 (7200 in our notation). Of course, they didn’t use the same “2” symbol; they wrote the number “two” using two copies of a tall, thin wedge symbol, as shown in the figure above. Numbers from one to nine were written by grouping that many copies of the tall wedge. For numbers greater than nine, they added another symbol, a sideways wedge, which denoted the number ten, and they used groups of these symbols to denote twenty, thirty, forty, and fifty. So, for instance, our “42” was four sideways wedges followed by two tall wedges.


For reasons we can only guess at, this system stopped at 59. The Babylonians did not group six sideways wedges to make 60. Instead, they reverted to the tall thin wedge previously used to mean “one,” and used it to mean “one times sixty.” Two such wedges meant 120. But they might also mean “two.” Which meaning was intended had to be inferred from context, and from the position of the symbols relative to each other. For example, if there were two tall wedges, a space, and two more tall wedges, then the first group meant “one hundred twenty” and the second “two”—much as the two symbols 2 in our 22 mean twenty and two respectively.


This method extended to much larger numbers. A tall wedge could mean 1, or 60, or 60 × 60 = 3,600, or 60 × 60 × 60 = 216,000, and so on. The three bottom groups in the figure indicate 60 × 60 + 3 × 60 + 12, which we would write as 3,792. A big problem here is that the notation has some ambiguities. If all you see is two tall wedges, does this mean 2, 60 × 2, or 60 × 60 × 2? Does a sideways wedge followed by two tall ones mean 12 × 60 + 2 or 12 × 60 × 60 + 2, or even 10 × 60 × 60 + 2 × 60? By Alexander the Great’s time, the Babylonians had removed these ambiguities by using a pair of diagonal wedges to indicate that no number occurred in a given slot; in effect, they had invented a symbol for zero.


Why did the Babylonians use this sexagesimal system rather than the familiar decimal system? They may have been influenced by a useful feature of the number 60: its large variety of divisors. It is divisible exactly by the numbers 2, 3, 4, 5, and 6. It is also divisible by 10, 12, 15, 20, and 30. This feature is rather pleasant when it comes to sharing things, such as grain or land, among several people.


A final feature may well have been decisive: the Babylonian method of measuring time. It seems that they found it convenient to divide a year into 360 days, although they were excellent astronomers and knew that 365 was closer, and 365¼ closer still. The lure of the arithmetical relationship 360 = 6 × 60 was too strong. Indeed, when referring to time, the Babylonians suspended the rule that moving symbols one slot to the left multiplied their value by sixty, and replaced that by six, so that what should have meant 3,600 was actually interpreted as 360.


This emphasis on 60 and 360 still lingers today, in our use of 360 degrees in a full circle—one degree per Babylonian day—and in the 60 seconds in a minute and 60 minutes in an hour. Old cultural conventions have incredible staying power. I find it amusing that in this age of spectacular computer graphics, moviemakers still date their creations in Roman numerals.


[image: images]


Nabu-Shamash would have learned all of this, except the “zero” sign, at an early stage of his education. He would have become adept at impressing thousands of tiny cuneiform wedges into damp clay at speed. And just as today’s students grapple with the transition from whole numbers to fractions and decimals, Nabu-Shamash would eventually have been faced with the Babylonian method for representing numbers like one-half, or one-third, or the more complicated subdivisions of unity dictated by the brutal realities of astronomical observations.


To avoid spending whole afternoons drawing wedges, scholars represent cuneiform numbers with a mixture of old and new. They write the decimal numbers depicted in the successive groups of wedges, using commas to separate them. So the final group in the figure would be written 1,3,12. This convention saves a lot of expensive typesetting and is easier to read, so we’ll go along with the scholars.


How would a Babylonian scribe have written the number “one-half”?


In our own arithmetic, we solve this problem two different ways. We either write the number as a fraction, ½, or introduce the famous “decimal point” and write it as 0.5. The fractional notation is more intuitive and came earlier historically; decimal notation is more difficult to grasp, but it lends itself better to computation because the symbolism is a natural extension of the “place-value” rules for whole numbers. The symbol 5 in 0.5 means “5 divided by 10,” and in 0.05 it means “5 divided by 100.” Moving a symbol one place to the left multiplies it by 10; moving it one place to the right divides it by 10. All very sensible and systematic.


As a result, decimal arithmetic is just like whole-number arithmetic, except that you have to keep track of where the decimal point goes.


The Babylonians had the same idea, but in base 60. The fraction ½ should be some number of copies of the fraction 1/60. Clearly the right number is 30/60, so they wrote “one-half” as 0;30, where scholars use the semicolon to denote the “sexagesimal point,” which in cuneiform notation was again a matter of spacing. The Babylonians managed some fairly advanced calculations: for example, their value for the square root of 2 was 1;24,51,10, which differs from the true value by less than one part in a hundred thousand. They used this precision to good advantage in both theoretical mathematics and astronomy.


[image: images]


The most exciting technique that Nabu-Shamash would have been taught, as far as our central theme of symmetry is concerned, is the solution of quadratic equations. We know quite a lot about Babylonian methods for solving equations. Of the roughly one million Babylonian clay tablets known to exist, about five hundred deal with mathematics. In 1930, the orientalist Otto Neugebauer recognized that one of these tablets demonstrated a complete understanding of what today we call quadratic equations. These are equations that involve an unknown quantity and its square, together with various specific numbers. Without the square, the equation would be called “linear,” and such equations are the easiest to solve. An equation that involves the cube of the unknown (multiply it by itself, then multiply that by the unknown again) is called “cubic.” The Babylonians seem to have possessed a clever method for finding approximate solutions to certain types of cubic equation, based on numerical tables. All that we are certain of, however, are the tables themselves. We can only infer what they were used for, and cubic equations are most likely. But the tablets Neugebauer studied make it plain that the Babylonian scribes had mastered the quadratic.


A typical one, which dates back about 4000 years, asks, “Find the side of a square if the area minus the side is 14,30.” This problem involves the square of the unknown (the area of the square) as well as the unknown itself. In other words, it asks the reader to solve a quadratic equation. The same tablet rather offhandedly provides the answer: “Take half of 1, which is 0;30. Multiply 0;30 by 0;30, which is 0;15. Add this to 14,30 to get 14,30;15. This is the square of 29;30. Now add 0;30 to 29;30. The result is 30, the side of the square.”


What’s going on here? Let’s write the steps in modern notation.


 














	•  Take half of 1, which is 0;30.


	½







	•  Multiply 0;30 by 0;30, which is 0;15.


	¼







	•  Add this to 14,30 to get 14,30;15.


	870¼







	•  This is the square of 29;30.


	870¼ =  (29½)   × (29½)







	•  Now add 0;30 to 29;30.


	29½ + ½







	•  The result is 30, the side of the square.


	30








 


The most complicated step is the fourth, which finds a number (it is 29½) whose square is 870¼. The number 29½ is the square root of 870¼. Square roots are the main tool for solving quadratics, and when mathematicians tried to use similar methods to solve more complicated equations, modern algebra was born.


Later we will interpret this problem using modern algebraic notation. But it is important to realize that the Babylonians did not employ an algebraic formula as such. Instead, they described a specific procedure, in the form of a typical example, that led to an answer. But they clearly knew that exactly the same procedure would work if the numbers were changed.


In short, they knew how to solve quadratics, and their method—though not the form in which they expressed it—was the one we use today.


[image: images]


How did the Babylonians discover their method for solving quadratics? There is no direct evidence, but it seems likely that they came across it by thinking geometrically. Let’s take an easier problem that leads to the same recipe. Suppose we find a tablet that says, “Find the side of a square if the area plus two of the sides is 24.” In more modern terms, the square of the unknown plus twice the unknown equals 24. We can represent this question as a picture:


[image: images]


Geometric picture of a quadratic equation.


Here the vertical dimension of the square and rectangle to the left of the equal sign corresponds to the unknown, and the small squares are of unit size. If we split the tall rectangle in half and glue the two pieces onto the square, we get a shape like a square with one corner missing. The picture suggests that we should “complete the square” by adding in the missing corner (shaded square) to both sides of the equation:


[image: images]


Completing the square.


Now we have a square on the left and 25 unit squares on the right. Rearrange those into a 5 × 5 square:


[image: images]


Now the solution is obvious.


Thus the unknown plus one, squared, equals five squared. Taking square roots, the unknown plus one equals five—and you don’t have to be a genius to deduce that the unknown is four.


This geometric description corresponds precisely to the Babylonian method for solving quadratics. The more complicated example from the tablet uses exactly the same recipe. The tablet only states the recipe and doesn’t say where it comes from, but the geometric picture fits other circumstantial evidence.
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THE HOUSEHOLD NAME


Many of the greatest mathematicians of the ancient world lived in the Egyptian city of Alexandria, a city whose origins lie among five substantial oases to the west of the Nile, out in the Western Desert. One of them is Siwa, notable for its salt lakes, which grow during the winter and shrink in the summer heat. The salt contaminates the soil and creates major headaches for archaeologists because it is sucked up into the ancient stone and mud-brick remains and slowly destroys the fabric of the buildings.


The most popular tourist site in Siwa is Aghurmi, a former temple dedicated to the god Amun. So holy was Amun that his main aspect was entirely abstract, but he became associated with a more physical entity, the provenance of the god Re, the Sun. Constructed during the 26th Dynasty, the temple of Amun at Siwa was the home of a famous oracle that is particularly associated with two major historical events.


The first is the destruction of the army of Cambyses II, a Persian king who conquered Egypt. It is said that in 523 BCE, planning to use the oracle of Amun to legitimate his rule, Cambyses sent a military force into the Western Desert. The army reached Bahariya Oasis but was destroyed in a sandstorm on its way to Siwa. Many Egyptologists suspect that the “lost army of Cambyses” may be mythical, but in 2000 a team from Helwan University, looking for oil, found bits of cloth, metal, and human remains in the area, and suggested that these might be the remains of the lost army.


The second event, two centuries later, is historical fact: a fateful visit to Siwa by Alexander the Great, who was after exactly the same thing as Cambyses.


[image: images]


Alexander was the son of King Philip II of Macedon. Philip’s daughter Cleopatra of Macedon married King Alexander of Epirus, and Philip was assassinated during the proceedings. The killer may have been Philip’s homosexual lover Pausanias, who was upset because the king had not done anything about some complaint or other that Pausanias had made. Or the murder may have been a Persian plot set up by Darius III. If so, it backfired, because the Macedonian army immediately proclaimed Alexander king, and the 20-year-old monarch famously went on to conquer most of the known world. Along the way, in 332 BCE, he conquered Egypt without a fight.


Intent on cementing this conquest with an endorsement of his credentials as pharaoh, Alexander made a pilgrimage to Siwa to ask the oracle whether he was a god. He visited the oracle alone, and on his return announced its verdict: yes, the oracle had confirmed that he truly was a god. This verdict became the primary source of his authority. Later, rumors claimed that the oracle had revealed him to be the son of Zeus.


It is not clear whether the Egyptians were convinced by this rather flimsy evidence or whether, given Alexander’s control of a substantial army, they found it prudent to go along with his story. Perhaps they were fed up with the rule of the Persians and considered Alexander the lesser of two evils—he had been welcomed with open arms by the former Egyptian capital of Memphis for precisely that reason. Whatever the truth behind the history, from that time on, the Egyptians venerated Alexander as their king.


On the way to Siwa, fascinated by an area of the country lying between the Mediterranean Sea and the lake that came to be known as Mareotis, Alexander decided to have a city constructed there. The city, which he modestly named Alexandria, was designed by Donocrates, a Greek architect, after a basic plan sketched by Alexander himself. The city’s birth has been dated by some to 7 April 331 BCE; this date is disputed by others, but it must be close to 334 BCE. Alexander never saw his creation; his next visit to the area was to be buried there.


So, at least, goes the time-honored legend, but the truth is probably more complex. It now appears that much of what later became Alexandria already existed when Alexander arrived. Egyptologists discovered long ago that many inscriptions are not all that trustworthy. The great Temple at Karnak, for instance, is riddled with cartouches of Ramses II. But much of it was actually constructed by his father, Seti I, and traces—not always faint—of the father’s inscriptions can be seen beneath those carved for Ramses. Such usurpation was commonplace, and was not even considered disrespectful. In contrast, “defacing” a predecessor’s reliefs—hacking out the pharaoh’s face—was most definitely disrespectful, intentionally depriving that predecessor of his place in the afterlife by destroying his very identity.


Alexander had his name carved all over the buildings of ancient Alexandria. He had his name carved, so to speak, on the city itself. Where other pharaohs usurped the odd building or monument, Alexander usurped an entire city.


Alexandria became a major seaport, connected by branches of the Nile and a canal to the Red Sea and thence to the Indian Ocean and the Far East. It became a center of learning, with a celebrated library. And it was the birthplace of one of the most influential mathematicians in history: the geometer Euclid.


[image: images]


We know much more about Alexander than we do about Euclid—even though Euclid’s long-term influence on human civilization was arguably greater. If there can be such a thing as a household name in mathematics, “Euclid” is it. Although we know little about Euclid’s life, we know a lot about his works. For several centuries, mathematics and Euclid were pretty much synonymous throughout the Western world.


Why did Euclid become so well known? There have been greater mathematicians, and more significant ones. But for close to two thousand years Euclid’s name was known to every student of mathematics across the whole of Western Europe, and to a lesser extent in the Arab world as well. He was the author of one of the most famous mathematics texts ever written: the Elements of Geometry (usually shortened to Elements). When printing was invented, this work was among the first books to appear in printed form. It has been published in over a thousand different editions, a number exceeded only by the Bible.


We know slightly more about Euclid than we do about Homer. He was born in Alexandria around 325 BCE and died in about 265 BCE.


Having said that, I am uncomfortably aware that I already need to backtrack. That Euclid existed and was sole author of the Elements is only one of three theories. The second is that he existed but did not write the Elements, at least not on his own. He may have been the leader of a team of mathematicians who collectively produced the Elements. The third theory—far more contentious but within the bounds of possibility—is that the team existed, but much like the group of mostly French, mostly young mathematicians who wrote under the name “Nicolas Bourbaki” in the mid-twentieth century, they took “Euclid” as a collective pseudonym. Nevertheless, the most likely story seems to be that Euclid existed, that he was one person, and that he composed the Elements himself.


This does not mean that Euclid discovered all of the mathematics contained within his book’s pages. What he did was to collect and codify a substantial part of ancient Greek mathematical knowledge. He borrowed from his predecessors and he left a rich legacy for his successors, but he also stamped his own authority on the subject. The Elements is generally described as a geometry book, but it also deals with number theory and a kind of prototypical algebra—all of it presented in geometrical guise.


Of Euclid’s life we know very little. Later commentators included a few snippets of information in their works, none of which modern scholars can substantiate. They tell us that Euclid taught in Alexandria, and it is usual to infer that he was born in that city, but we don’t actually know that. In 450 AD, in an extensive commentary on Euclid’s mathematics written more than seven centuries after his death, the philosopher Proclus wrote:


Euclid . . . put together the Elements, arranging in order many of Eudoxus’s theorems, perfecting many of Theaetetus’s, and also bringing to irrefutable demonstration the things which had been only loosely proved by his predecessors. This man lived in the time of the first Ptolemy; for Archimedes, who followed closely upon the first Ptolemy, makes mention of Euclid, and further they say that Ptolemy once asked him if there were a shorter way to study geometry than the Elements, to which he replied that there was no royal road to geometry. He is therefore younger than Plato’s circle, but older than Eratosthenes and Archimedes; for these were contemporaries, as Eratosthenes somewhere says. In his aim he was a Platonist, being in sympathy with this philosophy, whence he made the end of the whole Elements the construction of the so-called Platonic figures.


The treatment of some topics in the Elements provides indirect but compelling evidence that Euclid must at some point have been a student at Plato’s Academy in Athens. Only there, for example, could he have learned about the geometry of Eudoxus and Theaetetus. As for his character, all we have are some fragments from Pappus, who described him as “most fair and well disposed towards all who were able in any measure to advance mathematics, careful in no way to give offence, and although an exact scholar, not vaunting himself.” A few anecdotes survive, such as one told by Stobaeus. One of Euclid’s students asked him what he would get through an understanding of geometry. Euclid called his slave and said, “Give him a coin, since he must make a profit from what he learns.”


[image: images]


The Greek attitude to mathematics was very different from that of the Babylonians or the Egyptians. Those cultures saw mathematics largely in practical terms—although “practical” could mean aligning shafts through a pyramid so that the ka of the dead pharaoh could be launched in the direction of Sirius. For some Greek mathematicians, numbers were not tools occasionally employed in support of mystical beliefs, but the very core of those beliefs.


Aristotle and Plato tell of a cult, centered on Pythagoras, that flourished around 550 BCE and that viewed mathematics, especially number, as the basis of the whole of creation. They developed mystical ideas about the harmony of the universe, based in part on the discovery that harmonious notes on a stringed instrument are related to simple mathematical patterns. If a string produces a certain note, a string of half the length produces a note one octave higher—the most harmonious of all intervals. They investigated various number patterns, in particular polygonal numbers, formed by arranging objects in polygonal patterns. For instance, the “triangular numbers” 1, 3, 6, and 10 are formed from triangles, and the “square numbers” 1, 4, 9, and 16 are formed from squares:


[image: images]


Triangular and square numbers.


Pythagoreanism embraced some nutty numerology—it considered 2 to be male and 3 female, for example—but the view that the deep structure of nature is mathematical survives today as the basis of most theoretical science. Although later Greek geometry was less mystical, the Greeks generally saw mathematics as an end in itself, more a branch of philosophy than a tool.


There are reasons to believe that this does not tell the whole story. It is well established that Archimedes, who may have been a pupil of Euclid’s, employed his mathematical abilities to design powerful machines and engines of war. There survive a tiny number of intricate Greek mechanisms whose cunning design and precision manufacture hint at a well-developed tradition of craftsmanship—an ancient version of “applied mathematics.” Perhaps the best-known example is a machine found in the sea near the small island of Antikythera that appears to be a calculating device for astronomical phenomena built from a complex tangle of interlocking cogwheels.


Euclid’s Elements certainly fits this rarefied view of Greek mathematics—possibly because that view is largely based on the Elements. The book’s main emphasis is on logic and proof, and there is no hint of practical applications. The most important feature of the Elements, for our story, is not what it contains but what it does not.


[image: images]


Euclid made two great innovations. The first is the concept of proof. Euclid refuses to accept any mathematical statement as being true unless it is supported by a sequence of logical steps that deduces it from statements already known to be true. The second innovation recognizes that the proof process must start somewhere, and that these initial statements cannot be proved. So Euclid states up front five basic assumptions on which all his later deductions rest. Four of these are simple and straightforward: two points may be joined by a line; any finite line can be extended; a circle can be drawn with any center and any radius; all right angles are equal.


But the fifth postulate is very different. It is long and complicated, and what it asserts is not nearly so reasonable and obvious. Its main implication is the existence of parallel lines—straight lines that never meet, but run forever in the same direction, always the same distance apart, like two sidewalks on either side of an infinitely long, perfectly straight road. What Euclid actually states is that whenever two lines cross a third, the first two lines must meet on whichever side creates two angles that add up to less than two right angles. It turns out that this assumption is logically equivalent to the existence of exactly one line parallel to a given line and passing through a given point (not on the given line).


[image: images]


Euclid’s fifth postulate.


For centuries the fifth postulate was viewed as a blemish—something to be removed by deducing it from the other four, or to be replaced by something simpler and just as obvious as the others. By the nineteenth century, mathematicians understood that Euclid was absolutely right to include his fifth postulate, because they could prove that it can’t be deduced from his other assumptions.


[image: images]


To Euclid, logical proofs were an essential feature of geometry, and proof remains fundamental to the mathematical enterprise. A statement that lacks a proof is viewed with suspicion, however much circumstantial evidence seems to favor it and however important its implications may be. Physicists, engineers, and astronomers tend to view proofs with disdain, as a kind of pedantic appendage, because they have an effective substitute: observation.


For instance, imagine an astronomer trying to calculate the movements of the Moon. He will write down mathematical equations that determine the Moon’s motion, and promptly get stuck because there seems to be no way to solve the equations exactly. So the astronomer may tinker with the equations, introducing various simplifying approximations. A mathematician will worry that these approximations might have a serious effect on the answer, and will want to prove that they do not cause trouble. The astronomer has a different way to check that what he has done makes sense. He can see whether the motion of the Moon fits his calculations. If it does, that simultaneously justifies the method (because it got the right answer) and verifies the theory (for the same reason). The logic here is not circular because if the method is mathematically invalid, then it will almost certainly fail to predict the Moon’s motion.


Without the luxury of observations or experiments, mathematicians have to verify their work by its internal logic. The more important the implications of some statement are, the more important it is to make sure that the statement is true. So proof becomes even more crucial when the statement is something that everyone wants to be true, or that would have enormous implications if it were true.


Proofs cannot rest on thin air, and they cannot trace logical antecedents back forever. They have to start somewhere, and where they start will by definition be things that have not been—and will not be—proved. Today we call these unproved starting assumptions axioms. The axioms for a piece of mathematics are the rules of the game.
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