

[image:]

[image:]

CAS recommends this product because it meets the aims of supporting the teaching of computer science within computing to Key Stage 3 pupils. This book supports good practice in teaching the computing curriculum which will help develop computational thinking. It describes good pedagogical strategies and offers progression throughout.

CAS is a grass roots organisation, whose energy, creativity, and leadership comes from its members. We are a collaborative partner with the BCS through the BCS Academy of Computing, and have formal support from other industry partners. Membership is open to everyone, and is very broad, including teachers, parents, governors, exam boards, industry, professional societies, and universities. We speak for the discipline of computing at school level (including FE), and not for any particular interest group. The CAS community has been instrumental in the development of the new curriculum and are 100% committed to supporting all teachers as they engage with computing, and in particular computer science. It contributes to the national debates and consultation regarding the curriculum, assessment, specifications and resources for teaching and learning. It has the aim of promoting and supporting excellence in computer science education.

Further teaching resources are available through the CAS community at: http://community.computingatschool.org.uk

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in sustainable forests. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held responsible for the content of any website mentioned. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.

Orders: please contact Bookpoint Ltd, 130 Milton Park, Abingdon, Oxon OX14 4SB. Telephone: (44) 01235 827720. Fax: (44) 01235 400454. Lines are open 9.00–17.00, Monday to Saturday, with a 24-hour message answering service. Visit our website at www.hoddereducation.co.uk

© Apps for Good, Mark Clarkson, Mark Dorling, Caroline Ghali, Graham Hastings, Pete Marshman, Jason Pitt, Bob Reeves, George Rouse, Torsten Stauch, Carl Turland, Abigail Woodman Limited 2014.

First published in 2014 by

Hodder Education

An Hachette UK Company,

338 Euston Road

London NW1 3BH

	Impression number

	5

	4

	3

	2

	1

	Year

	2018

	2017

	2016

	2015

	2014

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

Cover photo © adimas – Fotolia

Typeset in ITC Veljovic Std by Phoenix Photosetting, Chatham, Kent.

Printed in Italy

A catalogue record for this title is available from the British Library.

ISBN 978 1 471 801815
eISBN 978 1 471 801839

Introduction

Computing drives innovation in the sciences, in engineering, business, entertainment and education. It touches every aspect of our lives, from the cars we drive to the movies we watch and the way in which businesses and governments communicate with and hear from us.

An understanding of Computer Science is essential if you want to keep up with changing technology and take advantage of the opportunities it offers in your life – whether it’s as a career or a way of problem solving, or as a way of providing you with a greater appreciation of the way things work.

Computing is a relatively modern area of study but its roots go back to ancient times when our ancestors created calculating devices – long before modern-day calculators came into being. As you’ll see, Computer Science also has a rich history of innovation and design.

While it is almost impossible to accurately predict what technological developments will happen next, there are underlying Computer Science concepts and principles that lead to future developments. These can be recognised and applied by people who work in computing.

Computational Thinking is one of these processes and it underpins all the learning in this Student’s Book. This should provide you with an approach to problem solving that you will be able to use in relation to a wide range of computer-related and non-computer-related situations. By studying Computer Science you will develop valuable skills that will enable you to solve deep, multi-layered problems.

Throughout this Student’s Book we have described the processes that led to the development of major ideas and systems. This will give you a much better understanding of how computing has come to be as it is today. We look at the development of computing through time, from ancient calculating devices to modern technology, highlighting how each breakthrough or development has contributed to modern Computer Science. We look at the elements that make much of the technology we all take for granted today actually work, and we look at how you can apply this knowledge and these skills to computing challenges.

Each unit in the Student’s Book centres around a challenge and, in order to gain the knowledge and skills you require to complete each challenge, you will come across three different types of activity:

• Think-IT: These are thinking and discussion activities to get you thinking about ideas and concepts.

• Plan-IT: These are planning exercises that set the scene for the practical activities.

• Compute-IT: These are the practical computing or ‘doing’ activities that will allow you to apply the skills and knowledge that you have developed within the unit.

We hope that you enjoy the challenges we have set you and your study of computing.

Mark Dorling and George Rouse

Unit 1 Cracking the code: binary characters, cyphers and encryption

[image:]

Challenge

Your challenge is to act as a secret agent who needs to send a classified message, via email, to a fellow-spy in another country. Eavesdroppers can read messages on the internet. Therefore, you need to encrypt messages to ensure that they can only be understood by your colleague. You will have to invent a cypher or secret code that only the two of you understand.

[image:]

1.1 Binary coding systems

Binary: A quick reminder

All computers process data in digital form. This means that the processor inside a computer works by manipulating zeros and ones, known as binary code. The term data representation refers to the way that binary codes are used to represent different types of data. You already know, from Compute-IT 1 Unit 2 and Compute-IT 2 Unit 3, how numbers can be represented using binary codes.

[image:]

Key Term

Data representation: The way that binary codes are used to represent different types of data, for example numbers and letters.

[image:]

[image:]

Think-IT

 1.1.1 Convert the following binary into decimal numbers:

 a) 0 0 0 0 0 0 0 1

 b) 0 1 1 0 1 1 0 0

 c) 1 1 0 0 1 1 0 0

 d) 1 0 0 0 1 0 0 1

 e) 1 1 1 1 1 1 1 0

 1.1.2 Using as few bits as possible, convert the following decimal numbers into binary:

 a) 8

 b) 33

 c) 130

 d) 200

 e) 255

 1.1.3 How many different numbers can you represent with 8 bits?

 1.1.4 How many different numbers can you represent with 16 bits?

[image:]

As well as working with numbers, computers also have to handle text, graphics, sounds and films. The computer can only deal with all these different types of information if they are in binary form. This means that there has to be a method for converting all this information into binary code, into zeros and ones, just as you converted decimal numbers into binary in 1.1.2 Think-IT.

There are a few different systems for converting text to binary and we are going to concentrate on the most common ones. All systems have been developed to convert the letters of the alphabet, as well as punctuation marks and other characters on the keyboard.

For any system to work, everyone has to agree on the rules. Morse Code is a binary system that uses dots and dashes to represent letters. Samuel Morse invented the system over 150 years ago. He decided that when transmitting messages, dot-dash would mean the letter A, dash-dot-dot-dot would mean the letter B and so on. The system works because everyone using the code sticks to the rules.

[image:]

Think-IT

 1.1.5 a) How many different characters could be represented using 7 bits?

 b) How many different characters are there on a standard keyboard?

 c) Do you think a 7-bit code provides enough bits to represent all the characters in the English language? What about other languages?

[image:]

ASCII

ASCII (pronounced as-kee) stands for the American Standard Code for Information Interchange and is a system developed in the 1960s for transferring data electronically. The original version was a 7-bit code, although more modern versions use more bits. ASCII has a binary code for all of the characters in the English language as well as special characters. For example, 1000011, which you could convert to the decimal number 67, represents an upper case ‘C’ in the ASCII system.

[image:]

Plan-IT

 1.1.6 Here is a small extract of the ASCII chart. It shows the 7-bit codes for the (upper case) letters of the alphabet.

 Decode the following message by converting the numbers into binary and then working out which letter each binary code stands for using ASCII:

 83 69 78 68 72 69 76 80

	1 0 0 0 0 0 1

	A

	1 0 0 0 0 1 0

	B

	1 0 0 0 0 1 1

	C

	1 0 0 0 1 0 0

	D

	1 0 0 0 1 0 1

	E

	1 0 0 0 1 1 0

	F

	1 0 0 0 1 1 1

	G

	1 0 0 1 0 0 0

	H

	1 0 0 1 0 0 1

	I

	1 0 0 1 0 1 0

	J

	1 0 0 1 0 1 1

	K

	1 0 0 1 1 0 0

	L

	1 0 0 1 1 0 1

	M

	1 0 0 1 1 1 0

	N

	1 0 0 1 1 1 1

	O

	1 0 1 0 0 0 0

	P

	1 0 1 0 0 0 1

	Q

	1 0 1 0 0 1 0

	R

	1 0 1 0 0 1 1

	S

	1 0 1 0 1 0 0

	T

	1 0 1 0 1 0 1

	U

	1 0 1 0 1 1 0

	V

	1 0 1 0 1 1 1

	W

	1 0 1 1 0 0 0

	X

	1 0 1 1 0 0 1

	Y

	1 0 1 1 0 1 0

	Z

[image:]

[image:]

Compute-IT

 1.1.7 a) Create a spreadsheet that will automatically convert decimal numbers into their binary equivalent and into the corresponding ASCII letter. For example, if you type in the number 71, it will show you the binary code ‘1000111’ and the letter ‘G’. Set the spreadsheet up so that it can be used to read and write short messages.

 b) Extend your spreadsheet so that it can also be used to convert:

 • binary codes into decimal numbers and ASCII letters, and

 • ASCII letters into binary codes and decimal numbers.

[image:]

Other character coding systems

There are several other systems that convert binary code into text, including Baudot, EBCDIC and UNICODE.

Baudot is a 5-bit code invented in the 1870s and was used to send messages using teleprinters. These were machines designed to transmit data as a series of on and off signals down telephone wires and across radio waves. The keyboards on early teleprinters had just five keys and operators had to memorise the 5-bit codes. It was quite common for people to make mistakes when they were typing in the codes, which is why a proper keyboard, a bit like an old typewriter, was developed to make it easier to type in the messages.

[image:]

Baudot was the forerunner of all the codes that we use today, including ASCII. Although it is an old system, the expression ‘baud rate’ is still used today to measure how fast data can be sent.

EBCDIC – or Extended Binary Coded Decimal Interchange Code – is a code that was mainly used on large IBM mainframe computers in the1960s. At the time, these computers were not programmed by typing commands into a keyboard. Instead, the program was created using ‘punched cards’, with the holes in the card representing different characters and numbers. A special card reader was used to input the program into the computer. IBM invented EBCDIC as an 8-bit code for use on their own computer systems. However, as other codes became more popular IBM stopped using it and started using ASCII instead.

[image:]

UNICODE is a more modern code and is one of the main standards used today for converting binary into text. The codes we have looked at so far use 5, 7 or 8 bits and can therefore only represent a relatively small number of characters. UNICODE uses 16 bits, which means that it can represent many more characters.

	Coding system

	Number of bits

	Number of possible characters

	Baudot

	5

	32

	ASCII

	7

	128

	EBCDIC

	8

	256

	UNICODE

	16

	65536

[image:] A table showing the number of possible characters the coding systems can represent

[image:]

Think-IT

 1.1.8 Find out about UNICODE.

 a) When was the system invented?

 b) Why was it invented?

 c) What are the advantages of UNICODE compared to ASCII?

 d) Why has UNICODE become the standard way of converting binary to text?

 e) How does it work?

 1.1.9 You have found out about Baudot, EBCDIC, ASCII and UNICODE. Some of these systems are still used today and some are not. There are also other systems we have not looked at including, ISO 8859, Code Pages, ANSI and Teletext. Put all the character coding systems in chronological order. Then explain why each new system was developed and the main advantages of each system.

[image:]

1.2 The basics of encryption

What is encryption?

Once text has been converted to binary, it is in a format that can be stored and transmitted electronically. A lot of the data stored on computers may be personal or sensitive and therefore needs to be transferred and held securely. In many cases this means that the data must be encrypted so that it cannot be understood if the wrong person gets hold of it. Encryption is the name given to the process of converting data into a secret code that can only be understood if you know the key. Decryption is the name given to the process of converting encrypted data, called cyphertext, back into its unencrypted form, called plaintext. A cypher is an algorithm to encrypt data so that the data can be kept secret. Data can be encrypted and decrypted using cyphers.

[image:]

Key Term

Cypher: An algorithm to encrypt and decrypt data.

[image:]

Why do we need encryption?

Computers are a very important part of our lives and your personal details are stored on lots of databases already. For example, your school will hold personal details about you, including your address and phone number. Your doctor will store information about your health. Social networking sites store all the information you put on your profile. As you get older, more and more of your information will be stored. For example, if you buy something online, your bank details will be used and stored for at least the duration of the purchase.

[image:]

Think-IT

 1.2.1 What information might people hold on a computer that they would like to keep private?

[image:]

All organisations, including the government, schools, hospitals, doctors and banks, have a legal responsibility to look after all of the information they store and to keep it secure. However, there will be times when they need to send information over the internet. For example, all doctor’s surgeries have an online system to book appointments with local hospitals. This means that your personal health information is being transmitted and could be snooped on or eavesdropped.

There are some situations where keeping information secure could be a matter of national security. In fact, the idea of using secret codes has been around for thousands of years, with many of them used during times of war and conflict.

The timeline on pages 8 and 9 explores key events in the history of encryption.

Why is encryption so important?

Let’s look at just one example to illustrate why encryption is so important: the work carried out at Bletchley Park during the Second World War.

The Enigma machine

In the early 1920s, after the end of the First World War, a German engineer called Arthur Scherbius invented the Enigma machine. It scrambled messages before sending them using telegraph wires and radio signals. Initially it was used commercially, for banking transfers, but was later adapted by the German military. The messages they sent contained classified information about their military strategies and plans for winning the war.

[image:]

The messages were scrambled using a substitution cypher. In a substitution cypher each letter is ‘substituted’ with a different letter. For example, ‘A’ became ‘Z’ and ‘B’ became ‘Y’ and so on. The clever thing about the Enigma cypher was that each letter typed into the keyboard was substituted with a different letter every time a letter was entered, making it almost impossible to work out the code. The Enigma machine had several different wheels, each with the alphabet on them. The wheels could be turned to different positions to give different results. The machine was able to produce over 150 million, million, million possible combinations.

Breaking the code

The Enigma code was first broken by the Polish Cipher Bureau in 1932. Three Polish cryptologists – Marian Rejewski, Jerzy Rozycki and Henryk Zygalski – worked it out using mathematics and information supplied by French military intelligence. Alan Turing and his colleagues at Bletchley Park then built on their work. It wasn’t until a German Enigma operator made mistakes and a book of cypher keys and an Enigma machine were captured from a German submarine that allied cryptologists were able to fully decrypt the messages.

The cypher is the algorithm used to encrypt and decrypt a message. You might know the cypher used and how the encryption was performed but, without the key to decrypt the cyphertext, you cannot turn it into plaintext.

[image:]

Think-IT

 1.2.2 Although many of the cyphers on pages 8 and 9 appear quite different, many of them are based on the same underlying principles or algorithmic thinking. Research the use of cyphers through time and prepare a short presentation on their similarities.

[image:]

The history of encryption

1900 BC: Early cyphers are found carved into monuments in ancient Egypt. It is thought they are carved for fun!

[image:]

800–600 BC: Ancient Greeks use cyphers to send messages about military matters. They develop the Polybius Square as a method of sending signals using smoke or torches.

742 BC: The ancient Greeks invent the scytale, where messages are written on strips of paper and only make sense if the paper is wound around a stick of the correct length and diameter.

[image:]

About 50 BC: Julius Caesar uses a shift cypher system, which is a type of substitution cypher, for all of his personal correspondence. It becomes known as the Caesar cypher and the basic method is still used today.

AD 800–900: Arabic mathematicians are the first to write down the theories of cryptography, including all the main methods for writing and cracking codes.

1467: The first ever substitution cypher, the Alberti Cypher, which uses two rotating disks was invented in Italy. The same concept was used nearly 500 years later during the Second World War.

[image:]

1586: Supporters of Mary Queen of Scots use coded letters in a plot to assassinate Elizabeth I. Elizabeth’s spies cracked the code, leading to Mary’s execution.

1605: The philosopher Francis Bacon uses steganography to create various cyphers and other ways of hiding messages within text. He invents a system for converting letters into 5-bit codes long before the binary system is developed.

1797: Thomas Jefferson invents a wooden cylinder with several wheels. The letters of the alphabet are printed on each wheel and each wheel has to be in the correct position for the message to be read off the cylinder.

[image:]

1789–1815: Napoleon Bonaparte develops his own cyphers to transmit sensitive military information during the French Revolution and the Napoleonic Wars.

1938–1945: Creating and breaking codes was critical to success in both world wars. In particular, the work of Alan Turing at Bletchley Park during the Second World War is viewed as one of the reasons the Allies won the war in 1945. This was because the allies were able to crack the German cyphers in order to read their secret messages.

[image:]

1961: The first ever computer password is created at the Massachusetts Institute of Technology (MIT) to prevent students from wasting precious computer time!

1995: The term ‘hacker’ becomes a popular way of describing someone who tries to break into a computer system illegally. Originally the term was used as a name for people who were employed by computer companies to find errors and mistakes in their programs.

Today: Modern cryptography is used on a very wide range of personal and public applications, from encrypting a single file on your own PC to highly complicated encryption of government secrets.

1.3 Understanding encryption and decryption

A simple cypher

Encryption is the process of taking plaintext and turning it into incomprehensible or indecipherable code, which is known as cyphertext. Decryption is the process of turning the cyphertext back into plaintext so that it can be understood.

[image:]

Key Terms

Encryption: The process of converting data into cyphertext so that it can only be understood if you know the key.

Decryption: The process of converting encrypted data back into plaintext.

[image:]

The aim of encryption is to keep data secure so that if the wrong person gets hold of it, it will make no sense to them. Therefore, to decrypt the data, you need to know the ‘key’. If you don’t know the key you have to try to ‘crack’ it.

The process of encryption works like this:

[image:]

[image:]

Compute-IT

 1.3.1 a) The message below has been encrypted to keep it secure. Do you have any idea what the message says? Can you crack the code?

 Uijt jt b tjnqmf dzqifs

 b) This message uses the same cypher. Look at the pattern of letters. The most frequently used letters in the English language are ‘e’ and ‘t’. Does this help?

 Uif difftf jt po uif ubcmf

[image:]

[image:]

Compute-IT

 1.3.2 Here is a screenshot from a spreadsheet that can be used to crack the code used in 1.3.1 Compute-IT. How does the cypher work?

[image:]

[image:]

Common methods for encrypting data

There are several common methods for encrypting data.

Reverse cypher

This is perhaps the simplest code to crack, because all you do is reverse the message.

‘THE EAGLE HAS LANDED’ becomes ‘DEDNAL SAH ELGAE EHT’.

You could make it a bit harder by removing the spaces: ‘DEDNALSAHELGAEEHT’.

Or by grouping the letters together in groups of the same length to disguise the words: ‘DED NAL SAH ELG AEE HT’.

[image:]

Plan-IT

 1.3.3 a) Write a message using a reverse cypher. Make it as difficult as possible to crack.

 b) Pass your cyphertext to someone else and see if they can crack it.

[image:]

Substitution cypher

In a substitution cypher, each letter of the alphabet is changed – substituted – for another character. This is sometimes called a Caesar Cypher. The cypher used in 1.3.1 Compute-IT and 1.3.2 Compute-IT is a simple substitution cypher. Every letter of plaintext is substituted with the letter that is one ahead of it in the alphabet. This is sometimes called a ‘shift’ as every letter has shifted a set number of places.

The diagram below shows a substitution cypher with a two-letter shift. If encrypted with this cypher, the message ‘THE EAGLE HAS LANDED’ becomes ‘VJG GCING JCU NCOFGF’.

[image:]

There are different ways of creating substitution cyphers to make them harder to decrypt. One method is to use a keyword. For example, you might select the word ‘chopstick’.

First, you delete any repeated letters in your keyword. ‘Chopstick’ becomes ‘chopstik’.

Next you substitute the first eight letters of the alphabet with the letters from your keyword.

Then you add the remaining letters in alphabetical order.

[image:]

If encrypted with this cypher, ‘THE EAGLE HAS LANDED’ becomes ‘RKS SCIES KCE ECGPSP’.

[image:]

Plan-IT

 1.3.4 a) Create your own substitution cypher and write a message using it.

 b) Pass your message to someone else and see if they can crack it. Then give them the key to your cypher and see if they are able to decrypt it.

[image:]

Another variation on a substitution cypher is to substitute letters for symbols. This is what the Pigpen Cypher does. Different letters of the alphabet are placed into different grids. The section of the grid that contains each letter has a unique shape, which becomes a symbol in the code.

[image:]

The Pigpen alphabet therefore looks like this:

[image:]

[image:]

Plan-IT

 1.3.5 Write a message using the Pigpen Cypher and ask someone to decode it. Or develop your own substitution cypher that does not use letters.

[image:]

Modulo 2 encoding

During the Second World War, a German engineering company called Lorenz developed a system for sending secret messages. In simple terms, the code used a method called Modulo 2 addition, which was a way of creating a substitution cypher.

Every letter is given a 5-bit binary code. Then the binary codes are added together using Modulo 2 addition, to create a new binary code, which in turn represents a new letter. The key is added to the plaintext to create the cyphertext.

The lookup table Lorenz used is as shown here.

For example, if we choose ‘A’ or 11000 as our key we can encrypt the letter ‘B’ by adding ‘A’ to ‘B’:

[image:]

[image:]

This could also be shown as an (A OR B) truth table with the two letters shown as the inputs, and the encrypted letter shown as the output.

	Input

	Output

	A

	B

	

	1

	1

	0

	1

	0

	1

	0

	0

	0

	0

	1

	1

	0

	1

	1

Looking at the lookup table on page 13 we can see that 01011 is the code for the letter ‘G’. A + B = G. Therefore, when it is encrypted, ‘B’ becomes ‘G’.

[image:]

Plan-IT

 1.3.6 a) Using the same table that Lorenz used, encrypt a message using the Modulo 2 addition method.

 b) Pass your code and the key to someone else and see if they can decrypt your message.

[image:]

OEBPS/OEBPS/images/orange.jpg

OEBPS/OEBPS/images/cover.jpg
COMPUTING AT SCHOOL

EDUCATE - ENGAGE - ENCOURAGE

COMPUTE-IT

COMPUTING
ror KS3

MARK DORLING
snD GEORGE ROUSE
eries Editors

D) oxnamic

‘7

HODDER
EDUCATION

LEARN MORE

OEBPS/OEBPS/images/8-3.jpg

OEBPS/OEBPS/images/9-2.jpg

OEBPS/OEBPS/images/12-2.jpg

OEBPS/OEBPS/images/13-1.jpg

OEBPS/OEBPS/images/8-2.jpg
A An ancient Greek scytale

OEBPS/OEBPS/images/9-1.jpg
Thomas Jefferson’s wooden cylinder

OEBPS/OEBPS/images/13-2.jpg

OEBPS/OEBPS/images/8-1.jpg
A An early Egyptian cypher

OEBPS/OEBPS/images/13-3.jpg

OEBPS/OEBPS/images/7-1.jpg
QWERTZUIO
A SDFGH K —light bulbs
DOOOOOCOOC

0006000000
9 60600

(<R —keyboard
008@00@@0

—Plugs

OEBPS/OEBPS/images/rules.jpg

OEBPS/OEBPS/images/5-1.jpg
0000000000 "0000000 00 00000
12305878 0NNNDNSEDERRN DN ESANBN
T i 1 1111
22222222222222222222222 222222
333333333337333333377333733333
44444444447 4040440040440400048
555555555555555555 55565555555
666666666666666666666666666666
1711117111711111711111117111717
88888888888868388838 588888888

9999999999999
ssrsawnus

A punched card used to
program an IBM mainframe
computer in the 1950s

and 1960s

OEBPS/OEBPS/images/10-1.jpg
This message is
written in plaintext.

The message is encrypted into
cyphertext using the key.

The cyphertext is sent.

The cyphertext is received.

The cyphertext is decrypted
back into plaintext using the key.

Send more
troops to
the north
side

Tfoe npsf

ussppqt up
uif opsui tjef

Send more
troops to
the north
side

OEBPS/OEBPS/images/4-1.jpg
An operator using a teleprinter, on the left with a five-key keyboard and on the right with a typewriter keyboard

OEBPS/OEBPS/images/11-1.jpg
B5 . £ =VLOOKUP(B4,Sheet21A1:$8526,2)
A B C D & F G H I J K X
1 Type a message into the yellow cells. Type one letter per cell.
2 Your coded message will appear in the cells below.
3

4
5 Cypher text

® N0

OEBPS/OEBPS/images/11-2.jpg
IIIIIIIIIEEEIIII

OEBPS/OEBPS/images/12-1.jpg
E|F

G[H] !

J

KL

PIQ

S|T

H|O|P|S|T

I K|A

E

LM

QIR

OEBPS/OEBPS/images/tp.jpg
COMPUTE-IT @

COMPUTING
ror KS3

OEBPS/OEBPS/images/delta.jpg

OEBPS/OEBPS/images/green.jpg

