
[image: image]

Ultimate Django for
Web App
Development Using
Python

[image:]

Build Modern, Reliable, and Scalable
Production-Grade Web Applications
with Django and Python

[image:]

Leonardo Luis Lazzaro

[image:]

www.orangeava.com

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: January 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-96815-11-0

www.orangeava.com

About the Author

Born in Buenos Aires (la Ciudad de la Furia), Argentina, Leonardo Luis Lazzaro has always been fascinated by the idea of creating something out of nothing. His first contact with computers began at an early age, fueled by classic video games like Maniac Mansion and Monkey Island.

By the age of 12, Leonardo was already running his own Bulletin Board System (BBS) using ProBoardBBS Software, making him one of the youngest participants in online communities in Argentina. The BBS allowed him to meet other tech enthusiasts who introduced him to the programming world. His fascination with computer demos from the demoscene became a strong motivation for his continued discovery in programming.

Leonardo's academic path led him to study computer science at the prestigious Facultad de Ciencias Exactas, Universidad de Buenos Aires (UBA). He embarked on a Ph.D. in drug discovery, trying to apply computational skills to solve highly complex challenges on GPU simulations. However, his journey took a turn, leading him away from the academic world and becoming a Ph.D. dropout.

With 12 years of experience in Python, Leonardo has developed a profound expertise in this programming language. He is proficient in several Python frameworks, including Flask, Pyramid, Django, FastAPI, and others, showcasing his versatility and deep understanding of web development and application design.

About the Technical Reviewer

David Wobrock is a seasoned software engineer in the domains of backend web development, cybersecurity, and developer experience for multiple years. As an active contributor to Django, he plays a significant role in the Django Triage & Review team, showcasing his commitment to the advancement of the framework. Within Django, his primary focus revolves around contributions to the Django ORM and database migrations. Additionally, David is dedicated to maintaining open-source Python packages within the Django ecosystem.

He has worked for several startups, contributing not only to the growth of their technical stacks with reliable and secure software but also enhancing team efficiency by providing internal tools, guidelines, and best practices within the organizations. He believes that having the right tools, which make it easy for developers to do the right thing, is essential for building a great developer experience. Thus, when these tools are enablers for teams, they not only become more efficient but also build more reliable, scalable, and secure products.

Acknowledgements

Since childhood, I’ve always been fascinated by creating something from nothing. As a child, my imagination had intricate ideas, many of which magically took on lives of their own. This magical ability to turn thought into reality has stayed with me until now. This very power of creation has given life to this book.

This book is not a tribute to a single individual. Instead, it stands as a mark of respect and recognition for the open-source community. This work is a testament to the community's spirit of collaboration and shared knowledge.

To my readers, I offer this book as a guide into the world of Django. The book was crafted not from a place of ego but to contribute to our community's knowledge.

Special thanks to Nicolas Rebagliati for his review of Chapter 4. His insightful feedback and attention to detail have significantly enhanced the chapter, greatly contributing to the book's overall quality.

Preface

This book guides readers through building a comprehensive web application using Django and Python. Each chapter builds upon the last, from setting up a development environment to deploying a fully functional application running in a Kubernetes cluster.

Who this book is for

Beginners will find comprehensive coverage of foundational topics, while more experienced programmers will delve into advanced subjects, such as preventing double-form submissions and implementing offline pessimistic and optimistic locking techniques.

Download the code files

The complete code for this book is available on the GitHub repository at https://github.com/ava-orange-education/Ultimate-Django-for-Web-App-Development-Using-Python Each chapter's content is organized into separate branches, allowing you to practice alongside the book.

How to use the book

For beginners, a sequential reading of this book is recommended, as each chapter incrementally adds to the knowledge from the previous one. Experienced developers can directly jump to specific chapters or sections aligned with their interests or areas where they seek a more profound understanding.

As readers progress through the chapters of this book, the invitation is extended to share knowledge and contribute to the community. The hope is that this book enriches the reader’s experience and is enjoyable to read, just as intended during the writing process.

What this book covers

This book guides readers through building a comprehensive web application using Django and Python. Each chapter builds upon the last, from setting up a development environment to deploying a fully functional application running in a Kubernetes cluster.

Chapter 1: Introduction to Django and Python

This chapter introduces Python and the Django framework, detailing Django's philosophy, the latest features in Django 4.2, and the compatibility of Python's syntax and semantics with Django.

Chapter 2: Setting Up Your Development Environment

This chapter guides you through establishing a reliable development environment, including Python installation, version management with pyenv, and creating isolated environments with poetry, equipping you for efficient Django development.

Chapter 3: Getting Started with Django Projects and Apps

This chapter introduces you to the initial steps of starting Django projects and apps. You'll learn about the Django project structure, the role of each component, Django's MVT architecture, configuring Django projects, and a brief introduction to Django's development server.

Chapter 4: Django Models and PostgreSQL

 This chapter, focused on Django models and PostgreSQL integration, delves into creating models, Django's database API, ORM, queries, aggregations, and ensuring data integrity with model constraints.

Chapter 5: Django Views and URL Handling

This chapter explores the creation of views and management of URLs in Django, which are critical components in building the user interface of a Django application.

Chapter 6: Using the Django Template Engine

This chapter explores the Django Template Engine. Learn to create dynamic HTML content for Django apps, including static files, template inheritance, and custom template tags and filters.

Chapter 7: Forms in Django

This chapter covers handling and creating forms in Django, a crucial aspect of user interaction. It includes advanced form handling like ModelForms, Formsets, and techniques to prevent double form submission.

Chapter 8: User Authentication and Authorization in Django

This chapter provides a detailed look at Django's built-in tools for user authentication and authorization. It explains how to manage users and their access levels.

Chapter 9: Django Ninja and APIs

This chapter introduces Django Ninja, a modern framework for building APIs with Python and Django, focusing on creating efficient, robust, and scalable APIs.

Chapter 10: Testing with pytest

This chapter introduces pytest, guiding you through writing practical tests for Django apps. It covers testing views and forms, ensuring code reliability and maintainability.

Chapter 11: Deploying Django Applications with Gunicorn and Docker

This chapter discusses deploying Django applications using Gunicorn and Docker. It includes insights into creating Dockerfiles, configuring Kubernetes clusters, and adding liveness and readiness probes for application scaling.

Chapter 12: Final Thoughts and Future Directions

This concluding chapter reflects on building a Django task management app and looks ahead at Django's future. It discusses the Django ecosystem, additional tools, and staying updated with the community.

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-education/Ultimate-Django-for-Web-App-Development-Using-Python

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/808c99

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction to Django and Python

Introduction

Django has proven to be a robust and reliable framework, making it a popular and demanded tool in the Python ecosystem. Its high-quality standards and versatility enable the creation of unique web applications. In this chapter, we will dive into the core features of Python and explore how they interact with Django to promote effective web development. We will guide you through the philosophies of Django and explain why following them from the beginning is essential for a successful project. You will learn Python’s language nature of dynamically and strongly typed language, which are fundamental to master. In addition, we will highlight the importance of Python’s style guide, PEP 8, which guarantees the craft of clean, professional, and comprehensible code. As we conclude this chapter, a deeper understanding of the framework’s features will increase your productivity.

Structure

In this chapter, we will cover the following topics:

	Introduction to Python

	
Introduction to Django

	The Django Philosophy

	Notable features of Django 4.2

	Python Syntax and Semantics

	Python for Django

	Conclusion

Introduction to Python

Python is a strongly and dynamically typed language. Dynamically typed means that the type checking is being done at runtime and is strongly typed because it does not implicitly convert types under most circumstances.

	
	
Statically Typed

	
Dynamically Typed

	
Strongly Typed

	
Java, C#, C++

	
Python, Ruby

	
Weakly Typed

	
C, C++

	
JavaScript, PHP

Table 1.1: Categorization of programming languages based on two different typing characteristics

Working with a dynamically typed language for the first time could be a shock for software developers used to statically typed, and it could feel incorrect. If you are coming from Java or C#, you must change your mindset and learn a new way of coding without private methods or interfaces in the traditional sense.

To contrast the difference between strong and weak typing, let’s compare JavaScript and Python.

JavaScript:

console.log([] + []); // prints: ""

// things can get more interesting

console.log([] + {}); // prints: "[object Object]"

console.log({} + []); // prints: "[object Object]"

As you can see, JavaScript doesn’t throw any errors, and the results of the operations are peculiar (and can seem unexpected).

However, with Python, things are quite different:

print([] + []) # prints: []

print([] + {}) # Raises TypeError

Python’s strongly typed nature leads to different behaviors than JavaScript’s weakly-typed nature. The first operation returns expected, and refusing to convert values silently could prevent bugs.

Understanding variables as references

Python differs from other programming languages; it doesn’t need to declare variable types beforehand. In Python, variables act as pointers to objects, not the objects themselves.

To understand how it works, check this simple Python code:

x=5

y=x # At this point, x and y point to the same object 5.

print(id(x)) # outputs the integer 139691746963400

print(id(y)) # outputs the integer 139691746963400

x=10 # Now, x points to a different object, 10, but y still points to 5.

print(id(x)) # outputs 139691746963560

The id() function is used to print the unique identifier for objects that x and y are referencing. The first two call returns the same ID since x and y are referencing the same object. The third call of id prints a different id since x references a different object now.

Parameter passing

Python uses the pass-by-object-reference strategy when passing parameters. This approach means that references to the objects are passed and not the copies; this translates to cheaper function calls since object copy is expensive.

For immutable objects like strings or integers, Python doesn’t modify the variable value beyond the function’s scope:

def update_number(n: int) -> None:

n = 10

x = 5

update_number(x)

print(x) # prints: 5

However, extra caution is necessary when working with mutable objects. When a function or method changes a mutable object, it can produce unexpected side effects.

def update_list(numbers: list[int]) -> None:

numbers.append(10)

x = [5]

update_list(x)

print(x) # prints: [5, 10]

Remember that the function directly interacts with the original object in memory, not a copy of it. Such behavior might not align with a programmer’s intentions, and it’s the reason for hard-to-detect bugs.

Mutability and immutability have been two approaches discussed for a long time. Immutability brings more safety and fewer side-effects to your code and therefore makes it easier to reason about. However, mutability can be interesting for performance and flexibility during development. Both approaches are valid and can co-exist. You will have to decide how to tackle your problems.

Interfaces or protocols

In Python, you can create an abstract base class as an interface for implementing subclasses. The ABC can specify some methods that any child classes must implement.

from abc import ABC, abstract method

class AbstractAnimal(ABC):

@abstractmethod

def make_sound(self) -> str:

pass

class Dog(AbstractAnimal):

def make_sound(self) -> str:

return "Woof!"

Sometimes, you may not find any abstract base classes in Python codebases, and the contract could be implicit. This concept is often called duck typing - If it walks like a duck and it quacks like a duck, then it must be a duck. With duck typing, the type or class of an object is less important than its methods and properties. Duck typing enables a polymorphism where the developer doesn’t require the object to be of a specific type but only to implement certain methods or properties. The implicit interface allows developers to replace objects with different implementations as long as the replacements fulfill the same contract, i.e., they have all the required methods and properties.

Duck typing is an inherent feature of Python and many other dynamically typed languages where type-checking is done at runtime. The principle allows for greater flexibility in code, but it also places more responsibility on the developer to ensure that objects are properly used.

Standard modules

Python’s standard library is vast and includes numerous modules. Given its broad scope, covering all of it in an introductory segment is impossible. This section will show the most common modules used while working with a Django project.

Let’s start with pathlib, an object-oriented module to handle filesystem paths. One of its common usages is in the settings of the project.

Let’s see an example:

from pathlib import Path

BASE_DIR is the project root (the directory containing manage.py)

BASE_DIR = Path(__file__).resolve().parent.parent

This is how you would define the location of the static files directory

STATIC_ROOT = BASE_DIR / 'staticfiles'

As you can see, the / is the operator to join paths; the pathlib module was introduced in Python 3.4, and it offers a great way to handle the filesystem.

JavaScript Object Notation (JSON) is a universally recognized format for storing and transferring data. Converting objects to JSON is named serialization, while the reverse is called deserialization. The standard library has a module that works with JSON, the json module.

Here are some examples of how to use the JSON module:

import json

let's create a dictionary to represent a person

person = {

"name": "John",

"age": 30

 }

serialization of the object

person_json = json.dumps(person)

deserialization of the json, loads returns a dictionary

person_dict = json.loads(person_json)

assert person == person_dict

When the object is not serializable, dumps will raise TypeError. To make the object serializable, you must provide a function that translates the object to a dictionary and pass it using the default parameter.

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

def person_serializer(obj: Any) -> dict:

if isinstance(obj, Person):

return {"name": obj.name, "age": obj.age}

raise TypeError(f"Type {type(obj)} not serializable")

p = Person("John", 30)

import json

json.dumps(p, default=person_serializer)

The datetime module is another helpful module to learn. While Django provides several utilities for handling date-times, there might be occasions when it’s necessary to resort to the functionalities of the standard datetime module. Let’s see an example of the helpful timedelta class:

from datetime import datetime, timedelta

with Django it's important to always use datetime timezone aware

current_datetime = datetime.utcnow()

let's add 7 days to the current_datetime

future_datetime = current_datetime + timedelta(days=7)

Python offers a plethora of other modules to explore. We advise readers to consult the official Python documentation for a deeper understanding of these modules.

Error handling

When converting a string to an integer, one has to anticipate that the string is not a valid integer. Thus, it is important to understand Python’s error-handling system.

Python is a strongly typed language that will raise an exception when an error occurs, like trying to convert a string to an integer that is not valid. In this case, it raises a ValueError exception. But fear not, for Python equips us with a way to catch and address these exceptions: the try/except/else/finally block.

Here is how to work with exceptions with Python:

def get_integer(raw_number):

try:

Code that might raise an exception

res = int(raw_number)

except ValueError:

What to do if the exception occurs

print("Not possible to convert to integer")

res = None

else:

Code to run if no exception was raised

print("String to integer was successfully converted.")

finally:

Code to run no matter what

if res is not None:

print(f"The integer is: {res}")

return res

In our get_integer function, we enclose our code within this block. We optimistically try to convert the string to int. If all goes well, we log an informational message to say we’ve converted the string. If Python can’t convert the string, it raises the ValueError exception, which we promptly catch. We log an error message, and instead of returning a default integer, we play it safe and assign None to our result.

No matter what happened in the try or except blocks, we move on to the final block. Here, if an integer is converted, we log its value. The function returns the result - the integer if it was converted or None if it wasn’t.

And that’s how you deftly handle errors in Python. So, when the unexpected happens, your program doesn’t falter but takes a different path.

In Chapter 9, Django Ninja and APIs, we will see that we don’t need to create this function to convert payloads to Python objects. We will use serializers that convert payloads to their respective objects.

It’s important to note that catching the generic Exception is not always a good practice since it can silence bugs and it make troubleshooting bugs harder. Try to always be explicit when catching exceptions. The application should fail and detect the error rather than have a silent bug hidden deep in the application codebase.

List comprehensions

Suppose you have a list named ‘numbers’ with integers. Your mission is to generate a new list, mod_results, where each element is the modulus of the corresponding number from numbers when divided by a certain value, say 5. You could march down the traditional path, using a for-loop to calculate the modulus for each number and then appending it to mod_results. It’s a decent method, but Python has syntactic sugar to write these types of loops in one line and keep the code more concise.

In a single code, you can generate the result:

numbers = range(0, 100)

mod_results = [n % 5 for n in numbers]

The last line will generate a list of integers with the computation of modulus with 5 for each number from 0 to 100.

Python also allows the inclusion of conditionals in list comprehensions. Want to compute the modulus for only the even numbers? Here is how to do it:

even_mods = [n % 5 for n in numbers if n % 2 == 0]

This feature can turn your multi-line tasks into one-liners, making your code compact, and readable.

Sometimes, list comprehensions can become cumbersome, especially when dealing with complex logic or multiple levels of loops and conditionals. If you find your list comprehension stretching over numerous lines or becoming so tricky that it’s hard to understand at a glance, it might be time to reconsider using it.

F-Strings

Python f-strings, introduced in Python 3.6, provide a concise and convenient method to embed expressions inside string literals. The expressions are evaluated at runtime and formatted using the curly braces {}.

name = "Pepe"

age = 30

greeting = f"Hello {name}, you are {age} years old."

print(greeting)

Output: Hello Pepe, you are 30 years old.

The f-string evaluates the variables’ name and age within the string.

You can also have an expression inside the f-strings:

x = 5

y = 10

result = f"The sum of {x} and {y} is {x + y}."

print(result)

Output: The sum of 5 and 10 is 15.

f-strings also support format specifiers, allowing more control over the formatting of the embedded expressions.

import math

pi_value = f"Pi value up to 10 decimal places: {math.pi:.10f}"

print(pi_value)

Pi value up to 10 decimal places: 3.1415926536

Type hinting

As mentioned before, Python is dynamically typed, and taking over someone else’s code can sometimes feel like solving a puzzle, especially if you are new to Python. Since no type is specified, the developer needs to read the code to infer the types of the argument or the return type.

Type hinting in Python serves as a specification. With type hinting, you can annotate your function definitions to specify what type of arguments the function expects and what type it will return.

Let’s see an example to understand how it works:

def hello_world(person_name: str) -> str:

return f'Hello, {person_name}!!'

The parameter person_name is expected to have type str in this function, but it could receive anything during runtime. Using the syntax with a colon is a way of telling that the hello_world function expects a string. The arrow after the function arguments -> str is another type hint that specifies a string as the return type.

Python 3.10 introduced the pipe operator (|) or PEP 604 syntax as a more readable way to denote Union types.

from typing import Union

print(int | str == Union[int, str]) # This will print: True

As you can see the pipe operator is the same as the Union.

Let’s look at another example:

def get_task_details(task_id: int | str) -> dict[str, str | int]:

dummy data

tasks = {

'001': {'title': 'Write report', 'priority': 1},

'002': {'title': 'Plan meeting', 'priority': 2},

'003': {'title': 'Review code', 'priority': 3},

}

return tasks[str(task_id)]

In the get_task_details function, the type hint task_id: int | str means that the function accepts an integer or a string as the task ID. The function returns a dictionary indicated by -> dict[str, str | int]. This dictionary maps to a string for the task title and an integer for the task priority. If the task isn’t found, the function raises a KeyError exception.

Even when using type hints, Python is still a dynamically typed language. The interpreter doesn’t enforce these types of hints during the code execution. Therefore, you can still pass arguments of any type to your function, and it will attempt to execute it. Python won’t raise any errors because the argument type doesn’t match the type hint.

Type hints serve as a form of documentation that can make the code more understandable and maintainable, and when used with a type checker like mypy (https://mypy-lang.org/), it can make it more robust.

Coding style

Writing Python code is not only understanding the syntax but also how the code is crafted and structured. Think of Python’s style guidelines, glorified in PEP 8, as the dress code of the Python world—followed in writing clean, professional, and easy-to-read code.

Some of these guidelines include:

Indentation: Python sets the bar at four spaces per indentation level—not two, not eight, but four. Keeping to this rule results in a neat, organized code.

 def example_function(arg1: Any, arg2: Any) -> None:

if arg1 is not None and arg2 is not None:

print("Both arguments are not None.")

Line Length: Keep lines within a limit of 129 at most. The line length limit facilitates reading.

Whitespace: Spaces around binary operators aren’t just empty areas—they are bridges connecting parts of your code, making it easier to comprehend.

Variable names should be declarative, and the use of single characters should be avoided—they should be clear and self-explanatory.

Better

box_cost = box_size**5 + 9

difference = (box_size + box_cost) * (box_size - box_cost)

Avoid

box_cost=box_size**5+9

difference=(box_size+box_cost)*(box_size-box_cost)

By convention, function names should be lowercase letters, with underscores used as links between words to enhance legibility, known as snake_case.

Preferred

def calculate_mean(numbers: list[int]) -> int:

return sum(numbers) // len(numbers)

Discouraged

def calc_m(n):

return sum(n) // len(n)

Pairing well with these style guidelines are linters; the most common ones are flake8, pylint, and ruff. Linters ensures that your code stays clean, consistent, and up to the high-quality standards set by the Python community. A common practice in enterprise projects is to have a continuous integration pipeline with linters to check the code; this will prevent any developer from adding code, not PEP8 compatible.

As the wisdom of PEP 8 puts it, A Foolish Consistency is the Hobgoblin of Little Minds. Remember to always find the right balance. Sometimes style guide recommendations just aren’t applicable.

But it’s important to remember that coding is as much an art as a science. While adherence to best practices is highly encouraged, there are moments when deviating slightly from a rule could lead to a more comprehensible piece of code.

It’s all about finding the sweet spot—the perfect blend of consistency and adaptability.

Introduction to Django

Django is a high-level Python web framework loaded with features that allow you to immerse yourself in developing your application’s functionality. Django comes with batteries included, which means it offers a full-featured and complete framework to build sophisticated web applications. Django makes building better web apps more quickly and with less code easier.

The framework comes with session management, Object-Relational Mapping (ORM), an automatic admin interface, a template engine and many more. This reduces the need for multiple third-party libraries and accelerates the delivery process.

The community around Django is a thriving ecosystem, making it an excellent choice for building an enterprise application. Since it is widely used, most errors and common gotchas are easy to find on the internet. The project has high-quality standards and a robust codebase demonstrating open-source success.

Even when the framework lacks certain features, the community has created thousands of libraries to expand the framework functionality and most of which have been actively maintained for years.

You can see the true power of a dedicated and creative community when you look at how they’ve taken this framework to this point.

Django’s high-security standards are highly recognized in critical industries like finance. But also, for media companies, managing high-volume and dynamic content is easy through Django’s user-friendly content administration features. Fast-paced startups with high delivery velocity leverage this framework to turn those brainwaves into reality.

The Django Philosophy

Django documentation explains philosophies that encourage good practices and help to standardize projects. Adhering to these philosophies will keep the project healthy and easy to maintain but also facilitate the onboarding process for new developers into projects by reducing the learning curve.

Don’t repeat yourself

The Don’t repeat yourself (DRY) is a general principle to prevent duplication. The principle seeks to prevent the repetition of the same code in different parts of a project, or the re-implementation of a feature already provided by the framework or library.

However, sometimes it’s hard to understand what constitutes duplication fully. Remember that duplication can appear anywhere – in code, architecture, requirement documents, or user documentation.

Using a feature-rich framework like Django may paradoxically increase the risk of violating the DRY principle. For instance, suppose that you need to capitalize a word in a template. Using the built-in feature the framework provides will uphold the DRY principle. A deep knowledge of the framework’s capabilities and features is a must to prevent breaking the DRY.

Loose coupling and High cohesion

In software development, two essential principles exist for creating maintainable, modular, and efficient code. These principles are Loose Coupling and High cohesion.

Loose coupling refers to how much the modules or components of your application are independent of each other. Having Loose coupling allows developers to make changes to modules without affecting others.

High cohesion refers to how modules are functionally related. This means that a module performs a specific task. High cohesion goes hand in hand with The Single Responsibility Principle (SRP), which dictates that a class or module should have only one reason to change.

Loose coupling ensures that changes in one class or module don’t cascade issues in others. Loose coupling promotes code that is easy to read, maintain, and test. Think of it as the butterfly effect. If adjusting one line of code causes problems in a separate module or class, you likely have a case of tight coupling. The same happens when you try to write a unit test, and it’s tough to write it. Hard-to-write tests are a code smell sometimes related to coupling.

Design patterns exist in software development, functioning similarly to blueprints. Developers often rely on these patterns to simplify communication and systematically address common problems. A service layer is a design pattern encapsulating the application’s business logic. It separates business logic from the user interface and data access layers. An interface within the service layer ensures that business logic is readily accessible to various applications in your project.

Many Django projects lack a service layer bringing maintenance problems since those projects tend to have coupling problems. Having a service layer helps to reduce coupling and increases cohesion, as we will see in later chapters.

Building a fully decoupled and cohesive system is complex, and could be expensive. Engineers often have to cut corners or work with an existing codebase. But don’t worry - in this book, we’ll work with good practices to keep coupling low and cohesion high.

Software engineering is the art of finding the right balance in decisions to deliver the project on time; sometimes, engineers often have to cut corners. A wholly decoupled and cohesive system could be expensive, especially if the project needed to follow good practices.

Less code and quick development

Every Django application should embrace the idea that less is more. Applications should be lean and without a boilerplate. The less the code, the less chance of having a bug. This idea applies to every aspect of the Django framework, and where there is too much code, most likely, you are missing a framework feature.

With the batteries-included philosophy Django is a framework that allows developers to focus on the problem they need to solve and not on technicalities, eliminating the need to build everything from scratch, like authentication and admin interfaces.

Explicit is better than implicit

Code should not hide its behavior or reply to implicit operations. When reading the code, there should not be any hidden operations and the programmer’s intent should be transparent. This principle is part of the Zen of Python (PEP-20).

For example, Django models should declare all their attributes and properties; behaviors should be explicit in the code. When a model contains a title attribute, and since all titles are required, it should be explicitly set so that no blank titles are allowed in the attribute properties.

Models: Include all relevant domain logic

Models should be responsible for storing and retrieving themselves; this idea uses the Active Record architectural pattern, from the Ruby on Rails framework. This principle also applies to the operation that can be performed on the object, and the business logic should live in the model.

However, it’s important to note that this principle works well for small projects. Moving the business logic to a service layer is essential when the project grows.

It’s common to see many Django projects without a service layer since the principles are too open for interpretation. Both solutions are valid, but using a service layer goes hand in hand with the loose coupling.

Having a service layer helps provide an interface from other modules and will make future refactors easier since other modules will rely on the service layer’s interface.

As we go deep into the following chapters, we will see how to think about interfaces first and the service layer’s importance.

Separate logic from the presentation on templates

Templates control presentation and the logic it implements should relate to presentation and nothing else. Having business logic in the templates is a mistake and must be avoided. However, having some basic logic to control how to present the data is expected.

The template engine provides features to prevent code duplication, so if your website contains a common header or footer, ensure you are using the template engine to extend or include templates.

Views

A Django view is a function or a class that receives input from users via the web browser, makes a process of the input and returns a response to the user’s browsers.

Views must be as simple as possible; its responsibility should be to translate the request and call the service layer. Views should not contain any business logic. The view implementation should not depend on the template engine.

Caching

The cache framework of Django provides a common interface across different cache backends and an easy way to extend it. Currently, the Django caching framework supports Memcached, database caching, filesystem, and local memory.

The framework does not provide a built-in solution for caching with Redis, but it offers an easy way to extend it and use Redis for caching. A well-known and battle-proven 3rd party library exists for that (https://github.com/jazzband/django-redis).

Django 4.2 highlights

Django 4.2, a long-term support release (LTS), that guarantees security and data loss fixes for an expected timeframe of about three years.

This Django version is compatible with Python versions from 3.8 to 3.11. Support for Python 3.11 was introduced, starting with Django version 4.1.3. You could opt for the more conservative route with Python 3.10. However, with the release of several patches for 3.11, choosing the most recent Python version could be valuable given its speed improvement of 1.22x as per standard benchmark tests.

Support for psycopg3

Psycopg is a popular PostgreSQL adapter for the Python programming language. The release of the major version of Psycopg brings significant changes. Its asyncio support enables Django’s integration of asyncio into its framework. Django allows you to create async views using the async def, and for WebSockets, you can use the channel’s library. Django 4.1 has introduced asynchronous database interaction methods, indicated by an a prefix, and extended in 4.2 to include more methods. Here is an example of async ORM:

async for task in Task.objects.filter(title__startswith="Story"):

creator = await task.creator.afirst()

Comments on columns and tables

You can now annotate columns and tables with comments using the new Field attributes db_comment and models Meta.db_table_comment options. The comments are directly within the database. The annotated columns or tables improve the documentation of the database schema for future developers in the project.

In-memory file storage

Sometimes, when unit tests on Django apps need to access the hard drive, it slows testing down. This version added new in-memory file storage to accelerate test runs and reduce development times.

Custom file storages

Now, you can configure all storage settings in a dictionary, enabling the setup of multiple custom file storage backends in one place. Chapter 3, Getting Started with Django Projects and Apps will show how to configure this setting for managing static files.

Updates in password validation

Password reuse is a significant security risk, contributing to the potential for unauthorized access. In the past, leaks occurred in several databases, exposing that people tend to use common words as passwords. The framework provides a CommonPasswordValidator to prevent the use of common passwords, and this version introduces new common passwords.

Minor updates and additions

Like any other release, the developers have made numerous minor improvements concentrating on updating the request-response lifecycle for improved performance. There are refinements in the generation of sitemaps and handling of static files, along with enhancing error reporting and internalization. This minor release of the Django framework comes with many new features and improvements.

Python for Django

Python has an elegant and easy-to-read syntax, and Django philosophies fit perfectly, making it a natural fit.

Python’s cross-platform compatibility makes Django able to run on any system making it easy to develop and deploy. The simplicity of Python enhances Django’s framework, reducing the cognitive load, which allows one to focus on business logic. Its “batteries-included” philosophy aligns with the “don’t reinvent the wheel” mantra, allowing the use of all the features that the language and framework provide.

Django has a healthy and extensive community that extends and improves the framework and libraries and makes the project more robust and secure.

The language enforces good coding practices, such as proper indentation, resulting in clean, understandable code. This coding practice aligns perfectly with Django’s aspiration to be the framework for perfectionists with deadlines, emphasizing the importance of maintainable and readable code.

In a nutshell, Python complements Django like a well-crafted puzzle piece.

The language’s core strengths—readability, an extensive support ecosystem, and simplicity—harmonize with Django’s mission of simplifying web development.

Conclusion

Django is a framework with batteries included, which promotes good practices. Knowing those good practices will keep the project healthy and easy to maintain. Understanding the framework and language features will help you keep your application simple and striking to the DRY principle. Python is a dynamic and strongly typed language, and if you come from a statically typed language, it could be hard to read code without type annotations. The language has coding practices that it’s essential to follow to maintain high levels of quality in your project, and several open-source tools can help you to follow them, like pylint, flake8, or ruff. Python and Django are a natural fit, and the framework follows Python Zen and both were built in harmony.

In the next chapter, our focus will be on configuring our development environment with tools that reproduce the production environment. We will explore the foundational aspects of team-based development processes, Git Flow, GitHub Flow and trunk-based development.

Questions

	What are the purposes of Python’s try/except/else/finally blocks in error handling?

	When would it be considered good practice to catch the generic Exception in Python? When might it be harmful?

	Explain in your own words what a list comprehension is and provide an example.

	How does type hinting in Python help with code maintenance and robustness?

	What are some of the key guidelines from PEP 8 for writing clean and professional Python code?

	How can linters be used to enforce Python coding standards in enterprise projects?

	How does the syntax and design of Python contribute to the effectiveness of the Django framework?

	Describe what is meant by Python being a dynamic and strongly typed language. How can this be a challenge for developers coming from statically typed languages?

	Why is Django referred to as a framework for perfectionists with deadlines?

	How do Python and Django together contribute to the DRY (Don’t Repeat Yourself) principle in software development?

CHAPTER 2

Setting Up Your Development Environment

Introduction

Reproducibility refers to consistently replicating the same output using the same source code and data. This is a foundational principle crucial for verifying and validating results in software.

This chapter will explain the importance of reproducibility and guide you in creating a development environment, mirroring your production setup as closely as possible.

We will walk you through steps to build your development environment to work on more than one project at the same time.

Using the dependency management tool Poetry, we will make our project dependencies easier to maintain.

Once we’ve covered the necessary tools for setting up a development environment, we’ll set up the environment for working on our ongoing project within this book.

An overview of git, a control version system, will teach you primary use cases to start working on a Django project.

Finally, we will review different branching models, Git Flow, GitHub Flow, and trunk-based, essential for any team-oriented project. As a bonus, we show the git worktree feature to improve your git skills even further.

Structure

In this chapter, we will cover the following topics:

	Introduction to Development Environments

	Managing Python Versions with Pyenv

	Understanding Virtual Environments

	Introduction to Poetry for Dependency Management

	Setting Up a Django Project with Poetry

	Basic Configuration for a Django Project

	Introduction to Git for Version Control

	Creating a GitHub Repository

	Branching Models

	Advanced git usage: using worktree

Introduction to Development Environments

Dealing with development environments can sometimes feel like navigating a maze. There are vast options for hardware and software, a combination that can create all sorts of challenges. Have you noticed that certain things work fine on your computer but fail to operate on another one? A well-known phrase for it is It works on my computer. Usually, this phrase appears when everything works well, except in the production environment.

When we say development environment, we’re talking about the specific setup we used to develop and test new software features. This setup is usually run on the developer’s computer.

Docker is a popular platform for developing, shipping and running container applications. A container is a standalone package of software that includes everything needed to run an application, including the runtime, system tools, libraries, and settings.

Docker has become a standard way of fixing reproducibility problems. But as with everything, it could be better. There are other options in the ecosystem, like Nix, which focuses on making reproducibility as perfect as possible. Nix is a powerful package manager for Linux and other Unix systems, making package management reliable and reproducible. Nix provides isolation between different versions and configurations, addressing the dependency hell issue often encountered in traditional package managers.

We aim to build a flexible development environment that allows switching between Python versions for various projects. One of the big players in your development environment is your Integrated Development Environment or IDE for short. A whole bunch of open-source and commercial solutions work nicely with virtual environments. We will cover the virtual environment in this chapter.

Managing Python Versions with Pyenv

Pyenv is a version management tool that allows you to switch between Python versions.

Imagine you are working on a project coded in Python 3.8 and want to upgrade it to 3.9. The standard procedure is to upgrade your system interpreter to 3.9, which could remove 3.8. Changing your OS Python interpreter could bring other issues since other software depends on it. Using the system interpreter has some drawbacks. Pyenv isolates your environment and allows you to easily switch Python versions without changing your system Python interpreter.

The installation of Pyenv is straightforward. Curl is a tool used to fetch data from a server, and it’s necessary to download the Pyenv installer.

Pyenv can be installed using the pyenv-installer, with steps documented in the official GitHub repository: https://github.com/pyenv/pyenv-installer

Pyenv allows you to install almost any Python version. It will download the source code and compile it. Pyenv also supports virtualenvs, but we will use poetry virtualenv in the following sections.

Let’s install version 3.11:

pyenv install 3.11

Note: Your operating system will require some compilation dependencies for Pyenv to install Python. You can install it with the following commands:

Debian/Ubuntu

sudo apt install -y make build-essential libssl-dev zlib1g-dev \

libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev \

libncursesw5-dev xz-utils tk-dev libffi-dev liblzma-dev python-openssl

macOS

brew install openssl readline sqlite3 xz zlib

Now you are ready to switch your Python version to 3.11. Here are some common and helpful commands:

switches the version for a specific application

if your global is 3.10, opening a new terminal will not use 3.11

pyenv local 3.11

changes the version to use it everywhere

opening a new terminal will use this version

pyenv global 3.11

test that the version was changed correctly

pyenv version

verify that your python command is using the one installed by pyenv

which python

it should output: /home/username/.pyenv/shims/python

Tip: With Pyenv you can install several Python interpreters. A good exercise is to play with other interpreters.

For example, Jython, a Python interpreter on the Java platform, enables integration with Java components. PyPy, another interpreter, often exceeds the standard Python interpreter (CPython) in execution speed due to Just-In-Time (JIT) compilation.

Understanding Virtual Environments

Projects have their dependencies, which are locked to specific versions to ensure reproducibility. Installing the dependencies for multiple projects in your existing global environment could lead to conflicts or create an environment that differs from the production environment. Virtual environments isolate projects’ dependencies. Typically, you’ll have one virtual environment per project. However, there could be exceptions, like when a project needs to migrate to a newer Python version.

Virtual environment, or virtualenv, is an additional layer that isolates the dependencies of your Python project.

Creating virtualenvs is straightforward, and there are multiple ways to do so. Pyenv has a plugin to manage virtual environments or you could use a dependency management like Poetry, which provides support for virtualenvs.

Introduction to Poetry for Dependency Management

Using a dependency management tool could make the project dependencies easier to maintain; some dependencies depend on others, and conflicts could go undetected. Versioning pinning is when the dependencies versions are fixed to a specific version; having this with all application dependencies could make the reproducibility of the environment easier to ensure.

Imagine not using versioning pinning, and everything works in your local environment. When you deploy the project to production, a new incompatible library release was added, and now your project is failing with errors.

Poetry is a dependency management tool that promotes good dependency management practices, like versioning pinning. The tool uses a file pyproject.toml to specify project settings and a .lock file to save the dependency tree. Most of the time, you will make changes via the poetry cli and are discouraged to manually modify the .toml file and the .lock file is prohibited from being changed.

Setting up a Django Project with Poetry

Let’s configure our environment to use Poetry. Here are the steps to follow:

pip install poetry

Now, with Poetry installed, we can start a new project:

poetry new task_manager

Let’s add our most awaited dependency, django:

cd task_manager

let's add Django dependency

this will automatically update the pyproject.toml and poetry.lock

poetry add django

optionally, you can specify the version you want to install

poetry add django==4.2.2

you can also specify dependencies only for the development environment

poetry add --dev pytest

now we can install the dependencies with

poetry install

spawns a new shell within the virtual environment

where dependencies are isolated

poetry shell

Test that Django was installed properly

python -c "import django"

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		About the Author

		About the Technical Reviewer

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Introduction to Django and Python
		Introduction

		Structure

		Introduction to Python
		Understanding variables as references

		Parameter passing

		Interfaces or protocols

		Standard modules

		Error handling

		List comprehensions

		F-Strings

		Type hinting

		Coding style

		Introduction to Django

		The Django Philosophy
		Don’t repeat yourself

		Loose coupling and High cohesion

		Less code and quick development

		Explicit is better than implicit

		Models: Include all relevant domain logic

		Separate logic from the presentation on templates

		Views

		Caching

		Django 4.2 highlights
		Support for psycopg3

		Comments on columns and tables

		In-memory file storage

		Custom file storages

		Updates in password validation

		Minor updates and additions

		Python for Django

		Conclusion

		Questions

		2. Setting Up Your Development Environment
		Introduction

		Structure

		Introduction to Development Environments

		Managing Python Versions with Pyenv

		Understanding Virtual Environments

		Introduction to Poetry for Dependency Management

		Setting up a Django Project with Poetry

		Basic Configuration for a Django Project

		Introduction to Git for Version Control

		Creating a GitHub repository

		Branching models
		Git Flow

		GitHub Flow

		Trunk-based

		Advanced Git Usage: Using Worktree

		Conclusion

		Questions

		3. Getting Started with Django Projects and Apps
		Introduction

		Structure

		Introduction to the task manager

		Django project versus Django application

		Creating a new Django project

		Understanding the Django project structure

		Starting your first Django app

		Understanding the Django app structure

		MVT design patterns in Django
		Extending the MVT pattern with a service layer

		Configuring your Django app

		Brief introduction to Django’s development server

		Running your first Django app

		Conclusion

		Questions

		Exercises

		4. Django Models and PostgreSQL
		Introduction

		Structure

		Understanding Django models

		Creating your first model

		Django’s database API: Create, retrieve, update, and delete operations

		Understanding Django migrations

		Django’s admin interface: Registering models and manipulating data

		Introduction to Django’s ORM: Queries and aggregations

		Extending the models

		Ensuring data integrity with model constraints

		Conclusion

		Questions

		Exercises

		5. Django Views and URL Handling
		Introduction

		Structure

		Understanding Django Views

		Introducing Django’s Generic Views

		Writing Your First Django View

		Class-based Views Mixins

		URL Configuration in Django

		Creating URL Patterns for your Views

		Handling Dynamic URLs with Path Converters

		Understanding Django’s URL Namespace and Naming URL Patterns

		Using Django’s HttpRequest And HttpResponse Objects

		Introducing to Function-based Views

		Using Function-based Views with a Service Layer

		Pessimistic and Optimistic Offline Locking using Views and a Service Layer

		Error Handling with Custom Error Views

		Conclusion

		Questions

		Exercises

		6. Using the Django Template Engine
		Introduction

		Structure

		Introduction to Django Template Engine

		Django Template Language: Variables, Tags, and Filters

		Inheritance in Django Templates

		The Home Page View: Showing Tasks by Status

		Custom Template Tags and Filters

		Using Static Files in Django Templates: CSS, JavaScript, Images

		Django Template Context Processors

		Debugging Django Templates

		Optimizing Template Rendering

		Securing Django Templates

		Conclusion

		Questions

		Exercises

		7. Forms in Django
		Introduction

		Structure

		Understanding Django Forms

		Creating Your First Django Form

		Rendering Forms in Templates

		Handling Form Submission in Views

		Working with Form Fields
		Custom form fields

		File and Image Upload Field

		Data Validation with Django Forms
		Validators

		Clean methods

		ModelForm Validation

		Displaying Form Errors

		Advanced Form Handling: ModelFormsSets and Formsets

		Preventing Double Submission in Forms

		Conclusion

		Questions

		Exercises

		8. User Authentication and Authorization in Django
		Introduction

		Structure

		Understanding Django’s Authentication System

		Introduction to Django’s Middleware
		Understanding Django Middleware

		User Registration with Django’s User Model

		Authenticating Users: Login and Logout
		Managing User Sessions

		Session customization

		Session usage

		Session good practices

		Password Management in Django: Change and Password Reset
		Protecting Views with Login Required Decorators

		User Authorization: Permissions and Groups

		Multi-tenant authentication with Custom Django’s User Model

		Security Best Practices in Django
		Update all your libraries and frameworks

		Project Settings Hardening

		Turn off Debug in production

		Use Secure Cookies

		HTTP Strict Transport Security (HSTS)

		Content Security Policy (CSP)

		X-Content-Type-Options

		X-XSS-Protection

		Secure Referrer Policy

		Use Secure Password Hashing Algorithms

		Limit Access to Admin

		Keep SECRET_KEY Secret

		Set ALLOWED_HOSTS

		Conclusion

		Questions

		Exercises

		9. Django Ninja and APIs
		Introduction

		Structure

		Introduction to API design

		API Design-first approach

		HTTP Response status codes

		Introduction to Django Ninja

		Setting Up Django Ninja in Your Project

		Building Your first API with Django Ninja

		Request and Response Models with Pydantic

		API Documentation

		Understanding HTTP Methods in Django Ninja

		API Pagination

		Working with Path Parameters and Query Parameters

		Validation and Error Handling in Django Ninja

		Authenticating API Users

		Securing APIs: Permissions and Throttling
		Permissions

		Throttling

		Versioning Your API

		Conclusion

		Questions

		Exercises

		10. Testing with pytest
		Introduction

		Structure

		Introduction to testing and pytest
		Understanding test

		Test-driven development

		Introduction to pytest

		Installing and setting up pytest for Django

		Understanding Django test database and pytest
		Pytest-django fixtures

		Mocking and patching in tests

		Behavior-driven development

		Advanced pytest features: Parametrization, plugins, and configuration
		Parametrization

		Plugin coverage

		Plugin xdist

		Using marks

		Configuration tips

		Conclusion

		Questions

		Exercises

		11. Deploying Django Applications with Gunicorn and Docker
		Introduction

		Structure

		Introduction to Gunicorn

		Configuring Gunicorn for Django Deployment

		Understanding and Creating Dockerfiles for Django

		Using the image registry

		Introduction to Kubernetes
		Cluster

		Node

		Scheduler

		Pods

		Deployments

		ReplicaSets

		Services

		Configmaps and Secrets

		Ingress

		StatefulSets

		Configuring a Kubernetes cluster for a Django application

		Adding liveness and readiness probes

		Adding Instrumentation for Django

		Prometheus configuration

		Jaeger configuration

		Database Optimization: Queries and Indexing

		Conclusion

		Questions

		12. Final Thoughts and Future Directions
		Introduction

		Structure

		Summary of learnings: Building a task management app

		Evaluating the Django ecosystem: Strengths and weaknesses

		Exploring additional Django tools and libraries

		Potential enhancements for the task management app

		Staying updated with Django: Resources and communities

		Career opportunities with Django skills

		Thoughts on Django’s future: Upcoming features and trends

		Tips for continued learning and improvement

		Conclusion

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to Django and Python

