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Preface





In the ever-evolving field of data science, mastering a versatile and powerful tool like Pandas is essential. Welcome to Ultimate Pandas for Data Manipulation and Visualization, your comprehensive guide to harnessing the full potential of this remarkable Python library. Whether you're a data analyst, scientist, or newcomer eager to delve into data analysis, this book will elevate your skills and empower you to handle data with finesse.


This book consists of 11 chapters, each serving as a complete module designed to help you understand and apply Pandas in real-world scenarios. From the basics of data handling to advanced techniques, this guide ensures you have everything you need to become proficient in data manipulation using Pandas.


Chapter 1. Introduction to Pandas and Data Analysis: This chapter sets the foundation for your journey into data analysis with Pandas. It introduces the library, discusses its significance, and guides you through the installation and setup process. You'll also learn about IPython Notebooks and how they integrate seamlessly with Pandas. The chapter covers the two core Pandas objects: Series and DataFrame, and shows you how to load data from various sources.


Chapter 2. Pandas Series: Dive deep into the Pandas Series, a one-dimensional labeled array capable of holding any data type. This chapter covers creating Series, indexing, selecting data, and performing operations. You'll learn the differences between Series and other data structures, how to handle NaN values, and perform arithmetic and filtering operations on Series.


Chapter 3. Pandas DataFrame: Explore the Pandas DataFrame, a two-dimensional labeled data structure. Learn how to create, manipulate, and transform DataFrames, and perform various operations on them. The chapter includes methods for viewing DataFrames, adding and removing columns and rows, renaming and reordering columns, and selecting data using loc[] and iloc[].


Chapter 4. Data Cleaning with Pandas: Data cleaning is crucial for quality data analysis. This chapter covers techniques to identify and handle missing data using functions such as isna() and dropna(), and manage duplicates with duplicated() and drop_duplicates(). You'll also learn about the importance of data cleaning in the analysis process.


Chapter 5. Data Filtering with Pandas: Learn to extract specific subsets of data based on conditions. This chapter covers filtering techniques to refine your datasets using equality, inequality, and logical operators. You'll explore methods for numeric, date, and time filtering, as well as handling null values during filtering.


Chapter 6. Grouping and Aggregating Data: Aggregation helps summarize and analyze data. This chapter explores grouping data and applying functions to obtain summary statistics. You'll learn about the split-apply-combine strategy, built-in aggregation methods, and user-defined function aggregation. The chapter also covers discretization and binning.


Chapter 7. Reshaping and Pivoting in Pandas: Reshaping and pivoting are essential for data manipulation. This chapter covers techniques to reshape and pivot data, including stacking, unstacking, melting, and exploding data. You will also learn how to create pivot tables to summarize data effectively.


Chapter 8. Joining and Merging Data in Pandas: Joining and merging data are fundamental for combining datasets. This chapter covers techniques for various types of joins and merges, including inner, outer, and left joins, as well as concatenating data along rows and columns. You will also learn to join dataframes on their index and merge on multiple columns.


Chapter 9. Introduction to Time Series Analysis in Pandas: Time series analysis deals with data indexed by time. This chapter covers techniques to handle and analyze time series data, including working with the Timestamp object, datetime handling in Python and Pandas, resampling time series, and using datetime as an index.


Chapter 10. Visualization Using Matplotlib: Visualizing data helps in understanding and communicating insights. This chapter covers Pandas' plotting capabilities using Matplotlib. You'll learn about the components of a plot, creating various types of plots, customizing plot aesthetics, and plotting time series data. The chapter also covers exporting and saving plots.


Chapter 11. Analyzing Bank Customer Churn Using Pandas: To culminate your learning, this chapter guides you through a real-world scenario where you'll apply the concepts learned to analyze bank customer churn data, reinforcing your understanding and skills.


This hands-on guide, filled with practical examples, real-world scenarios, and best practices, will empower you to leverage Pandas for effective data manipulation and analysis. Embrace this journey to enhance your data handling capabilities and become proficient in the dynamic field of data science. Happy analyzing!
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CHAPTER 1


Introduction to Pandas and Data Analysis



Introduction

In today’s data-driven era, organizations of all sizes and across various industries are faced with the challenge of extracting meaningful information from the vast amounts of data available to them. Making sense of this data requires powerful tools and techniques that enable efficient data manipulation, pre-processing, and exploration. This is where pandas truly shine.

We will dive deep into the capabilities of pandas, exploring their countless functionalities for data manipulation, exploration, and analysis. We will start with the basics, learning how to load data into pandas from various sources, handle missing values, and clean messy datasets. From there, we will progress to more advanced techniques, such as reshaping and pivoting data, merging and joining datasets, and applying statistical computations.

Structure

In this chapter, we will cover the following essential topics that form the foundation of pandas and data analysis:


	Overview of Pandas and Their Role in Data Analysis

	Installation and Setup of Pandas

	Introduction to IPython Notebooks and how They Integrate with Pandas

	Understanding the two Core Pandas Objects: Series and DataFrame

	Understanding Data Types

	Loading Data from Files and the Web




Overview of Pandas and Their Role in Data Analysis


Pandas, an open-source Python library, was first developed by Wes McKinney in 2008 while working at AQR Capital Management. Wes created pandas to address the limitations he encountered while working with data in Python, aiming to provide a powerful and efficient tool specifically designed for data manipulation and analysis.

Initially, pandas was primarily used in the financial industry, where it quickly gained traction due to its ability to handle large and complex datasets. Its intuitive data structures and comprehensive set of functionalities made it a game-changer for quantitative analysts, traders, and researchers who needed to process and analyze vast amounts of financial data efficiently.

Over time, pandas expanded beyond the financial sector and gained popularity across various domains and industries. Today, it is widely used in academia, scientific research, marketing, social sciences, healthcare, and more. Any field that deals with data analysis, exploration, and pre-processing can benefit from pandas’ capabilities.

Pandas Popularity

The popularity of pandas can be attributed to several factors. First, its user-friendly interface and intuitive syntax make it accessible to both novice and experienced Python users. The DataFrame and Series data structures mimic the tabular structure of data, resembling what users are already familiar with in spreadsheets or SQL tables.

Furthermore, pandas’ rich set of functions and methods for data manipulation, cleaning, and analysis streamline the workflow of data professionals. It provides concise and efficient ways to handle common data tasks, allowing users to focus on the analysis itself rather than the intricacies of data manipulation.

The community support surrounding pandas has also contributed to its popularity. The open-source nature of the library has encouraged contributions from a vast number of developers worldwide. This has led to the rapid development of new features, bug fixes, and enhancements, ensuring that pandas stays up-to-date with the evolving needs of data analysts and scientists.

Moreover, the seamless integration of pandas with other popular libraries in the Python ecosystem, such as NumPy, Matplotlib, and scikit-learn, has further propelled its popularity. This integration allows users to combine the strengths of different libraries, enabling powerful data analysis, visualization, and machine-learning workflows.


Advantages of Pandas over Traditional Data Analysis Methods


Here are the advantages of Pandas over traditional data analysis methods:


	
Efficient Data Handling: Pandas provides highly efficient data structures, such as DataFrames and Series, which are optimized for handling large datasets. These structures allow for fast data manipulation operations, such as filtering, aggregation, and sorting, resulting in improved performance compared to traditional methods like manual looping or using spreadsheets.

	
Broad Data Format Support: Unlike traditional methods that often rely on specific data formats, Pandas supports a wide range of data formats, including CSV, Excel, SQL databases, and JSON. This versatility enables seamless integration and analysis of data from various sources, eliminating the need for manual data conversion or preprocessing.

	
Advanced Data Manipulation: Pandas offers a rich set of functions and methods for data manipulation, transformation, and cleaning. It provides easy-to-use functionalities for handling missing values, reshaping data, merging datasets, and performing complex operations, reducing the complexity and time required for data preprocessing.

	
Time Series Analysis: Pandas provides specialized tools and functions for working with time series data. It offers built-in support for time-based indexing, resampling, and time shifting operations, making it particularly well-suited for analyzing and modelling time-dependent data.

	
Integration with the Python Ecosystem: Pandas seamlessly integrates with other popular libraries in the Python ecosystem, such as NumPy, Matplotlib, asci-kit-learn. This integration allows for efficient data exchange and collaboration between different tools, enhancing the capabilities and flexibility of data analysis workflows.



Installation and Setup

Pandas require Python 3.7 or later versions to run properly. It is recommended to use the latest stable version of Python available at the time of installation. Pandas is compatible with both Python 2.x and Python 3.x, but Python 2.x is no longer actively supported, so it’s strongly advised to use Python 3.x.

Before installing Pandas, ensure that you have Python installed on your system. You can check the Python version by opening a command prompt or terminal and running the following command:

python –version
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Figure 1.1: Python version

If you have Python installed and the version displayed is 3.7 or later, you meet the Python requirement to run Pandas. If you don’t have Python installed or have an older version, you can download and install the latest version of Python from the official Python website (https://www.python.org).

Once you have Python installed, you can proceed with installing Pandas using the appropriate method, such as pip or Anaconda.

Installing Pandas on Windows

To install Pandas on Windows, follow these steps:

Using pip:


	Open the command prompt by pressing Win + R and typing cmd.

	Enter the following command to install Pandas:
pip install pandas





Using Anaconda:


	Download Anaconda from the official website (https://www.anaconda.com/products/individual) and run the installer.

	Follow the installation instructions, selecting the desired options.

	Open Anaconda Prompt from the Start menu.

	Enter the following command to install Pandas:
conda install pandas





Installing Pandas on MaCOS

To install Pandas on MaCOS, follow these steps:

Using pip:


	Open the terminal by going to “Applications” > “Utilities” > “Terminal”.

	Enter the following command to install Pandas:
pip install pandas






Installing Pandas on Linux


To install Pandas on Linux, follow these steps:

Using pip:


	Open the terminal.

	Enter the following command to install Pandas:
pip install pandas





If you’re using Pandas and it is already installed, but you want to update it to the latest version, use the following command:

pip install --upgrade pandas

IPython Notebooks and its Integration with Pandas

IPython Notebooks, now known as Jupyter Notebooks, provide an interactive computing environment for creating and sharing documents that combine code, visualizations, and explanatory text. Jupyter Notebooks have become immensely popular in the data science community and seamlessly integrate with Pandas, a powerful data analysis library in Python.

Overview of IPython/Jupyter Notebooks:


	Jupyter Notebooks are web-based environments that allow you to create and execute code, visualize data, and document your analysis in a single document.

	The notebooks are organized into cells, each of which can contain code (Python, in this case), markdown text, or raw text.

	Code cells can be executed independently, allowing for an interactive and iterative data analysis process.

	Notebooks provide a rich interface that supports the inclusion of charts, tables, mathematical equations, images, and more.

	Jupyter Notebooks foster reproducibility by combining code, visualizations, and explanations in a shareable format.



Installing Jupyter Notebooks

To install Jupyter Notebooks, you can follow these steps:


	Ensure that you have Python installed on your system. You can download Python from the official website (https://www.python.org) and follow the installation instructions.

	Open a command prompt or terminal.

	Install Jupyter Notebooks using pip, which is a package manager for Python. Enter the following command:
pip install jupyter



	Wait for the installation to complete. Jupyter Notebooks and its dependencies will be installed in your Python environment.



To check if Jupyter Notebook is already installed on your system, you can follow these steps:


	Open a command prompt or terminal.

	Type the following command and press Enter
jupyter notebook –version





If Jupyter Notebook is installed, the command will display the version number. For example, you might see something like this:

6.4.0

Let’s run Jupyter notebook, assuming you already have installed Anaconda.

Open the Anaconda Navigator application. You can typically find it in your system’s application launcher or start menu. Once opened, the Anaconda Navigator window will appear.

In the Anaconda Navigator window, you will see several tools and environments. Click the “Launch” button under the Jupyter Notebook tile. This action will open a new window or tab in your default web browser.
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Figure 1.2: Anaconda navigator

The web browser will display the Jupyter Notebook interface. It will show a file browser on the left side and the list of available notebooks in the selected directory.
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Figure 1.3: Jupyter Notebook

To create a new notebook, click the “New” button located at the top-right corner of the interface. From the drop-down menu, select “Python 3” to create a new Python notebook.



[image: ]


Figure 1.4: Create new Python file

The notebook dashboard will appear, showing the newly created notebook. It will have the file extension .ipynb. You can see the notebook’s name at the top, and it can be renamed by clicking the title.
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Figure 1.5: New Notebook


	In the notebook, you will find an empty cell where you can write and execute Python code.

	
To add a new cell, click the “+” button in the toolbar or use the keyboard shortcut B to insert a cell below the currently selected cell.

	You can change the cell type from “Code” to “Markdown” by selecting the appropriate option from the drop-down menu in the toolbar. Markdown cells allow you to include formatted text, headings, bullet points, and more.

	You can write Python code in the cell and execute it by pressing Shift+Enter or by clicking the “Run” button in the toolbar.

	To save the notebook, click the floppy disk icon in the toolbar or go to “File” > “Save and Checkpoint”.

	To exit the notebook, close the browser tab containing the notebook interface or go to “File” > “Close and Halt”.



Understanding Pandas Objects: Series and DataFrame

In this section, we will explore the two core Pandas objects: Series and DataFrame. These are powerful tools for working with data in one or two dimensions, with labels and types. We will show you how to create them using Python.

Before we can work with Series and DataFrame, we need to import pandas, which is a library of useful functions and methods for data analysis. We can do this by typing: import pandas as pd. This will give us a shortcut to use pandas by typing pd before any pandas function or method.

Import pandas as pd

Series

A Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating-point numbers, Python objects, and more). It consists of two main components: the data and the index.


	
Data: The data component of a Series represents the values or elements that the Series holds. These values can be of any data type, such as numbers, text, or even more complex objects. The data can be provided using a NumPy array, a Python list, or a scalar value.

	
Index: It is a sequence of labels which identifies each element in the Series. By default, the index starts from 0 and increments by 1, but you can customize it.



Example 1: We will start with a basic example using a Python list. Suppose you have a list of weekly temperatures: [25, 28, 30, 26, 29, 31, 27]. Pandas offers a data structure called a Series, which is ideal for storing and working with this type of data.

Temperatures = [25, 28, 30, 26, 29, 31, 27]

series = pd.Series(temperatures)

print(series)

Output:
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Figure 1.6: Series output

Example 2: In this example, we are using a scalar value. Suppose you want to create a Series with the same value repeated multiple times. Let’s say you want a Series with the value 10 repeated 5 times.

Value = 10

series = pd.Series(value, index=[0, 1, 2, 3, 4])

print(series)

Output:


[image: ]


Figure 1.7: Output: creating a series with repeated scalar value

This example demonstrates that the data component of the Series is the scalar value 10, which is repeated 5 times.

Index: The index component of a Series represents the labels or names assigned to each element in the Series. It helps to identify and access specific elements of the Series. By default, the index starts from 0 and increments by 1 for each element, but you can customize it to any sequence of labels.

Example 1: Using default index

Let’s consider the previous example of the temperature Series. The default index labels are assigned automatically when we create the Series.

Temperatures = [25, 28, 30, 26, 29, 31, 27]

series = pd.Series(temperatures)

print(series)

Output:
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Figure 1.8: Series with default index labels

In this example, the default index labels are 0, 1, 2, 3, 4, 5, and 6.

Example 2: Using custom index

Suppose you have a Series representing the ages of different people, and you want to assign custom labels to each age.

Ages = [25, 30, 35, 28, 32]

index_labels = [‘John’, ‘Jane’, ‘Mike’, ‘Emily’, ‘Alex’]

series = pd.Series(ages, index=index_labels)

print(series)

Output:
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Figure 1.9: Series with custom index labels

In this example, we assigned custom index labels (names) to each age in the Series, making it easier to identify the age of each person.

The data and index components together form a Series, where each element has both a value and a corresponding label. This makes it convenient to work with and access specific elements in the Series based on their labels.


DataFrame


A DataFrame in Pandas is a two-dimensional labeled data structure that can hold multiple columns. It can be thought of as a table or spreadsheet where each column represents a variable or attribute, and each row represents a specific observation or record.

A DataFrame consists of three main components: data, index, and columns.

Data: The data component of a DataFrame represents the actual values in the table. It can be created from various data structures, such as Python dictionaries, NumPy arrays, or other DataFrames.

Example 1: Creating a DataFrame from a Python dictionary:

data = {‘Name’: [‘John’, ‘Jane’, ‘Mike’],

‘Age’: [25, 30, 35],

‘City’: [‘New York’, ‘Paris’, ‘London’]}

df = pd.DataFrame(data)

print(df)

Output:
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Figure 1.10: Output: dataFrame created from a Python dictionary

In this example, we create a DataFrame named “df” from a Python dictionary. The dictionary keys represent column names (‘Name’, ‘Age’, ‘City’), and the corresponding values represent the data for each column. The resulting DataFrame has three columns: ‘Name’, ‘Age’, and ‘City’, and each row represents a person’s information.

Index: The index component of a DataFrame represents the labels assigned to each row. It helps to uniquely identify and access specific rows in the DataFrame. By default, Pandas assigns a numeric index starting from 0, but you can customize it with your own labels.

Example 2: Customizing the index labels of a DataFrame:

data = {‘Name’: [‘John’, ‘Jane’, ‘Mike’],

‘Age’: [25, 30, 35],

‘City’: [‘New York’, ‘Paris’, ‘London’]}

df = pd.DataFrame(data, index=[‘A’, ‘B’, ‘C’])

print(df)

Output:


[image: ]


Figure 1.11: Customizing the index labels of a DataFrame

In this example, we create a DataFrame named “df” with custom index labels (‘A’, ‘B’, ‘C’). Now each row in the DataFrame has a unique identifier based on the assigned index labels.

Datatypes of Pandas

Pandas data structures: Series and DataFrame can store different types of data, such as numbers, strings, booleans, and dates. In this section, we will learn how to use the datatypes of pandas in Series and DataFrame.

Defining Datatypes

Datatypes are the categories of data that tell us how the data is stored and what operations can be performed on it. For example, integers are a datatype that can store whole numbers and can be added, subtracted, multiplied, and so on. Strings are a datatype that can store text and can be concatenated, sliced, searched, and more.

Python has several built-in datatypes, such as int, float, str, bool, and so on. However, pandas borrows its datatypes from another Python library called NumPy, which is a library for scientific computing. NumPy has more datatypes than Python, such as int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, complex64, complex128, and so on. These datatypes allow us to specify the size and precision of the data.

Pandas also has some datatypes that are specific to pandas, such as datetime64, timedelta64, and category. These datatypes allow us to work with dates and times and categorical data.

Using the Datatypes of Pandas in Series and DataFrame

Pandas will automatically assign a suitable datatype to each column or Series based on the values in it. We can also specify our own datatype by using the dtype argument in the constructor.

Here are some examples of how to create and use different datatypes in pandas:

Object

The object datatype is used to store any type of data that is not numeric or boolean. It can store strings, mixed types or Python objects. The object datatype is also used when pandas cannot infer a specific datatype for a column or Series.

For example:

# Create a Series of strings

s = pd.Series([“apple”, “banana”, “cherry”])

# Check the datatype of the Series

print(s.dtype)

Output:
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Figure 1.12: Series with datatype object

We can also create a DataFrame with object columns by using a dictionary of lists or Series. For example:

# Create a DataFrame with object columns

df = pd.DataFrame({“name”: [“Alice”, “Bob”, “Charlie”],

“gender”: [“F”, “M”, “M”],

“hobby”: [“reading”, “gaming”, “cooking”]})

# Check the datatypes of all the columns

print(df.dtypes)

Output:
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Figure 1.13: Dataframe with datatype object

Int64

The int64 datatype is used to store 64-bit integers. It can store whole numbers from -9223372036854775808 to 9223372036854775807. It is the default datatype for numeric columns or Series that do not have decimal points or missing values.

For example:

# Create a Series of integers

s = pd.Series([1, 2, 3, 4])

# Check the datatype of the Series

print(s.dtype)
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Figure 1.14: Series with datatype integer64

We can also create a DataFrame with int64 columns by using a list of lists or a dictionary of lists or Series. For example:

# Create a DataFrame with int64 columns

df = pd.DataFrame({“id”: [1, 2, 3],

“age”: [25, 30, 35],

“score”: [80, 90, 100]})

# Check the datatypes of all the columns

print(df.dtypes)

Output:
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Figure 1.15: DataFrame with datatype integer64

Float64

The float64 datatype is used to store 64-bit floating-point numbers. It can store decimal numbers with up to 15 digits of precision. It is the default datatype for numeric columns or Series that have decimal points or missing values.

For example:

# Create a Series of floats

s = pd.Series([1.0, 2.5, 3.2])

# Check the datatype of the Series

print(s.dtype)

Output:
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Figure 1.16: Series with datatype float64

We can also create a DataFrame with float64 columns by using a list of lists or a dictionary of lists or Series. For example:

df = pd.DataFrame({“price”: [10.0, np.nan, 15.0],

“discount”: [0.1, np.nan, np.nan],

“final_price”: [9.0,np.nan, np.nan]})

# Check the datatypes of all the columns

print(df.dtypes)

Output:
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Figure 1.17: DataFrame with datatype float64

Boolean

The boolean datatype is used to store True or False values. It can be used to represent logical conditions or binary choices. It is the default datatype for columns or Series that contain only True or False values.

For example:

# Create a Series of booleans

s = pd.Series([True, False, True])

# Check the datatype of the Series

print(s.dtype)

Output:
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Figure 1.18: Series with datatype boolean

We can also create a DataFrame with bool columns by using a list of lists or a dictionary of lists or Series. For example,

# Create a DataFrame with bool columns

df = pd.DataFrame({“is_even”: [True, False, True],

“is_positive”: [True, True, False],

“is_prime”: [False, True, False]})

# Check the datatypes of all the columns

print(df.dtypes)

Output:
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Figure 1.19: DataFrame with datatype boolean

Loading Data from Files and the Web for Pandas

One of the most common tasks in data analysis is loading data from various sources, such as files and the web. Pandas provides several functions and methods to help you read and write data in different formats, such as CSV, Excel, JSON, HTML, and SQL.

In this section, we will explore the most common ways to load data using Pandas. Specifically, we will learn how to use the read_csv and read_excel functions to load data from CSV and Excel files, respectively. Additionally, we will learn how to use the read_html function to load data from web pages

Loading Data from CSV Files Using pandas.read_csv()

Comma-S Values (CSV) is a common file format for storing tabular data. A CSV file consists of rows and columns separated by commas or other delimiters. Pandas provides the pandas.read_csv()function to read data from CSV files into a DataFrame object. A DataFrame is a two-dimensional table of data with rows and columns.

To use pandas.read_csv(), you need to pass the file path or file-like object as the first argument. You can also specify other optional arguments to customize the behavior of the function.

Here are some of the most commonly used parameters:


	
filepath_or_buffer: This parameter specifies the path of the CSV file to be read.

	
sep: This parameter specifies the delimiter used in the CSV file. The default value is ‘,’.

	
header: This parameter specifies which row of the CSV file should be used as the column names. The default value is 0.

	
index_col: This parameter specifies which column of the CSV file should be used as the index. The default value is None.

	
Use cols: This parameter specifies which columns of the CSV file should be read into the DataFrame. The default value is None, which means all columns are read.

	
dtype: This parameter specifies the data type of each column in the DataFrame. The default value is None, which means pandas will try to infer the data types automatically.

	
skiprows: This parameter specifies how many rows should be skipped from the beginning of the CSV file. The default value is 0.

	
nrows: This parameter specifies how many rows should be read from the CSV file. The default value is None, which means all rows are read.



Here is an example of how to use pandas.read_csv() to load a CSV file into a DataFrame:

# Read data from a CSV file

df = pd.read_csv(“housing.csv”)

# Print the first 5 rows of the DataFrame

df.head()

Output:
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Figure 1.20: Load the data and print the first five rows of the DataFrame

Now, let’s see how we can use some of the parameters to customize the reading process.


	
header: If we want to use a different row as the column names, we can pass the row number to this parameter. For example, if we want to use the second row as the column names, we can pass header=1.



# Read data from the CSV file with a different header row

df = pd.read_csv(“housing.csv”, header=1)

# Print the first 5 rows of the DataFrame

df.head()

Output:
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Figure 1.21: Read data with different header

We can see that pandas used the second row as the column names and skipped the first row. Note that this will also change the number of rows in the DataFrame.


	
index_col: If we want to use a specific column as the index, we can pass the column name or number to this parameter. For example, if we want to use the name column as the index, we can pass index_col=”Date”.



# Read data from the CSV file with a specific index column

df = pd.read_csv(“housing.csv”, index_col=”Date”)

# Print the first 5 rows of the DataFrame

df.head()

Output:
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Figure 1.22: Read data with specific index column

We can see that pandas used the Date column as the index and dropped it from the columns.


	
usecols: If we want to read only selected columns from the CSV file, we can pass a list of column names or numbers to this parameter. For example, if we want to read only the name and age columns, we can pass usecols=[“Rooms”, “age”].



# Read data from the CSV file with only selected columns

df = pd.read_csv(“housing.csv”, usecols=[“Rooms”, “Landsize”])

# Print the first 5 rows of the DataFrame

df.head()

Output:
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Figure 1.23: Read data with selected columns

We can see that pandas read only the Rooms and Landsize columns and ignored the gender column.


	
dtype: If we want to specify the data type of each column in the DataFrame, we can pass a dictionary of column names and data types to this parameter. For example, if we want to convert the age column to float and the gender column to category, we can pass dtype={“Landsize”: int, “Type”: “category”}.



df = pd.read_csv(“housing.csv”)

df.info()

Output:
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Figure 1.24: Displaying DataFrame information

We can see that the dtype of Landsize is Float and Type is Object. The following example shows how to change the dtype of columns by passing the columns Landsize and Type as dictionary.

# Read data from the CSV file with specific data types for each column

df = pd.read_csv(“housing.csv”, dtype={“Landsize”: int, “Type”: “category”})

df[[‘Landsize’,’Type’]].dtypes

Output:
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Figure 1.25: Changing the data type of columns

We can see that pandas has converted the Landsize column to integer and the Type column to category.


	
skiprows: If we want to skip some rows from the beginning of the CSV file, we can pass a number or a list of numbers to this parameter. For example, if we want to skip the first two rows, we can pass skiprows=2.



Before skip rows:

#Read data from csv file

df = pd.read_csv(“housing.csv”)

# Print the first 5 rows of the DataFrame

df.head()

Output:
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Figure 1.26:Displays the first five rows

After skipping the first two rows:

# Read data from the CSV file with some rows skipped from the beginning

df = pd.read_csv(“housing.csv”, skiprows=2)

# Print the first 5 rows of the DataFrame

df.head()

Output:
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Figure 1.27: Skipping the first two rows

We can see that pandas has skipped the first two rows and read the rest of the CSV file.


	
nrows: If we want to read only a certain number of rows from the CSV file, we can pass a number to this parameter. For example, if we want to read only the first two rows, we can pass nrows=2.



# Read data from the CSV file with only a certain number of rows

df = pd.read_csv(“housing.csv”, nrows=2)

# Print the first 5 rows of the DataFrame

df.head()

Output:
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Figure 1.28: Reading the first two rows

We can see that pandas has read only the first two rows and ignored the rest of the CSV file.

Loading Data from Excel Files Using pandas.read_excel()

Excel is a popular spreadsheet application that can store and manipulate tabular data. Excel files have the extension .xls or .xlsx and can contain multiple sheets or tabs. Pandas provides the pandas.read_excel() function to read data from Excel files into a DataFrame object.

To use pandas.read_excel(), you need to pass the file path or file-like object as the first argument. You can also specify other optional arguments to customize the behavior of the function, such as sheet_name, header, index_col, names, usecols, skiprows, na_values, and so on.

Here is an example of how to use pandas.read_excel () to load an Excel file into a DataFrame:

# Read data from an Excel file

df = pd.read_excel(“people.xlsx”)

# Print the first 5 rows of the DataFrame

df.head()

Output:
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Figure 1.29: Load an Excel file into a DataFrame

We can see that pandas have automatically inferred the column names and datatypes from the Excel file. We can also access the attributes and methods of the DataFrame object to explore and manipulate the data further.

To access a specific sheet use sheet_name as an optional parameter

# Read data from a specific sheet of an Excel file

df = pd.read_excel(“people.xlsx”, sheet_name=”female”)

# Print the rows of the DataFrame

df.head()

Output:
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Figure 1.30: Load an Excel file from a specific sheet

All the parameters we looked for read_csv also applies to read_excel.

Loading Data from HTML Tables Using pandas.read_html()

HyperText Markup Language (HTML) is a common file format for creating web pages. HTML files consist of tags that define the structure and content of the web page. HTML tables are used to display data in rows and columns. Pandas provides the pandas.read_html() function to read data from HTML tables into a list of DataFrame objects.

To use pandas.read_html(), you need to pass the file path, file-like object, or web URL as the first argument. You can also specify other optional arguments to customize the behavior of the function, such as attrs, header, index_col, names, usecols, skiprows, na_values, and so on.

Here is an example of how to use pandas.read_html() to load an HTML table from a web URL into a list of DataFrame objects:

# Read data from an HTML table from a web URL

dfs =pd.read_html(“https://en.wikipedia.org/wiki/List_of_countries_by_population”)

# Print the number of DataFrames in the list

print(len(dfs))

# Print the first DataFrame in the list

dfs[1]

Output:
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Figure 1.31: Load an HTML file from a web URL


Conclusion


This chapter provides a comprehensive overview of pandas and its role in data analysis. It covers the usage of IPython Notebooks, explores the core objects Series and DataFrame, explains data types in pandas, and guides through loading data from files and the web in various formats.

In the next chapter, we will take a closer look at Pandas Series. We will learn how to create a Series from different data structures, assigning custom index labels, analyzing size, shape, uniqueness, and value counts. We will even explore arithmetic operations, filtering, and handling special cases, such as NaN values.

Questions


	What are the steps involved in installing and setting up pandas on your system?

	Install Jupyter Notebook and explore the Jupyterlab Interface.

	What is the difference between Series and DataFrame?

	Name three common data types supported by pandas and explain their characteristics.

	True or False: Pandas supports loading data from Excel files. Justify your answer.
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