
[image: image]

Ultimate Pandas for
Data Manipulation
and Visualization

[image:]

Efficiently Process and Visualize
Data with Python’s Most Popular
Data Manipulation Library

[image:]

Tahera Firdose

[image:]

www.orangeava.com

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: June 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,

N1 7AA, United Kingdom

ISBN: 978-81-97256-24-0

www.orangeava.com

Dedicated To

My Husband:

Nasrulain Mohamed

My Strength and Support System

My Parents:

Maqbool Ahmed and Yasmeen Begum

My Guiding Lights

My Daughter:
Alina Nasrulain
My Inspiration

About the Author

Tahera Firdose holds a postgraduate degree in Artificial Intelligence and has made significant strides in the fields of data analysis and machine learning. Her academic background, combined with her passion for these domains, has propelled her into a prominent position as an educator, blogger, and community influencer.

Tahera’s expertise in Artificial Intelligence extends beyond theoretical knowledge; she has applied her skills in various practical and impactful projects. Her work in machine learning, particularly in developing innovative algorithms and predictive models, has been recognized for its excellence and practical applications. She is known for her ability to simplify complex concepts and make them accessible to a broader audience.

An avid writer, Tahera frequently shares her insights and discoveries through her well-regarded blog. Her articles cover a wide range of topics within data analysis and machine learning, providing valuable resources for both beginners and seasoned professionals. Her writing is characterized by its clarity, depth, and practical relevance, making her blog a go-to source for anyone looking to deepen their understanding of these fields.

Beyond her professional and academic pursuits, Tahera has a rich personal life that she balances with her career. She loves to cook and often experiments with new recipes, finding joy in the culinary arts. This hobby allows her to unwind and express her creativity in a different medium. Family time is also incredibly important to Tahera. She cherishes moments spent with her loved ones, finding them to be a source of inspiration and support.

Tahera’s commitment to education, her contributions to the field of Artificial Intelligence, and her ability to maintain a well-rounded life serve as an inspiration to many. Her journey reflects a blend of professional excellence and personal fulfillment, making her a respected and admired figure in the tech community.

About the Technical Reviewers

Nehaa Bansal is a pioneering thought leader and data scientist with a passion for early innovation. She has extensive experience across banking, finance, telecom, and insurance, excelling in predictive modeling. Nehaa's skills shine both as an individual contributor and team player. Academically, she graduated top of her class with a bachelor's in computer science and a master's in data science from BITS Pilani.

Her professional ethos is defined by ownership, prioritizing people, and questioning the "why" before starting any endeavor. Nehaa's agile mindset drives her to act swiftly, learn from failures, iterate continuously, and maintain fairness. Her passion for solving user problems fuels her expertise in analytics, product strategy, and leadership, leading to innovative solutions.

Outside of work, Nehaa values continuous learning, stays ahead of emerging trends, and advocates for inclusivity and diversity. Her dedication to excellence and empathy for others has established her as a thought leader and catalyst for positive change in technology and data science.

Pratik Kotian is a seasoned professional with 8 years of expertise in Natural Language Processing (NLP), Machine Learning (ML), Generative AI, and Python programming. Based in Mumbai, India, Pratik has dedicated his career to advancing AI technology and applications.

Starting with a focus on neural networks during his academic years, Pratik has since developed cutting-edge solutions for data-intensive enterprise applications, both on-premises and in the cloud. His career spans multiple sectors, including technology, telecommunications, finance, and retail, where he has excelled in leadership roles. Currently, Pratik is a Manager at Deloitte, leading the Generative AI Team to create innovative solutions and drive AI-driven strategies for clients. He is committed to building high-performing teams and supporting organizational goals. In his spare time, Pratik actively engages in the AI community, sharing knowledge and contributing to advancements in the field, cementing his reputation as a respected leader in AI.

Acknowledgements

Embarking on the journey of writing Ultimate Pandas for Data Manipulation and Visualization has been an extraordinary experience, and I am deeply grateful to the individuals who have played a crucial role in bringing this book to fruition. This endeavor wouldn't have been possible without the unwavering support, guidance, and expertise generously shared by many.

Firstly, my heartfelt thanks go to the Pandas community and Wes McKinney, the creator of Pandas, whose dedication to the library has shaped this book. The Pandas documentation, an invaluable resource at https://pandas.pydata.org/docs/, served as a guiding light, enriching the content and ensuring accuracy. Special gratitude is extended to the technical reviewers whose meticulous reviews and insightful feedback enhanced the book. Their dedication and expertise have been invaluable in refining the content and ensuring its accuracy.

To my family, thank you for your unwavering support. In particular, I want to express deep appreciation to my husband, Nasrulain Mohamed, whose encouragement and understanding have been a constant source of strength throughout this writing journey. Special thanks to my parents, Maqbool Ahmed and Yasmeen Begum, my guiding lights, for their steadfast support, and to my daughter, Alina Nasrulain, my joy and inspiration, for bringing immense happiness and motivation into my life. I also extend my gratitude to my siblings, whose support and encouragement have been invaluable.

To all those at the publication house who have contributed in various capacities, your collective efforts have enriched this endeavor. I appreciate the collaborative spirit that has fueled the creation of Ultimate Pandas for Data Manipulation and Visualization.

Finally, to the readers, thank you for choosing this book as your source of knowledge. May it be a valuable companion on your journey to mastering Pandas and navigating the dynamic world of data manipulation.

Preface

In the ever-evolving field of data science, mastering a versatile and powerful tool like Pandas is essential. Welcome to Ultimate Pandas for Data Manipulation and Visualization, your comprehensive guide to harnessing the full potential of this remarkable Python library. Whether you're a data analyst, scientist, or newcomer eager to delve into data analysis, this book will elevate your skills and empower you to handle data with finesse.

This book consists of 11 chapters, each serving as a complete module designed to help you understand and apply Pandas in real-world scenarios. From the basics of data handling to advanced techniques, this guide ensures you have everything you need to become proficient in data manipulation using Pandas.

Chapter 1. Introduction to Pandas and Data Analysis: This chapter sets the foundation for your journey into data analysis with Pandas. It introduces the library, discusses its significance, and guides you through the installation and setup process. You'll also learn about IPython Notebooks and how they integrate seamlessly with Pandas. The chapter covers the two core Pandas objects: Series and DataFrame, and shows you how to load data from various sources.

Chapter 2. Pandas Series: Dive deep into the Pandas Series, a one-dimensional labeled array capable of holding any data type. This chapter covers creating Series, indexing, selecting data, and performing operations. You'll learn the differences between Series and other data structures, how to handle NaN values, and perform arithmetic and filtering operations on Series.

Chapter 3. Pandas DataFrame: Explore the Pandas DataFrame, a two-dimensional labeled data structure. Learn how to create, manipulate, and transform DataFrames, and perform various operations on them. The chapter includes methods for viewing DataFrames, adding and removing columns and rows, renaming and reordering columns, and selecting data using loc[] and iloc[].

Chapter 4. Data Cleaning with Pandas: Data cleaning is crucial for quality data analysis. This chapter covers techniques to identify and handle missing data using functions such as isna() and dropna(), and manage duplicates with duplicated() and drop_duplicates(). You'll also learn about the importance of data cleaning in the analysis process.

Chapter 5. Data Filtering with Pandas: Learn to extract specific subsets of data based on conditions. This chapter covers filtering techniques to refine your datasets using equality, inequality, and logical operators. You'll explore methods for numeric, date, and time filtering, as well as handling null values during filtering.

Chapter 6. Grouping and Aggregating Data: Aggregation helps summarize and analyze data. This chapter explores grouping data and applying functions to obtain summary statistics. You'll learn about the split-apply-combine strategy, built-in aggregation methods, and user-defined function aggregation. The chapter also covers discretization and binning.

Chapter 7. Reshaping and Pivoting in Pandas: Reshaping and pivoting are essential for data manipulation. This chapter covers techniques to reshape and pivot data, including stacking, unstacking, melting, and exploding data. You will also learn how to create pivot tables to summarize data effectively.

Chapter 8. Joining and Merging Data in Pandas: Joining and merging data are fundamental for combining datasets. This chapter covers techniques for various types of joins and merges, including inner, outer, and left joins, as well as concatenating data along rows and columns. You will also learn to join dataframes on their index and merge on multiple columns.

Chapter 9. Introduction to Time Series Analysis in Pandas: Time series analysis deals with data indexed by time. This chapter covers techniques to handle and analyze time series data, including working with the Timestamp object, datetime handling in Python and Pandas, resampling time series, and using datetime as an index.

Chapter 10. Visualization Using Matplotlib: Visualizing data helps in understanding and communicating insights. This chapter covers Pandas' plotting capabilities using Matplotlib. You'll learn about the components of a plot, creating various types of plots, customizing plot aesthetics, and plotting time series data. The chapter also covers exporting and saving plots.

Chapter 11. Analyzing Bank Customer Churn Using Pandas: To culminate your learning, this chapter guides you through a real-world scenario where you'll apply the concepts learned to analyze bank customer churn data, reinforcing your understanding and skills.

This hands-on guide, filled with practical examples, real-world scenarios, and best practices, will empower you to leverage Pandas for effective data manipulation and analysis. Embrace this journey to enhance your data handling capabilities and become proficient in the dynamic field of data science. Happy analyzing!

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-education/Ultimate-Pandas-for-Data-Manipulation-and-Visualization

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/exx0xgg

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction to Pandas and Data Analysis

Introduction

In today’s data-driven era, organizations of all sizes and across various industries are faced with the challenge of extracting meaningful information from the vast amounts of data available to them. Making sense of this data requires powerful tools and techniques that enable efficient data manipulation, pre-processing, and exploration. This is where pandas truly shine.

We will dive deep into the capabilities of pandas, exploring their countless functionalities for data manipulation, exploration, and analysis. We will start with the basics, learning how to load data into pandas from various sources, handle missing values, and clean messy datasets. From there, we will progress to more advanced techniques, such as reshaping and pivoting data, merging and joining datasets, and applying statistical computations.

Structure

In this chapter, we will cover the following essential topics that form the foundation of pandas and data analysis:

	Overview of Pandas and Their Role in Data Analysis

	Installation and Setup of Pandas

	Introduction to IPython Notebooks and how They Integrate with Pandas

	Understanding the two Core Pandas Objects: Series and DataFrame

	Understanding Data Types

	Loading Data from Files and the Web

Overview of Pandas and Their Role in Data Analysis

Pandas, an open-source Python library, was first developed by Wes McKinney in 2008 while working at AQR Capital Management. Wes created pandas to address the limitations he encountered while working with data in Python, aiming to provide a powerful and efficient tool specifically designed for data manipulation and analysis.

Initially, pandas was primarily used in the financial industry, where it quickly gained traction due to its ability to handle large and complex datasets. Its intuitive data structures and comprehensive set of functionalities made it a game-changer for quantitative analysts, traders, and researchers who needed to process and analyze vast amounts of financial data efficiently.

Over time, pandas expanded beyond the financial sector and gained popularity across various domains and industries. Today, it is widely used in academia, scientific research, marketing, social sciences, healthcare, and more. Any field that deals with data analysis, exploration, and pre-processing can benefit from pandas’ capabilities.

Pandas Popularity

The popularity of pandas can be attributed to several factors. First, its user-friendly interface and intuitive syntax make it accessible to both novice and experienced Python users. The DataFrame and Series data structures mimic the tabular structure of data, resembling what users are already familiar with in spreadsheets or SQL tables.

Furthermore, pandas’ rich set of functions and methods for data manipulation, cleaning, and analysis streamline the workflow of data professionals. It provides concise and efficient ways to handle common data tasks, allowing users to focus on the analysis itself rather than the intricacies of data manipulation.

The community support surrounding pandas has also contributed to its popularity. The open-source nature of the library has encouraged contributions from a vast number of developers worldwide. This has led to the rapid development of new features, bug fixes, and enhancements, ensuring that pandas stays up-to-date with the evolving needs of data analysts and scientists.

Moreover, the seamless integration of pandas with other popular libraries in the Python ecosystem, such as NumPy, Matplotlib, and scikit-learn, has further propelled its popularity. This integration allows users to combine the strengths of different libraries, enabling powerful data analysis, visualization, and machine-learning workflows.

Advantages of Pandas over Traditional Data Analysis Methods

Here are the advantages of Pandas over traditional data analysis methods:

	
Efficient Data Handling: Pandas provides highly efficient data structures, such as DataFrames and Series, which are optimized for handling large datasets. These structures allow for fast data manipulation operations, such as filtering, aggregation, and sorting, resulting in improved performance compared to traditional methods like manual looping or using spreadsheets.

	
Broad Data Format Support: Unlike traditional methods that often rely on specific data formats, Pandas supports a wide range of data formats, including CSV, Excel, SQL databases, and JSON. This versatility enables seamless integration and analysis of data from various sources, eliminating the need for manual data conversion or preprocessing.

	
Advanced Data Manipulation: Pandas offers a rich set of functions and methods for data manipulation, transformation, and cleaning. It provides easy-to-use functionalities for handling missing values, reshaping data, merging datasets, and performing complex operations, reducing the complexity and time required for data preprocessing.

	
Time Series Analysis: Pandas provides specialized tools and functions for working with time series data. It offers built-in support for time-based indexing, resampling, and time shifting operations, making it particularly well-suited for analyzing and modelling time-dependent data.

	
Integration with the Python Ecosystem: Pandas seamlessly integrates with other popular libraries in the Python ecosystem, such as NumPy, Matplotlib, asci-kit-learn. This integration allows for efficient data exchange and collaboration between different tools, enhancing the capabilities and flexibility of data analysis workflows.

Installation and Setup

Pandas require Python 3.7 or later versions to run properly. It is recommended to use the latest stable version of Python available at the time of installation. Pandas is compatible with both Python 2.x and Python 3.x, but Python 2.x is no longer actively supported, so it’s strongly advised to use Python 3.x.

Before installing Pandas, ensure that you have Python installed on your system. You can check the Python version by opening a command prompt or terminal and running the following command:

python –version

[image:]

Figure 1.1: Python version

If you have Python installed and the version displayed is 3.7 or later, you meet the Python requirement to run Pandas. If you don’t have Python installed or have an older version, you can download and install the latest version of Python from the official Python website (https://www.python.org).

Once you have Python installed, you can proceed with installing Pandas using the appropriate method, such as pip or Anaconda.

Installing Pandas on Windows

To install Pandas on Windows, follow these steps:

Using pip:

	Open the command prompt by pressing Win + R and typing cmd.

	Enter the following command to install Pandas:
pip install pandas

Using Anaconda:

	Download Anaconda from the official website (https://www.anaconda.com/products/individual) and run the installer.

	Follow the installation instructions, selecting the desired options.

	Open Anaconda Prompt from the Start menu.

	Enter the following command to install Pandas:
conda install pandas

Installing Pandas on MaCOS

To install Pandas on MaCOS, follow these steps:

Using pip:

	Open the terminal by going to “Applications” > “Utilities” > “Terminal”.

	Enter the following command to install Pandas:
pip install pandas

Installing Pandas on Linux

To install Pandas on Linux, follow these steps:

Using pip:

	Open the terminal.

	Enter the following command to install Pandas:
pip install pandas

If you’re using Pandas and it is already installed, but you want to update it to the latest version, use the following command:

pip install --upgrade pandas

IPython Notebooks and its Integration with Pandas

IPython Notebooks, now known as Jupyter Notebooks, provide an interactive computing environment for creating and sharing documents that combine code, visualizations, and explanatory text. Jupyter Notebooks have become immensely popular in the data science community and seamlessly integrate with Pandas, a powerful data analysis library in Python.

Overview of IPython/Jupyter Notebooks:

	Jupyter Notebooks are web-based environments that allow you to create and execute code, visualize data, and document your analysis in a single document.

	The notebooks are organized into cells, each of which can contain code (Python, in this case), markdown text, or raw text.

	Code cells can be executed independently, allowing for an interactive and iterative data analysis process.

	Notebooks provide a rich interface that supports the inclusion of charts, tables, mathematical equations, images, and more.

	Jupyter Notebooks foster reproducibility by combining code, visualizations, and explanations in a shareable format.

Installing Jupyter Notebooks

To install Jupyter Notebooks, you can follow these steps:

	Ensure that you have Python installed on your system. You can download Python from the official website (https://www.python.org) and follow the installation instructions.

	Open a command prompt or terminal.

	Install Jupyter Notebooks using pip, which is a package manager for Python. Enter the following command:
pip install jupyter

	Wait for the installation to complete. Jupyter Notebooks and its dependencies will be installed in your Python environment.

To check if Jupyter Notebook is already installed on your system, you can follow these steps:

	Open a command prompt or terminal.

	Type the following command and press Enter
jupyter notebook –version

If Jupyter Notebook is installed, the command will display the version number. For example, you might see something like this:

6.4.0

Let’s run Jupyter notebook, assuming you already have installed Anaconda.

Open the Anaconda Navigator application. You can typically find it in your system’s application launcher or start menu. Once opened, the Anaconda Navigator window will appear.

In the Anaconda Navigator window, you will see several tools and environments. Click the “Launch” button under the Jupyter Notebook tile. This action will open a new window or tab in your default web browser.

[image:]

Figure 1.2: Anaconda navigator

The web browser will display the Jupyter Notebook interface. It will show a file browser on the left side and the list of available notebooks in the selected directory.

[image:]

Figure 1.3: Jupyter Notebook

To create a new notebook, click the “New” button located at the top-right corner of the interface. From the drop-down menu, select “Python 3” to create a new Python notebook.

[image:]

Figure 1.4: Create new Python file

The notebook dashboard will appear, showing the newly created notebook. It will have the file extension .ipynb. You can see the notebook’s name at the top, and it can be renamed by clicking the title.

[image:]

Figure 1.5: New Notebook

	In the notebook, you will find an empty cell where you can write and execute Python code.

	
To add a new cell, click the “+” button in the toolbar or use the keyboard shortcut B to insert a cell below the currently selected cell.

	You can change the cell type from “Code” to “Markdown” by selecting the appropriate option from the drop-down menu in the toolbar. Markdown cells allow you to include formatted text, headings, bullet points, and more.

	You can write Python code in the cell and execute it by pressing Shift+Enter or by clicking the “Run” button in the toolbar.

	To save the notebook, click the floppy disk icon in the toolbar or go to “File” > “Save and Checkpoint”.

	To exit the notebook, close the browser tab containing the notebook interface or go to “File” > “Close and Halt”.

Understanding Pandas Objects: Series and DataFrame

In this section, we will explore the two core Pandas objects: Series and DataFrame. These are powerful tools for working with data in one or two dimensions, with labels and types. We will show you how to create them using Python.

Before we can work with Series and DataFrame, we need to import pandas, which is a library of useful functions and methods for data analysis. We can do this by typing: import pandas as pd. This will give us a shortcut to use pandas by typing pd before any pandas function or method.

Import pandas as pd

Series

A Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating-point numbers, Python objects, and more). It consists of two main components: the data and the index.

	
Data: The data component of a Series represents the values or elements that the Series holds. These values can be of any data type, such as numbers, text, or even more complex objects. The data can be provided using a NumPy array, a Python list, or a scalar value.

	
Index: It is a sequence of labels which identifies each element in the Series. By default, the index starts from 0 and increments by 1, but you can customize it.

Example 1: We will start with a basic example using a Python list. Suppose you have a list of weekly temperatures: [25, 28, 30, 26, 29, 31, 27]. Pandas offers a data structure called a Series, which is ideal for storing and working with this type of data.

Temperatures = [25, 28, 30, 26, 29, 31, 27]

series = pd.Series(temperatures)

print(series)

Output:

[image:]

Figure 1.6: Series output

Example 2: In this example, we are using a scalar value. Suppose you want to create a Series with the same value repeated multiple times. Let’s say you want a Series with the value 10 repeated 5 times.

Value = 10

series = pd.Series(value, index=[0, 1, 2, 3, 4])

print(series)

Output:

[image:]

Figure 1.7: Output: creating a series with repeated scalar value

This example demonstrates that the data component of the Series is the scalar value 10, which is repeated 5 times.

Index: The index component of a Series represents the labels or names assigned to each element in the Series. It helps to identify and access specific elements of the Series. By default, the index starts from 0 and increments by 1 for each element, but you can customize it to any sequence of labels.

Example 1: Using default index

Let’s consider the previous example of the temperature Series. The default index labels are assigned automatically when we create the Series.

Temperatures = [25, 28, 30, 26, 29, 31, 27]

series = pd.Series(temperatures)

print(series)

Output:

[image:]

Figure 1.8: Series with default index labels

In this example, the default index labels are 0, 1, 2, 3, 4, 5, and 6.

Example 2: Using custom index

Suppose you have a Series representing the ages of different people, and you want to assign custom labels to each age.

Ages = [25, 30, 35, 28, 32]

index_labels = [‘John’, ‘Jane’, ‘Mike’, ‘Emily’, ‘Alex’]

series = pd.Series(ages, index=index_labels)

print(series)

Output:

[image:]

Figure 1.9: Series with custom index labels

In this example, we assigned custom index labels (names) to each age in the Series, making it easier to identify the age of each person.

The data and index components together form a Series, where each element has both a value and a corresponding label. This makes it convenient to work with and access specific elements in the Series based on their labels.

DataFrame

A DataFrame in Pandas is a two-dimensional labeled data structure that can hold multiple columns. It can be thought of as a table or spreadsheet where each column represents a variable or attribute, and each row represents a specific observation or record.

A DataFrame consists of three main components: data, index, and columns.

Data: The data component of a DataFrame represents the actual values in the table. It can be created from various data structures, such as Python dictionaries, NumPy arrays, or other DataFrames.

Example 1: Creating a DataFrame from a Python dictionary:

data = {‘Name’: [‘John’, ‘Jane’, ‘Mike’],

‘Age’: [25, 30, 35],

‘City’: [‘New York’, ‘Paris’, ‘London’]}

df = pd.DataFrame(data)

print(df)

Output:

[image:]

Figure 1.10: Output: dataFrame created from a Python dictionary

In this example, we create a DataFrame named “df” from a Python dictionary. The dictionary keys represent column names (‘Name’, ‘Age’, ‘City’), and the corresponding values represent the data for each column. The resulting DataFrame has three columns: ‘Name’, ‘Age’, and ‘City’, and each row represents a person’s information.

Index: The index component of a DataFrame represents the labels assigned to each row. It helps to uniquely identify and access specific rows in the DataFrame. By default, Pandas assigns a numeric index starting from 0, but you can customize it with your own labels.

Example 2: Customizing the index labels of a DataFrame:

data = {‘Name’: [‘John’, ‘Jane’, ‘Mike’],

‘Age’: [25, 30, 35],

‘City’: [‘New York’, ‘Paris’, ‘London’]}

df = pd.DataFrame(data, index=[‘A’, ‘B’, ‘C’])

print(df)

Output:

[image:]

Figure 1.11: Customizing the index labels of a DataFrame

In this example, we create a DataFrame named “df” with custom index labels (‘A’, ‘B’, ‘C’). Now each row in the DataFrame has a unique identifier based on the assigned index labels.

Datatypes of Pandas

Pandas data structures: Series and DataFrame can store different types of data, such as numbers, strings, booleans, and dates. In this section, we will learn how to use the datatypes of pandas in Series and DataFrame.

Defining Datatypes

Datatypes are the categories of data that tell us how the data is stored and what operations can be performed on it. For example, integers are a datatype that can store whole numbers and can be added, subtracted, multiplied, and so on. Strings are a datatype that can store text and can be concatenated, sliced, searched, and more.

Python has several built-in datatypes, such as int, float, str, bool, and so on. However, pandas borrows its datatypes from another Python library called NumPy, which is a library for scientific computing. NumPy has more datatypes than Python, such as int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, complex64, complex128, and so on. These datatypes allow us to specify the size and precision of the data.

Pandas also has some datatypes that are specific to pandas, such as datetime64, timedelta64, and category. These datatypes allow us to work with dates and times and categorical data.

Using the Datatypes of Pandas in Series and DataFrame

Pandas will automatically assign a suitable datatype to each column or Series based on the values in it. We can also specify our own datatype by using the dtype argument in the constructor.

Here are some examples of how to create and use different datatypes in pandas:

Object

The object datatype is used to store any type of data that is not numeric or boolean. It can store strings, mixed types or Python objects. The object datatype is also used when pandas cannot infer a specific datatype for a column or Series.

For example:

Create a Series of strings

s = pd.Series([“apple”, “banana”, “cherry”])

Check the datatype of the Series

print(s.dtype)

Output:

[image:]

Figure 1.12: Series with datatype object

We can also create a DataFrame with object columns by using a dictionary of lists or Series. For example:

Create a DataFrame with object columns

df = pd.DataFrame({“name”: [“Alice”, “Bob”, “Charlie”],

“gender”: [“F”, “M”, “M”],

“hobby”: [“reading”, “gaming”, “cooking”]})

Check the datatypes of all the columns

print(df.dtypes)

Output:

[image:]

Figure 1.13: Dataframe with datatype object

Int64

The int64 datatype is used to store 64-bit integers. It can store whole numbers from -9223372036854775808 to 9223372036854775807. It is the default datatype for numeric columns or Series that do not have decimal points or missing values.

For example:

Create a Series of integers

s = pd.Series([1, 2, 3, 4])

Check the datatype of the Series

print(s.dtype)

[image:]

Figure 1.14: Series with datatype integer64

We can also create a DataFrame with int64 columns by using a list of lists or a dictionary of lists or Series. For example:

Create a DataFrame with int64 columns

df = pd.DataFrame({“id”: [1, 2, 3],

“age”: [25, 30, 35],

“score”: [80, 90, 100]})

Check the datatypes of all the columns

print(df.dtypes)

Output:

[image:]

Figure 1.15: DataFrame with datatype integer64

Float64

The float64 datatype is used to store 64-bit floating-point numbers. It can store decimal numbers with up to 15 digits of precision. It is the default datatype for numeric columns or Series that have decimal points or missing values.

For example:

Create a Series of floats

s = pd.Series([1.0, 2.5, 3.2])

Check the datatype of the Series

print(s.dtype)

Output:

[image:]

Figure 1.16: Series with datatype float64

We can also create a DataFrame with float64 columns by using a list of lists or a dictionary of lists or Series. For example:

df = pd.DataFrame({“price”: [10.0, np.nan, 15.0],

“discount”: [0.1, np.nan, np.nan],

“final_price”: [9.0,np.nan, np.nan]})

Check the datatypes of all the columns

print(df.dtypes)

Output:

[image:]

Figure 1.17: DataFrame with datatype float64

Boolean

The boolean datatype is used to store True or False values. It can be used to represent logical conditions or binary choices. It is the default datatype for columns or Series that contain only True or False values.

For example:

Create a Series of booleans

s = pd.Series([True, False, True])

Check the datatype of the Series

print(s.dtype)

Output:

[image:]

Figure 1.18: Series with datatype boolean

We can also create a DataFrame with bool columns by using a list of lists or a dictionary of lists or Series. For example,

Create a DataFrame with bool columns

df = pd.DataFrame({“is_even”: [True, False, True],

“is_positive”: [True, True, False],

“is_prime”: [False, True, False]})

Check the datatypes of all the columns

print(df.dtypes)

Output:

[image:]

Figure 1.19: DataFrame with datatype boolean

Loading Data from Files and the Web for Pandas

One of the most common tasks in data analysis is loading data from various sources, such as files and the web. Pandas provides several functions and methods to help you read and write data in different formats, such as CSV, Excel, JSON, HTML, and SQL.

In this section, we will explore the most common ways to load data using Pandas. Specifically, we will learn how to use the read_csv and read_excel functions to load data from CSV and Excel files, respectively. Additionally, we will learn how to use the read_html function to load data from web pages

Loading Data from CSV Files Using pandas.read_csv()

Comma-S Values (CSV) is a common file format for storing tabular data. A CSV file consists of rows and columns separated by commas or other delimiters. Pandas provides the pandas.read_csv()function to read data from CSV files into a DataFrame object. A DataFrame is a two-dimensional table of data with rows and columns.

To use pandas.read_csv(), you need to pass the file path or file-like object as the first argument. You can also specify other optional arguments to customize the behavior of the function.

Here are some of the most commonly used parameters:

	
filepath_or_buffer: This parameter specifies the path of the CSV file to be read.

	
sep: This parameter specifies the delimiter used in the CSV file. The default value is ‘,’.

	
header: This parameter specifies which row of the CSV file should be used as the column names. The default value is 0.

	
index_col: This parameter specifies which column of the CSV file should be used as the index. The default value is None.

	
Use cols: This parameter specifies which columns of the CSV file should be read into the DataFrame. The default value is None, which means all columns are read.

	
dtype: This parameter specifies the data type of each column in the DataFrame. The default value is None, which means pandas will try to infer the data types automatically.

	
skiprows: This parameter specifies how many rows should be skipped from the beginning of the CSV file. The default value is 0.

	
nrows: This parameter specifies how many rows should be read from the CSV file. The default value is None, which means all rows are read.

Here is an example of how to use pandas.read_csv() to load a CSV file into a DataFrame:

Read data from a CSV file

df = pd.read_csv(“housing.csv”)

Print the first 5 rows of the DataFrame

df.head()

Output:

[image:]

Figure 1.20: Load the data and print the first five rows of the DataFrame

Now, let’s see how we can use some of the parameters to customize the reading process.

	
header: If we want to use a different row as the column names, we can pass the row number to this parameter. For example, if we want to use the second row as the column names, we can pass header=1.

Read data from the CSV file with a different header row

df = pd.read_csv(“housing.csv”, header=1)

Print the first 5 rows of the DataFrame

df.head()

Output:

[image:]

Figure 1.21: Read data with different header

We can see that pandas used the second row as the column names and skipped the first row. Note that this will also change the number of rows in the DataFrame.

	
index_col: If we want to use a specific column as the index, we can pass the column name or number to this parameter. For example, if we want to use the name column as the index, we can pass index_col=”Date”.

Read data from the CSV file with a specific index column

df = pd.read_csv(“housing.csv”, index_col=”Date”)

Print the first 5 rows of the DataFrame

df.head()

Output:

[image:]

Figure 1.22: Read data with specific index column

We can see that pandas used the Date column as the index and dropped it from the columns.

	
usecols: If we want to read only selected columns from the CSV file, we can pass a list of column names or numbers to this parameter. For example, if we want to read only the name and age columns, we can pass usecols=[“Rooms”, “age”].

Read data from the CSV file with only selected columns

df = pd.read_csv(“housing.csv”, usecols=[“Rooms”, “Landsize”])

Print the first 5 rows of the DataFrame

df.head()

Output:

[image:]

Figure 1.23: Read data with selected columns

We can see that pandas read only the Rooms and Landsize columns and ignored the gender column.

	
dtype: If we want to specify the data type of each column in the DataFrame, we can pass a dictionary of column names and data types to this parameter. For example, if we want to convert the age column to float and the gender column to category, we can pass dtype={“Landsize”: int, “Type”: “category”}.

df = pd.read_csv(“housing.csv”)

df.info()

Output:

[image:]

Figure 1.24: Displaying DataFrame information

We can see that the dtype of Landsize is Float and Type is Object. The following example shows how to change the dtype of columns by passing the columns Landsize and Type as dictionary.

Read data from the CSV file with specific data types for each column

df = pd.read_csv(“housing.csv”, dtype={“Landsize”: int, “Type”: “category”})

df[[‘Landsize’,’Type’]].dtypes

Output:

[image:]

Figure 1.25: Changing the data type of columns

We can see that pandas has converted the Landsize column to integer and the Type column to category.

	
skiprows: If we want to skip some rows from the beginning of the CSV file, we can pass a number or a list of numbers to this parameter. For example, if we want to skip the first two rows, we can pass skiprows=2.

Before skip rows:

#Read data from csv file

df = pd.read_csv(“housing.csv”)

Print the first 5 rows of the DataFrame

df.head()

Output:

[image:]

Figure 1.26:Displays the first five rows

After skipping the first two rows:

Read data from the CSV file with some rows skipped from the beginning

df = pd.read_csv(“housing.csv”, skiprows=2)

Print the first 5 rows of the DataFrame

df.head()

Output:

[image:]

Figure 1.27: Skipping the first two rows

We can see that pandas has skipped the first two rows and read the rest of the CSV file.

	
nrows: If we want to read only a certain number of rows from the CSV file, we can pass a number to this parameter. For example, if we want to read only the first two rows, we can pass nrows=2.

Read data from the CSV file with only a certain number of rows

df = pd.read_csv(“housing.csv”, nrows=2)

Print the first 5 rows of the DataFrame

df.head()

Output:

[image:]

Figure 1.28: Reading the first two rows

We can see that pandas has read only the first two rows and ignored the rest of the CSV file.

Loading Data from Excel Files Using pandas.read_excel()

Excel is a popular spreadsheet application that can store and manipulate tabular data. Excel files have the extension .xls or .xlsx and can contain multiple sheets or tabs. Pandas provides the pandas.read_excel() function to read data from Excel files into a DataFrame object.

To use pandas.read_excel(), you need to pass the file path or file-like object as the first argument. You can also specify other optional arguments to customize the behavior of the function, such as sheet_name, header, index_col, names, usecols, skiprows, na_values, and so on.

Here is an example of how to use pandas.read_excel () to load an Excel file into a DataFrame:

Read data from an Excel file

df = pd.read_excel(“people.xlsx”)

Print the first 5 rows of the DataFrame

df.head()

Output:

[image:]

Figure 1.29: Load an Excel file into a DataFrame

We can see that pandas have automatically inferred the column names and datatypes from the Excel file. We can also access the attributes and methods of the DataFrame object to explore and manipulate the data further.

To access a specific sheet use sheet_name as an optional parameter

Read data from a specific sheet of an Excel file

df = pd.read_excel(“people.xlsx”, sheet_name=”female”)

Print the rows of the DataFrame

df.head()

Output:

[image:]

Figure 1.30: Load an Excel file from a specific sheet

All the parameters we looked for read_csv also applies to read_excel.

Loading Data from HTML Tables Using pandas.read_html()

HyperText Markup Language (HTML) is a common file format for creating web pages. HTML files consist of tags that define the structure and content of the web page. HTML tables are used to display data in rows and columns. Pandas provides the pandas.read_html() function to read data from HTML tables into a list of DataFrame objects.

To use pandas.read_html(), you need to pass the file path, file-like object, or web URL as the first argument. You can also specify other optional arguments to customize the behavior of the function, such as attrs, header, index_col, names, usecols, skiprows, na_values, and so on.

Here is an example of how to use pandas.read_html() to load an HTML table from a web URL into a list of DataFrame objects:

Read data from an HTML table from a web URL

dfs =pd.read_html(“https://en.wikipedia.org/wiki/List_of_countries_by_population”)

Print the number of DataFrames in the list

print(len(dfs))

Print the first DataFrame in the list

dfs[1]

Output:

[image:]

Figure 1.31: Load an HTML file from a web URL

Conclusion

This chapter provides a comprehensive overview of pandas and its role in data analysis. It covers the usage of IPython Notebooks, explores the core objects Series and DataFrame, explains data types in pandas, and guides through loading data from files and the web in various formats.

In the next chapter, we will take a closer look at Pandas Series. We will learn how to create a Series from different data structures, assigning custom index labels, analyzing size, shape, uniqueness, and value counts. We will even explore arithmetic operations, filtering, and handling special cases, such as NaN values.

Questions

	What are the steps involved in installing and setting up pandas on your system?

	Install Jupyter Notebook and explore the Jupyterlab Interface.

	What is the difference between Series and DataFrame?

	Name three common data types supported by pandas and explain their characteristics.

	True or False: Pandas supports loading data from Excel files. Justify your answer.

OEBPS/images/Fig-1.18.jpg

OEBPS/images/Fig-1.2.jpg

OEBPS/images/Fig-1.19.jpg

OEBPS/images/Fig-1.21.jpg

OEBPS/images/Fig-1.20.jpg

OEBPS/images/Fig-1.23.jpg

OEBPS/images/Fig-1.1.jpg

OEBPS/images/Fig-1.22.jpg

OEBPS/images/Fig-1.10.jpg

OEBPS/images/Fig-1.25.jpg

OEBPS/images/Fig-1.11.jpg

OEBPS/images/Fig-1.24.jpg

OEBPS/images/Fig-1.12.jpg

OEBPS/images/Fig-1.13.jpg

OEBPS/images/Fig-1.26.jpg

OEBPS/images/Fig-1.14.jpg

OEBPS/images/Fig-1.15.jpg

OEBPS/images/Fig-1.16.jpg

OEBPS/images/Fig-1.17.jpg

OEBPS/images/logo.jpg

OEBPS/images/line.jpg

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewers

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Introduction to Pandas and Data Analysis

		Introduction

		Structure

		Overview of Pandas and Their Role in Data Analysis

		Pandas Popularity

		Advantages of Pandas over Traditional Data Analysis Methods

		Installation and Setup

		Installing Pandas on Windows

		Installing Pandas on MaCOS

		Installing Pandas on Linux

		IPython Notebooks and its Integration with Pandas

		Installing Jupyter Notebooks

		Understanding Pandas Objects: Series and DataFrame

		Series

		DataFrame

		Datatypes of Pandas

		Defining Datatypes

		Using the Datatypes of Pandas in Series and DataFrame

		Loading Data from Files and the Web for Pandas

		Loading Data from CSV Files Using pandas.read_csv()

		Loading Data from Excel Files Using pandas.read_excel()

		Loading Data from HTML Tables Using pandas.read_html()

		Conclusion

		Questions

		2. Pandas Series

		Structure

		Pandas Series

		Key Differences Between Pandas Series and Python List or NumPy Array

		Creating a Series from a List, Array, Dictionary, or Other Data Structure

		Creating a Series from a List

		Creating a Series from an Array

		Creating a Series from a Dictionary

		Creating a Series from a Tuple

		Creating a Series from a CSV files

		Series Custom Index Labels

		Creating Custom Index Labels

		Utilizing Custom Index Labels

		Importance of Custom Index Labels

		Assigning a Name to a Series

		Approaches to Assigning a Name

		Analyzing Size, Shape, Uniqueness, and Value Counts in a Pandas Series

		Size of a Series

		Shape of a Series

		Uniqueness in a Series

		Value Counts in a Series

		Analyzing Data with Head, Tail, and Sample

		head()

		tail()

		sample()

		Indexing and Selecting Data

		Arithmetic Operations in Series

		Addition

		Subtraction (-)

		Multiplication (*)

		Division(/)

		Modulo Operation (%)

		Arithmetic Operation with Non-Numerical Series

		Series with Different Indices

		Implicit Type Conversion

		Division by Zero

		Broadcasting in Series

		Filtering Data with Series

		Filtering Data Using Comparison Operators

		Filtering Data Using Logical Operators

		Filtering Data Using Methods

		NaN Values in Pandas Series

		Arithmetic Operations with np.nan

		Mean and Median Calculation Using NAN

		Conclusion

		Exercise Questions

		3. Pandas DataFrame

		Structure

		Pandas DataFrame

		Creating a DataFrame from a Dictionary

		Creating a DataFrame from a NumPy ndarray

		Similarities Between Series and DataFrames

		Exploring a DataFrame

		Selecting Columns and Rows of a DataFrame

		loc[] and iloc[] Functions

		The loc Method

		The iloc Method

		Adding and Removing Columns in a DataFrame

		Adding and Removing Rows in a DataFrame

		Renaming Columns in a DataFrame

		Reordering Columns in a DataFrame

		Reordering Columns Using Indexing

		Reordering Columns Using The reindex() Method

		Reordering Columns Using The loc[] Indexer

		Reordering Columns Using The Iloc[] Indexer

		Data Filtering Using Boolean Expressions

		Understanding Boolean Expressions

		Boolean Indexing

		Arithmetic Operations on DataFrames

		Creating a DataFrame

		Conclusion

		Exercise Questions

		4. Data Cleaning with Pandas

		Structure

		Overview of Data Cleaning

		Identifying and Handling Missing Data

		isna(), isnull(), and notnull() Functions to Identify Missing Data in Pandas

		isna() Function

		isnull() Function

		notnull() Function

		Using dropna(): Removing Rows with Missing Values

		Using dropna() with a Subset of Columns

		Numeric Data - Filling with Constant Value

		Numeric Data - Filling with Mean or Median

		Filling Missing Values in Column ‘A’ with the Mean of Non-Missing Values

		Filling Missing Values in Column ‘B’ with the Median of Non-Missing Values

		Categorical Data - Filling with a Specific Category and Mode

		Filling with a Specific Category

		Filling with the Mode

		Backfill (Bfill) or Forward Fill (Ffill)

		Interpolation for Handling Missing Data

		Linear interpolation

		Time-Based Interpolation

		Handling Duplicates

		duplicated(): Detecting Duplicated Rows

		Using drop_duplicates(): Removing Duplicated Rows

		Conclusion

		Exercise Questions

		5. Data Filtering with Pandas

		Structure

		Data Filtering and its Importance in Data Analysis

		Pandas Capabilities for Data Filtering

		Filtering a DataFrame Based on a Specific Column or Set of Columns

		Filtering by Equality, Inequality, and Logical Operators

		Filtering by Numeric Methods

		Filtering by Where Condition

		Filtering by Date and Time Methods

		Filtering Null or Missing Values

		Conclusion

		Exercise Questions

		6. Grouping and Aggregating Data

		Structure

		Introduction to Groupby and Aggregation

		Groupby Using Split-Apply-Combine

		Built-in Aggregation Methods

		Statistical Calculations

		Applying Different Functions to DataFrame Columns

		Grouping DataFrame with Index Levels and Columns

		Aggregation with User-defined Functions

		Iterating Through Groups

		Discretization and Binning

		Conclusion

		Exercise

		7. Reshaping and Pivoting in Pandas

		Structure

		MultiIndexing in Series and DataFrame

		Long and Wide Formats

		Long Format

		Wide Format

		Stacking and Unstacking

		Stacking

		Unstacking

		Melting Data

		Exploding Data

		Creating Pivot Tables

		Advanced Pivot Table Techniques

		Conclusion

		Exercise Questions

		8. Joining and Merging Data in Pandas

		Structure

		Introduction to Joining and Merging

		Concatenating Data Along Rows and Columns

		Concatenate Data Along Rows

		Concatenate Data Along Columns

		Concatenating Dataframes with Missing Values

		Merging Dataframes

		Inner Joins

		Outer Joins

		Left Outer Join

		Right Join

		Joining Dataframes on Their Index

		Merging on Multiple Columns

		Conclusion

		Exercise Questions

		9. Introduction to Time Series Analysis in Pandas

		Introduction

		Structure

		Introducing the Timestamp Object

		Creating Timestamps in Pandas

		Timestamp Attributes and Properties

		Working with Datetimes in Python

		Creating Datetimes

		Extracting Components

		Handling Time Series Data in Pandas

		Data Structures in Pandas for Time Series

		Series with Datetime Index

		DataFrame with Datetime Index

		Common Operations

		Indexing and Slicing

		Resampling

		Downsampling: Reducing Frequency

		Upsampling: Increasing Frequency

		Shifting and Lagging

		Creating Lagged Features

		Creating Lead Features

		Rolling Windows

		Rolling Mean (Moving Average)

		Rolling Standard Deviation

		Rolling Sum

		Exponential Moving Average (EMA)

		Assembling Datetime from Multiple DataFrame Columns

		Conclusion

		Exercise Questions

		10. Visualization Using Matplotlib

		Introduction

		Structure

		Importance of Data Visualization in Data Analysis

		Benefits of Visualizing Data for Understanding and Communication

		Matplotlib - Key Tool for Data Visualization in Python

		Getting Started with Matplotlib

		Installation of Matplotlib

		Importing Matplotlib

		Using %matplotlib inline (or %matplotlib notebook)

		Basic Structure of a Matplotlib Plot

		Customizing Plot Visuals

		The Figure

		Labels and Titles

		Labels

		Title

		Ticks and Gridlines

		Ticks

		Gridlines

		Adding Legends and Annotations

		Legends

		Annotations

		Incorporating Everything in an Example

		Exploring Various Plot Types

		Line Plots

		Bar Plots

		Horizontal Bar Plots

		Scatter Plots

		Histograms

		Density Plot

		Box Plots

		Violin Plots

		Area Plots

		Subplots Using Matplotlib

		Effective Visualization of Time Series Data

		Bar Plots for Time Series

		Area Plot for Time Series

		Exporting and Saving Plots: Saving Plots as Image Files and Interactive HTML Files

		Conclusion

		Exercise Questions

		11. Analyzing Bank Customer Churn Using Pandas

		Structure

		Setting Up Your Environment

		Data Used for Analysis: Bank Customer Churn

		Dataset Overview

		Composition of the Dataset

		Data Loading and Preprocessing

		Exploratory Data Analysis (EDA)

		Descriptive Statistics Analysis

		Univariate Analysis

		Churn Analysis

		Customer Segmentation

		Value-based Segmentation

		Conclusion

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to Pandas and Data Analysis

OEBPS/images/Fig-1.28.jpg

OEBPS/images/Fig-1.27.jpg

OEBPS/images/Fig-1.3.jpg

OEBPS/images/Fig-1.29.jpg

OEBPS/images/Fig-1.31.jpg

OEBPS/images/Fig-1.30.jpg

OEBPS/images/Fig-1.5.jpg

OEBPS/images/Fig-1.4.jpg

OEBPS/images/Fig-1.7.jpg

OEBPS/images/Fig-1.6.jpg

OEBPS/images/qr1.jpg

OEBPS/images/qr.jpg

OEBPS/images/Fig-1.8.jpg

OEBPS/images/Fig-1.9.jpg

OEBPS/images/cover.jpg

