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    The branch of chemistry that uses computers to study chemical questions is known as Computational Chemistry which is a very diverse field spanning from the development and application of linear free energy relationships (e.g. QSAR, QSPR), to electronic structure calculations, molecular dynamics simulations, and to solving coupled differential equations (e.g. drug metabolism). The focus of Frontiers in Computational Chemistry is to present material for the application of computational techniques used in biological processes. Topics falling under this umbrella include computer aided molecular design, drug discovery and development, lead generation, lead optimization, database management, computer and molecular graphics, and the development of new computational methods or efficient algorithms for the simulation of chemical phenomena including the analysis of biological activity. In this third volume, we have collected five different perspectives on the application of computational methods towards drug design.




    Chapter 1 “In Silico Approaches for Drug Discovery and Development” reviews the main computational tools used in the drug discovery process. Joseph, et al. also presented the application of physics-based methods that are currently being developed and applied to the drug discovery process.




    The removal of toxic metal ions from nuclear and chemical waste streams is an imperative and demanding problem. In Chapter 2 “Computational Chemistry Assisted Design and Screening of Ligand-Solvent Systems for Metal Ion Separation” Ali et al. review electronic structure methods to aid the design and development of new ligands that can be used to extract metal ions from the environment. The goal is to use electronic structure methods to identify a suitable ligand anchored on a solid matrix that can be used in a complex separation process.




    One challenge in the biochemical field is understanding the side effects of anti-cancer drugs containing platinum. The authors of Chapter 3 “Molecular Mechanisms of Cellular Transport, Resistance and Cytotoxic Side Effects of Platinum and Adjuvant Anti-cancer Drugs ― A Molecular Orbital Study” present a review of the application of electronic structure methods to understand the side effects, acquired resistance, and combination of platinum drugs with adjuvant drugs in treating cancer.




    In Chapter 4 “Elucidating Allosteric Communications in Proteins Via Computational Methods”, the authors present a review of the application of different normal mode analyses based on molecular dynamics methods to understanding allosteric communication in proteins. Alakent and Ince also present the application of graph theory, perturbation methods, and statistical methods to investigate allosteric mechanisms.




    The authors of Chapter 5 “Information-theoretic chemical space for many electron systems: from atoms to biological and pharmacological molecules” review the utility of an information-theoretic three-dimensional (IT-3D) space to unveil the unique physical, chemical and biological aspects of a great diversity of many electron systems. These multiple electrons systems range from simple atomic systems to more complex systems such as amino acids. Esquivel et al. claim that “All chemical families recognized by the existing energy-based classifications are embraced by this entropic scheme”.




    

      Zaheer Ul Haq


      Panjwani Center for Molecular Medicine & Drug Research


      International Center for Chemical & Biological Sciences


      University of Karachi


      Pakistan


      


      &


      


      Jeffry D. Madura


      Department of Chemistry & Biochemistry


      Center for Computational Sciences Duquesne University


      Pittsburgh


      USA

    


  




  




  




  

    

      List of Contributors


    


  




  

    

      

        

          	Anil Boda



          	Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, India



        




        

          	Ashish Kumar Singha Deb



          	Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, India



        




        

          	Burak Alakent



          	Department of Chemical Engineering, Bogazici University, Istanbul, Turkey



        




        

          	Clifford W. Fong



          	Eigenenergy, Adelaide, South Australia, Australia



        




        

          	C. Soriano-Correa



          	Qu´ımica Computacional, FES-Zaragoza, Universidad Nacional Aut´onoma de M´exico, 09230-Iztapalapa, M´exico, D.F, Mexico



        




        

          	J.C. Angulo



          	Instituto Carlos I de F´ısica Te´orica y Computacional, Universidad de Granada, 18071-Granada, Spain


          Departamento de F´ısica At´omica, Molecular y Nuclear, Universidad de Granada, 18071-Granada, Spain



        




        

          	J.S. Dehesa



          	Instituto Carlos I de F´ısica Te´orica y Computacional, Universidad de Granada, 18071-Granada, Spain


          Departamento de F´ısica At´omica, Molecular y Nuclear, Universidad de Granada, 18071-Granada, Spain



        




        

          	KalsankaTrivikram Shenoy



          	Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, India



        




        

          	M. Molina-Esp´ıritu



          	Departamento de Qu´ımica, Universidad Aut´onoma Metropolitana, 09340-M´exico, D.F., M´exico



        




        

          	Pooja Sahu



          	Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, India



        




        

          	R.O. Esquivel



          	Departamento de Qu´ımica, Universidad Aut´onoma Metropolitana, 09340-M´exico, D.F., M´exico


          Instituto Carlos I de F´ısica Te´orica y Computacional, Universidad de Granada, 18071-Granada, Spain



        




        

          	S. L´opez-Rosa



          	Instituto Carlos I de F´ısica Te´orica y Computacional, Universidad de Granada, 18071-Granada, Spain


          Departamento de F´ısica Aplicada II, Universidad de Sevilla, 41012-Sevilla, Spain



        




        

          	Srinivasaraghavan Kannan



          	Bioinformatics Institute, A STAR, Singapore 138671,



        




        

          	Sk. Musharaf Ali



          	Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, India



        




        

          	Thomas Leonard Joseph



          	Bioinformatics Institute, A STAR, Singapore 138671,



        




        

          	Vasanthanathan Poongavanam



          	Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark



        




        

          	Vigneshwaran Namasivayam



          	Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-Universitaet, Dahlmannstr, 2, 53113 Bonn, Germany



        




        

          	Z. Nevin Gerek Ince



          	Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, USA



        


      

    


  




  




  




  

    In Silico Approaches for Drug Discovery and Development




    


    Thomas Leonard Joseph1, Vigneshwaran Namasivayam2, Vasanthanathan Poongavanam3, Srinivasaraghavan Kannan1, *




    

      1 Bioinformatics Institute, A*STAR, Singapore 138671, Singapore


    




    

      2 Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-Universitaet, Dahlmannstr 53113 Bonn, Germany


    




    

      3 Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark


    






    

      Abstract




      Discovery of new therapeutics is a very challenging, expensive and time-consuming process. With the number of approved drugs declining steadily combined with increasing costs, a rational approach is needed to facilitate, expedite and streamline the drug discovery process. In this regard computational methods are playing increasingly important roles, largely assisted by developments in algorithms and greatly increased computer power. With in silico methods playing key roles in the discovery of growing numbers of marketed drugs, nowadays use of computational tools has become an integral part of most drug discovery programs. Computational tools can be applied at different stages: from target selection through identification of hits to optimization. In this chapter we aim to provide an overview of major tools that have been developed and are routinely being used in the search of novel drug candidates. In addition, we present recent advances, especially in the application of physics-based simulation methodologies, in the drug discovery process for the development of improved therapeutics.
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      1. INTRODUCTION




      Drug discovery is the process of creating or finding a molecule which has a specific activity on a biological organism. The aim of the discovery process is




      to identify compounds with pharmacological interest that can be used in the treatment of diseases. As several factors decide the activity of a drug molecule, undoubtedly the development of a new drug is a complex and difficult process. It is estimated that a drug discovery process can cost several hundred million dollars and a typical discovery cycle can take as many as 15 years from the first compound identified in the laboratory until the drug is brought to market [1-6]. Traditionally drug discovery starts with an experimental screening of compound libraries of molecule that bind to biomolecular targets and modulate their activity. This is followed by subsequent rounds of iterative chemical modifications to enhance their potency, with further optimization for increased selectivity and pharmacological properties [5, 6]. The emergence of combinatorial chemistry combined with rapid developments in high throughput screening (HTS) technologies have speeded up the discovery process by enabling huge libraries of compounds to be screened in short periods of time [7-10]. However the hit rates for high throughput screens are often extremely low and most identified hits do not proceed to actual leads [7-10].




      The sequencing of human genome has revealed unknown proteins that might serve as new drug targets. However the therapeutic importance of most of these proteins is either unknown or poorly characterized. The routine set of experiments (blind expression, purification and in vitro assays) that are typically used, cannot be applied for thousands of proteins against libraries of several hundreds of thousands of compounds. Therefore new approaches are needed to speed up and streamline drug discovery and development process to save time, money and resources. In this regard computational approaches have a major role to play.




      A variety of computational approaches can be applied at different stages of the drug-design process; right from target identification and validations, identification of initial hits, hit-to-lead selection, and optimization of leads to avoid safety issues.




      In this chapter we aim to provide an overview of major in silico tools and approaches that have been developed and are routinely being used to search for novel drug candidates. In addition we will also present recent advances (enhancements), especially the application of physics-based simulation methodologies that lead to a dynamic view of receptor drug interaction, replacing the traditional dogma of single structure-based drug design with the concept of ensemble–based drug design, where conformational flexibility of a receptor molecule plays key roles.




      In the first section, we introduce two major Computer Aided Drug Design (CADD) strategies namely ligand based and structure based methods that are widely used in the drug discovery process. Next we briefly introduce several computational techniques that are routinely used. In the third section we will introduce Molecular Dynamics (MD) simulations and applications at various steps of the drug discovery process. We then discuss computational methods for predictions and optimization of drug metabolism and pharmacokinetics. Finally we will discuss targeting protein-protein interactions and briefly introduce peptide based inhibitor design for inhibitions of protein-protein interactions. The goal here is to offer an overview of highly promising themes and tools in this interdisciplinary field.


    




    

      2. COMPUTER AIDED DRUG DESIGN STRATEGIES




      Drug discovery is an extended and time consuming process, which can take several years to translate a compound into a drug molecule. Therefore development of a drug discovery process with the ability for rapid identification of potential binders to the target of therapeutic interest is of great importance in the biotech and pharmaceutical companies. In this regard computational methods enable rapid screening of huge libraries of pharmacologically interesting compounds for identifying potential binders through modelling and simulation. Strategies for CADD vary depending on the availability of structural and other information regarding the target (enzyme/receptor) and the drug (ligand). Two major modelling strategies “indirect” and “direct” are currently used in the drug discovery process (Fig. 1). In the indirect approach, also known as “Ligand based” the design is based on a comparative analysis of the structural features of compounds with known activity. The direct approach, also known as “Structure based”, utilizes the three-dimensional structural features of the target molecule of interest. We now examine these two in some detail.
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Fig. (1))


      Flow chart of structure based and ligand based drug discovery approaches.



      

        2.1. Ligand Based Drug Discovery




        The ligand-based computer-aided drug discovery approach is considered as an indirect approach for the design for small molecules, and does not require knowledge of the structure of the target molecule. This approach uses a set of ligands that are known to interact with a target of interest and analyze their 2D and 3D structures. The aim here is to represent the compounds in a way the key physicochemical properties that are important for their desire interactions are retained. The ligand based approach is based on the similarity property principle [11], which states that molecules that are structurally similar are likely to have similar properties. The two fundamental ligand based approaches are (1) Chemical similarity: compound selection is based on chemical similarity to known actives using some similarity measure, (2) Quantitative Structure Activity Relationship (QSAR) model: compound selection is based on prediction of biological activity from the compound’s chemical structure via some statistical model. Since the ligand based techniques rely entirely on chemical structures, physicochemical properties and/or associated biological activity, it uses several methods (computational algorithms) to describe features of small molecules. Molecular descriptors [12-19] can describe both structural as well as physicochemical properties. Once the molecular descriptor of a bio-active small molecule is derived, then this can be used to screen against databases of small molecule libraries that are structurally and or physicochemically similar. Fingerprint methods can be used to search databases of compounds that are similar in structure to a lead query [20, 21]. QSAR methods describe the relationship between structure/descriptors and their experimental/biological activity mathematically [22]. The aim is to produce a suitably robust model capable of reliable predictions for novel chemical species. From a set of compounds together with their known biological activity a QSAR model will be generated then applied on a library of test compounds to predict the activity that are encoded with same descriptors. A pharmacophore model generated from compounds with known biological activity can also be used to screen databases of small molecules. A pharmacophore is a spatial arrangement of the functional groups that are important for a compound or drug to evoke a desired biological response [23]. In addition to the functional group, an effective pharmacophore will contain information about their interactions with the target. A pharmacophore is usually generated from multiple active compounds that are overlaid in their bio active conformations in such a way that a maximum number of chemical features overlap geometrically.




        These ligand based methods are applied to screen compounds virtually screening for novel compounds possessing the biologic activity of interest, hit-to-lead and lead-to-drug optimization and also for optimization of DMPK/ADMET properties [24-46].


      




      

        2.2. Structure Based Drug Discovery




        Structure-based computer-aided drug design approaches rely on the 3D structures of target molecules. This direct approach is based on the assumption that a molecule’s ability to invoke a desired biological effect depends on its ability to interact with a specific target at a particular binding site. Therefore molecules that share the favorable interactions will have similar biological effects. For the screening of compound libraries, in an effort to find novel binders, the structure based approach employs a docking algorithm to rank large libraries of compound. Docking based virtual screening is an important aspect of structure based approaches. For rapid identification of hits, the docking method employs various algorithms to first predict the protein–ligand complex structure and then to assess the energetics of the predicted complexes, in order to discriminate potential binders from non-binders.




        Structural information about the target is a prerequisite for any structure based approach. Typically experimentally determined target structures provide an ideal starting point for docking. In the absence of experimental structures, computational methods are used to predict the 3D structures of target proteins. Comparative modelling is used to generate a 3D structure of a target molecule, using as a template, the known 3D structure of a protein that is similar in sequence to the target protein. Several successful virtual screening campaigns have been reported based on comparative models of target proteins [47-60]. In HTS the experiments assert the general ability of a ligand to bind, orthosterically or allosterically, either inhibit or alter a protein’s function. In contrast, the structure based drug discovery approaches employ virtual screening methods whereby molecules that bind a particular binding site in the target structure are screened for. Therefore knowledge about the structures of binding sites and protein-ligand interactions is a prerequisite for structure based approaches. A 3D structure of a receptor-ligand complex can provide information on where the ligand binds to their macromolecular targets, and the specific interactions that are important for the binding. Often the small molecule binding sites are known from co-crystal structures of the target or a homologous protein. In the absence of experimental structures, mutational studies can aid in identifying the ligand binding sites. Alternatively, various in silico approaches [50, 51] can be used to identify putative binding sites. Once the binding site is identified, protein–ligand docking algorithms that simulate the binding of molecules to these sites are applied to screen for potential binders. The aim of a docking experiment is to find the best position and orientation of a molecule in the binding site of the target. Over the years several protein–ligand docking programs have been developed [52-55]. Depending on the degree of flexibility considered for both the ligand and receptor molecule, docking methods can be classified as rigid-body docking or flexible docking. Although earlier docking methods treated both the ligand and receptor as rigid entities, with advances in algorithms and computational facilities, most of the docking programs now treat ligand molecules as flexible, however the receptor is still treated with only partial flexibility. Therefore in structure based virtual screening approaches, generally, during the initial screening, rigid docking is preferred to dock a large number of compounds. This is followed by refinement and optimization of the protein–ligand poses by flexible docking methods. A docking run may generate hundreds of thousands of protein-ligand complex conformations, therefore the docking applications need to rapidly and accurately assess these protein-ligand complexes. Docking methods use physics based scoring functions to rank and differentiate valid binding mode predictions from invalid predictions [53, 55]. These scoring functions range from simple empirical schemes to extremely computer intensive theoretical calculations. For efficient screening of large libraries of compounds, simple scoring functions are favored, over methods that are computationally intensive, to obtain a qualitative useful score in a reasonable amount of time. A common practice is to use very simple scoring functions at the early stage for rapid screening and use computer intensive sophisticated functions on a subset for accurate prediction.




        The success of virtual screening is dependent upon the amount and the quality of structural information known about both the target and the small molecules being docked. Structure based approaches have been used successfully in identifying novel and potent hits in several drug discovery campaigns [56-68].


      


    




    

      3. TOPICS IN CADD




      In the following section we discuss briefly a number of current topics in CADD.




      

        3.1. Databases




        Huge amounts of organic molecules, biological sequences and related information has been accumulated in the scientific literature including case reports. Several computational algorithms are actively developed to organize and store this huge volume of available information, in the form of databases [69]. Access to such databases is very critical for the success of drug discovery and development campaigns. Some of the important data sources are reviewed in this section.




        

          3.1.1. Small Molecule Databases




          The increasing availability of small molecules database plays a major role in modern drug discovery. Several compilations of small molecules and their physicochemical properties are readily available [70-77]. One of the important in silico methods, virtual screening relies on a database or library of molecules. Virtual libraries can be assembled in variety of sizes that possibly applied to screen against any target focused libraries are designed to a related family of targets, and targeted libraries are designed specifically for a particular target of interest. In general, virtual screening approaches focus on drug-like molecules that are already synthesized or can easily synthesized from available starting materials. Thus, the small molecule databases [69-75] provide a variety of information including known/available chemical compounds, drugs, carbohydrates, enzymes, reactants, and natural products. To some extent, the success achieved in discovering new ligands also rests on the quality of the database used for screening. Indeed careful database preparation can lead to better results in virtual screens [76].


        




        

          3.1.2. Preparation of Ligand Libraries




          Ligands need to be represented as chemical data structures. Some ligands may require multiple structures depending on their chirality and/or tautomerization and/or protonation state(s) [77, 78]. For 3D virtual screening applications, preparation of a small molecule database involves conversion of a 2D molecular representation to a 3D structure file. Depending on the intended use of the database, each structure may further require elucidation of one or more possible 3D conformers. Database preparation invariably involves deleting from, and adding to, the database. Generally, libraries of molecules are generated with the application of computational and combinatorial tools. As comprehensive computational enumeration of all chemical space is and will remain infeasible, it is necessary to filter the compounds to obtain those with a high likelihood of bio-medical relevance. A wide range of filters may be applied to discredit compounds with unfavorable pharmacodynamic or pharmacokinetic properties [79]. Typically, chemical functionalities that may cause unfavorable DMPK/ADMET properties and molecules containing reactive or otherwise generally undesirable functional groups are excluded [79]. Drug likeness is commonly evaluated using Lipinski’s rule of five [80]. Lipinski's rule of five states that a compound with more than 5 hydrogen bond donors (HBD), 10 hydrogen bond acceptors (HBA), MW>500, and ClogP > 5, is more likely to manifest poor absorption or permeation [80]. Compound collections as well as initial chemical leads can benefit from these rules. Lipinski et al. [80, 81] noted that finding good starting points for medicinal chemistry based drug discovery is key to the quality of the final optimized compounds and overall project success. Lipinski's rules were elaborated upon with the introduction of “number of rotatable bonds” (NRB) and “polar surface area” (PSA), which can be useful descriptors for oral bioavailability [82] and passive absorption [83, 84]. Compound libraries are often enriched for a particular target or family of targets. Physiochemical filters derived from observed ligand-target complexes are used for enriching a library with compounds that satisfy specific geometric or physicochemical constraints [84, 85]. Such libraries are prepared by searching for ligands that are similar to known active ligands. In addition, a small molecule library requires preparations, such as conformational sampling and assigning proper stereo isometric and protonation states [86, 87]. Molecules are flexible in solvent environments and hence representation of conformational flexibility is an important aspect of molecular recognition. Many screening tools have integral conformational search engines, thus requiring only one conformer as input. Other approaches (e.g., rigid docking) require multiple conformers of ligands that are pre-computed using simulations or knowledge-based methods. A virtual screening tool that generates conformers on the fly avoids the calculation and storage of a multi-conformer database, but requires additional computation time for each execution. Alternatively, generating conformers as a separate process may allow more control and fine-tuning of this important step [88-92].


        




        

          3.1.3. Virtual Combinatorial libraries




          In modern drug discovery combinatorial chemistry is an important component, however often far too large a number of compounds are synthesized or screened and possibly these libraries contain compounds that have similar physicochemical properties. Therefore an improved design of such libraries, by optimizing the library’s diversity or similarity to a target that can maximize the number of true leads and reduce redundancy could be the best way forward. The compounds in the libraries can be optimized for molecular diversity or similarity. This can be achieved using descriptors such as chemical composition, topology, 3D structures and functionality [93]. Additionally, drug-likeness using heuristic rules to detect ADME/Tox deficiencies [94].


        




        

          3.1.4. Representation of Small Molecules




          Efficient use of ligand databases requires generalized methods for the virtual representation of small molecules. SMILES (Simplified Molecular Input Line System) was introduced as a simplified format to represent small molecules in two-dimensions [95-97]. Formal charges, bond types can all be described explicitly in the SMILES representation. There is no necessity for defining the aromaticity with an extended version of Huckel’s rule [98]. SMILES does not explicitly encode hydrogen atoms and conventionally assumes that hydrogens make up the remainder of an atom’s lowest normal valence. Due to the representation of molecular structures as linear strings of symbols that could be efficiently read and stored by computer systems across multiple platforms, the method was most preferred. In general, there are many different but equally valid SMILES descriptions for the same structure. SMARTS (SMILES ARbitrary Target Specification) is an extension of the SMILES representation of small molecules and allows for variability within the represented molecular structures [99]. It also provides substructure search functionality to SMILES, including logical operators such as “AND” (&), “OR” (,), and “NOT” (!), and special atomic and bond symbols that provide a level of flexibility to chemical names. InChI (International Chemical Identifier) is an open source structure representation algorithm to unify searches across multiple chemical databases using modern internet search engines [100]. The main purpose of InChI and the hash-key version InChIKey is to provide a nonproprietary machine-readable code unique for all chemical structures that can be indexed without any alteration by major search engines. InChI is made up of several layers and these layers represent different classes of structural information.


        




        

          3.1.5. Molecular Descriptors/Features




          Molecular descriptors are numerical representations of chemical features or information that are encoded in the chemical structure of a molecule. Molecular descriptors can be electronic, structural, physicochemical, or topological, and can also be described at multiple levels of increasing complexity with both global and local features. The descriptors are generated by utilizing knowledge-based, graph-theoretical methods, molecular mechanical or quantum-mechanical tools [101, 102]. Currently, there are over 3,700 types of descriptors, classified into three broad categories: 1-, 2- and 3-D descriptors encoding chemical composition, topology, and 3D shape and functionality, respectively [103]. Descriptors available within the same dimensionality can show a range of complexity. For example, descriptors such as molecular weight and number of hydrogen bond donors are relatively simple and can be rapidly and accurately computed. On the other hand more complex descriptors encoding multiple physicochemical and structural properties of a compound are quite difficult to compute. However, the higher the information content provided by these descriptors the better is its use for model development. The compromise in computing such descriptors is between the high speed needed to encode thousands of molecules and sufficient accuracy. Different computer programs [104] have been developed to derive molecular descriptors of a compound.


        


      




      

        3.2. Target Databases for Computer-Aided Drug Design




        For structure-based computer aided drug discovery, the knowledge of the 3D structure of a target protein is required. In 1971, the Brookhaven National Laboratory established the Protein Data Bank (PDB) [105] as a single worldwide archive of structural data of biological macromolecules. The PDB currently houses more than 100,000 protein structures that are determined experimentally, mostly by X-ray crystallography and NMR spectroscopy. In case an experimental structure is not available for a protein molecule, computational modelling of protein structures is possible on the basis of experimentally determined structures of homologue proteins; this process is referred to as homology modelling. The Swiss-Model server [106] and Modeller [107] are the most widely used tools for homology modeling.




        The genome sequencing of human and other model organisms produce increasingly large amounts of data relevant to the study of human disease. This provides an opportunity to identify many unknown proteins that possibly serve as new drug targets. However, in the absence of a well-established experimental setup and detailed 3D structures, validation of these proteins as potential drug targets is a challenging task. Thus, there is a need for rapid and accurate functional assignment of novel proteins. Effectively, identification and validation of possible targets is the first step in the drug discovery process. Many new methods and integrated approaches are continuously explored in order to improve the discovery rate and exploration of novel therapeutic targets. By utilizing the global sequence and structure comparisons the putative functions of the proteins have been primarily assigned. For the rapid assignment of biological function to hypothetical or unknown function proteins, sequence homology has been used routinely [108]. In addition to global sequence similarity, methods that compare the ligand binding sites to infer biological function are used to aid drug discovery. Recently [109] there has been substantial progress in exploring the usefulness of in silico machine learning methods, such as support vector machines (SVM) for predicting druggable proteins. Independent of amino acids sequence similarity, the SVM approach attempts to predict target proteins. This facilitates the prediction of druggable proteins that exhibit no or low homology to known targets. Determining the potential of a protein as a therapeutic target and its structural details are essential for the structure-based drug design approach.


      




      

        3.3. Similarity Searches




        The basic concept for the ligand based screening methodologies is the similarity property principle [11], which asserts that molecules with similar structures share similar properties. Ligand-based similarity methods are largely depend on this basic principle that structural likeness enhances the chances to share a common bioactive profile. Thus, selecting compounds similar to the available drugs increases the possibility of identifying an alternative compound and possibly it could be another potential lead. In general, it is common to apply similarity searches in the identification of compounds based on their similarity to active ones. Therefore, in ligand based virtual screening efforts the molecular structure and property descriptors of interacting molecules are extrapolated to search for other molecules with similar characteristics. For this purpose several methods have been proposed and used [20, 21, 103, 110-113]. Molecular fingerprints are the most widely used method for similarity search in ligand based virtual screening approaches. Molecular fingerprints are “string” representations of chemical structures and properties [110]. Because of its simple representation, these fingerprint-based techniques allow rapid structural comparison in an effort to identify structurally similar molecules or to cluster collections based on structural similarity. Molecular fingerprints encode 2D and /or 3D features of the molecular structure in a series of binary bits that represent the presence or absence of particular substructures in the molecule [110]. Although it splits the entire molecule into a large number of fragments, it has the potential to retain the overall complexity of drug molecules. The main strength of this approach is its ability to compare multiple fingerprints and compute their similarity by using, for example, the Tanimoto coefficient [113], which greatly facilitates similarity based searches. In addition fingerprints are also used to increase molecular diversity of test compounds.




        Fingerprints may be classified according to their dimensionality, ranging from one dimensional (1D) to three dimensional (3D) [110]. Among the commonly used ones, the most popular and efficient are 2D fingerprints. However the major drawback of the fingerprint-based method is that the identified features of a query molecule are considered equally important for ranking candidate molecules, regardless of the effect reflected from these features on the biologic activity of a given target. Despite this drawback, 2D fingerprints continue to be the selected method for similarity-based virtual screening [113]. These similarity based search methods are less hypotheses driven and less computationally expensive in comparison to pharmacophore or QSAR models. They depend on chemical structures of compounds and do not rely on biological activity, making the approach more qualitative in nature than other ligand based approaches. From a structural similarity search within a dataset of small molecules, it is possible to retrieve compounds containing identical substructures that share affinity for the same receptor.


      




      

        3.4. Quantitative Structure-Activity Relationship (QSAR)




        QSAR is derived from the quantitative relationship between the chemical structure and its associated biological activity [114-118]. Computational techniques available on the basis of structure–activity relationships have accelerated the drug design process [22]. By the application of statistical methods for a set of chemically related compounds, QSAR attempts to correlate structural/molecular properties (descriptors) with biological activities. These descriptors of chemical structures are characterized by physicochemical, structural and topological properties. These properties can be obtained from either experimentally measured quantities or calculated using molecular modeling software. Biological activity is usually the concentration of effectors at which they exert certain pharmacological or biological effects. The objective of structure-activity modelling is to analyze and identify the determining factors for the measured activity for a particular system in order to obtain an insight of the mechanism and behavior of that system. For such purposes, the employed strategy is to generate a mathematical model for connecting experimental measures with a set of chemical descriptors determined from the molecular structure of a set of compounds. Model building is an iterative process to find the right combination of descriptors to relate to the property and their predictive potential. Depending on the descriptor/properties calculated for a ligand, the QSAR approach is classified into different types, for example, 1D, 2D, 3D, 4D QSAR etc. [119]. 1D/2D QSARs are called classical QSAR, where the molecular properties like logP, molar refractivity, molecular weight, connectivity indices are correlated with activity. In the 3D QSAR approach, the three-dimensional structure of the ligands will be used to calculate the surrounding molecular interaction field (MIF) effect, such as steric, electrostatic and hydrophobic effects using force field parameters [120].




        

          3.4.1. Classical QSAR (1D/2D)




          In 1960, Hansch and Fujita [121, 122] proposed a function to express the biological activity as molecular or fragmental descriptors: Biological activity = f * (molecular or fragmental descriptor). This approach from Hansch-Fujita involves the correlation of various electronic, hydrophobic, and steric features with biological activity through linear or non-linear regression. In 1964, Free and Wilson [123] developed a mathematical model include various chemical substituents to biological activity (each type of chemical group was assigned an activity contribution). This Free-Wilson approach is also called the true structure activity relationship model. These two methods were later combined to create the Hansch/Free-Wilson method [124]. The combination of these two approaches results in the advantages of both the Hansch and Free-Wilson analysis and widens the application of both methods. The data utilized to establish the QSAR equation are assembled into a matrix of numbers representing the data for compounds as rows and the physicochemical property descriptors as columns. In 2D QSAR, descriptors are substituent constants that are assumed to be exchanged from one series to another. A large number of substituent constants have been assembled and used to find a quantitative relationship between the chemical space (i.e., descriptors) against the biological data points through a statistical method, i.e. multi linear regression (MLR) [125]. The general purpose of statistical methods is to relate several independent variables (i.e., descriptors) and a dependent or criterion variable. MLR is the most extensively used mathematical method in classical QSAR, due to the ease in its ability to interpret; a number of pitfalls exist. Keeping the optimum ratio of compounds to descriptors and limiting inter-correlation between the descriptors (0.3) within the model will rule out non-significant relationships. Partial least squares (PLS) is another statistical method executes strongly correlated and/or noisy or numerous variables [126, 127] and gives a reduced solution, which is statistically more robust than MLR for a larger set. The linear PLS model finds “new variables” with linear combinations of the original variables. To obtain the optimum number of components, PLS is normally used in combination with cross-validation. This confirms that the QSAR equations are selected not on the basis of their ability to predict the data rather than to fit the data, but PLS models may not be easily interpretable. However, other statistical learning methods such as neural networks and SVM have been explored for predicting compounds of higher structural diversity [128-130].


        




        

          3.4.2. 3D-QSAR




          3D QSAR are quantitative models which are developed by relating the biological activity of small molecules and their properties calculated in 3D space. In 1988, an approach was introduced to describe molecular properties as fields (usually steric, electronic, hydrogen bonding, and hydrophobic fields) calculated in a regular grid [131]. This method, called Comparative molecular field analysis (CoMFA), is one of the most widely and commonly used 3DQSAR methods. In CoMFA, the small molecules are aligned and features are extracted from this alignment to relate compound properties with biological activity. This method largely focuses on the molecular interaction fields alignment rather than of each individual atom features. Over the years in the absence of structural data of a target, CoMFA has been established as a standard technique for constructing 3D models [132]. However, the most difficult aspect of a 3D QSAR analysis is selecting the appropriate alignment rules for the training set i.e. the bioactive conformation. For certain datasets this can present difficulties, such as for compounds with a large number of rotatable bonds it is difficult to find a proper alignment, or even impossible. These problems limit the applicability of CoMFA. In order to overcome this, new approaches have been developed recently that do not depend on a common alignment of the molecules [133-138]. The comparative molecular similarity indices (CoMSIA) method [133] is an important extension to CoMFA which was developed to improve limitations of the steric and electrostatic fields in CoMFA. In CoMSIA, the molecular fields includes hydrophobic and hydrogen-bonding terms in addition to the steric and columbic contributions. Similarity indices are calculated instead of interaction energies by comparing each ligand with a common probe, and Gaussian-type functions are used to avoid extreme values. However, one important limitation to these methods is that their applicability is limited to static structures or low energy conformations of similar scaffolds, hence neglecting the dynamical nature of the ligands.


        




        

          3.4.3. Multidimensional QSAR




          Multidimensional QSAR (mQSAR) was developed in the quest to quantify all energy contributions of ligand binding, including removal of solvent molecules, loss of conformational entropy, and binding pocket adaptation. 4D-QSAR [139] is an extension of 3D-QSAR that considers each molecule as an ensemble of different conformations, tautomers, stereoisomers, and protonation states. The ensemble sampling of spatial features of each molecule is referred to as the fourth dimension in 4D-QSAR. In the case of 5D-QSAR [140], local changes in the binding site has been contributed to an induced fit model of ligand binding.




          Similar to pharmacophore and similarity search methods, QSAR has been used to screen to virtual libraries of compounds for novel therapeutics [31]. In addition to predicting the function of novel compounds within a virtual library, QSAR has been used to enhance compound libraries used in traditional HTS [39]. It can direct combinatorial library synthesis for constructing libraries to be screened against targets of a particular class or classes [35]. This allows the researcher to cover a wide range of chemical spaces that have been enriched with compounds more likely to be hits for their target of interest. When the structural information of the target is unknown, QSAR has also been applied in de novo drug design techniques [104, 141]. Descriptor and model generation is performed and used to score the molecules generated with a de novo-technique in place of other structure-based scoring techniques, such as docking [104].




          The success of QSAR not only depends on the quality of the initial set of active/inactive compounds but also on the selection of descriptors, and the ability to generate an appropriate mathematical model. One of the most important considerations is that all models generated will be dependent on the chemical space of the initial set of compounds with known activity. In other words, divergent scaffolds or functional groups which are not represented within this “training” set of compounds, will not be represented in the final model. This means that any potential hits within the library to be screened that contain these groups will likely be avoided. It is therefore favorable to include a wide chemical space within the training set.


        


      




      

        3.5. Pharmacophores




        A pharmacophore is defined as a spatial arrangement of functional groups (steric and electronic features) that a chemical entity contains for optimal interactions with a specific biological target structure to evoke a desired biological response [142]. An effective pharmacophore will contain information about functional groups and information about the type of interactions with the target (Fig. 2). The geometric and topological constraints can be derived either in a structure based approach, by mapping the sites of contact between a ligand and binding site, or in a ligand-based approach by comparing structures of several known active compounds. With an established pharmacophore model, a 3D search against large databases can be performed, leading to a significant enrichment of active analogs. Pharmacophore modeling and 3D database searches have been successful tools for enriching screening experiments aiming for novel bioactive compounds [40-45]. Thus, pharmacophore searches are commonly used for lead identification of compounds that could bind to the receptor in a similar way to the known actives, but do not share significant sub-structural similarity.
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Fig. (2))


        Pharmacophore model: Pharmacophoric features of Nutlin (a small molecule inhibitor of MDM2-p53 interactions) are color coded: Cyan: hydrophobic, Purple: Hydrogen bond donor and acceptor.



        In a structure based approach, a pharmacophore model can be developed by analyzing one or several co-crystal structures with a ligand bound to a protein target. A pharmacophore model of the target binding site summarizes steric and electronic features needed for optimal interactions of a ligand with the target. Most common properties that are used to define pharmacophores are hydrogen bond acceptors, hydrogen bond donors, basic groups, acidic groups, partial charges, aliphatic hydrophobic moieties, and aromatic hydrophobic moieties. A pharmacophore model developed for the target binding site can be used to virtually screen a compound library and identify putative hits. Structure-based pharmacophore methods are developed by analyzing the target binding site or a target-ligand complex structure. LigandScout [143] and Pocket algorithms [144] are examples which use protein-ligand complex data to map interactions between the ligand and target.




        Ligand-based pharmacophore is usually defined as a relational model of features such as hydrogen bonding donors and acceptors, charged groups and aromatic rings that are common among the ligands interacting with the same receptor. Spatial relationships of pharmacophore features can be easily transformed into 3D coordinates and distances, and form the basis for similarity searches. To generate a ligand-based pharmacophore, active compounds are overlaid in such a way that a maximum number of chemical features identified from the compounds overlap geometrically [145]. This can involve rigid 2D or 3D structural representations incorporating molecular flexibility to determine overlapping sites. The con-formational flexibility can be incorporated by precomputing the conformational space of each ligand and creating a general-purpose conformational model that can be explored by changing molecular coordinates as needed by the alignment algorithm [145]. In general, the molecules are aligned through either a point-based [146] or property-based technique [145]. When aligning the compounds of interest, molecular flexibility is always an important consideration.




        Once the bio active molecules are optimally aligned, then a pharmacophore feature map can be constructed that balances generalizability with specificity in such a way that all functional groups having similar physiochemical properties are grouped at specific locations with specific features. More general feature definitions could increase the population of compounds that match the pharmacophore and allow the identification of novel scaffolds, but this also increases the ratio of false-positives. The level of feature definition generalizability is usually determined by the algorithm used to extract feature maps on the basis of user-specified parameters. Features are implemented as spheres with a certain tolerance radius for pharmacophore matching [145], and constitute general information about the different ways in which ligands may interact with macromolecules, typically through ionic, hydrophobic and/or hydrogen bonding interactions. Phase [147], MOE [148], Catalyst [149] and LigandScout [143] are the most common software packages used for ligand-based pharmacophore searches. All these packages use different approaches to molecular alignment, flexibility, and feature extraction, and different results might be obtained for the same datasets. Their strengths and weaknesses should be considered prior to any application. Ligand-based pharmacophore methods have been used to identify novel compounds across a variety of targets [40-45]. Pharmacophore features have been used extensively in drug discovery for virtual screening, de novo design, and lead optimization [40-45].


      




      

        3.6. Comparative Modeling




        Advances in experimental techniques have led to increasing availability of protein structures and the structural information has guided drug discovery. However not all target structures are available; specifically, the completion of numerous genome sequencing projects have revealed several potential therapeutic targets but the 3D structures of many of the proteins targets are not available. In the absence of experimental structures, computational methods are used to predict the 3D structure of target proteins. Comparative modeling is the most widely used method to predict the structure of a protein (target) using the structures of homologues proteins (template) that share moderate to high sequence similarity. The basis of comparative modelling is that proteins that share similar sequences will have similar structures, and that the structure of a protein is better conserved than sequence. Homology models have been used in several successful virtual campaigns [47-49].


      




      

        3.7. Binding Site Detection and Characterization




        In addition to the 3D structure of target proteins, details of protein-ligand interactions are a prerequisite for structure based drug discovery approaches. Often, small molecule binding sites are known from co-crystal structures of the target or homologues proteins. In the absence of a co-crystal structure, experimental mutagenesis data can be used to locate the binding sites. Alternatively, in silico methods can be used to identify potential active sites in a target molecule [50, 51, 150-161]. The computational methods can be based on either geometry or energy. In geometry-based methods the binding sites are identified based on the cavities detected on a protein’s surface. In these methods the molecular surface of a protein is represented as a grid, and a “spherical probe” is rolled over the grid surface to determine a cavity. Methods like POCKET [151], LIGSITE [152] and SURFNET [153] all use this geometry-based algorithmic approach for identification of binding sites. On the other hand, the energy-based approaches search for energetically favored regions for binding by calculating van der Waals, electrostatic, hydrogen-binding, hydrophobic, and solvent interactions of probes with the grid. Methods like QSITEFINDER [50], GRID [154], POCKETPICKER [155] and FLAPSITE [51] use energy based approaches to evaluate the quality of a putative binding site.




        Alternatively, putative binding pockets in a target structure can be identified based on reference ligand binding sites. Methods like Catalytic Site Atlas [157], AFT [158], SURFACE [159], POCKET-SURFER [160], and PATCH-SURFER [161] predict pockets using comparison algorithms to explore all combinations of similar residues between a query protein and database structures in a sequence independent way. These in silico methods have the ability to identify putative binding sites on proteins that are either unknown or entirely new, such as allosteric sites.


      




      

        3.8. Protein – Ligand Docking




        Docking is a process that predicts the structures of complexes between two molecules. Molecular docking methods attempt to predict the bound conformation of a ligand molecule to a receptor or protein target (Fig. 3). The three dimensional (3D) structure of a protein-ligand complex provides detailed information on protein-ligand interactions, and these details contribute significantly to the understanding of the binding of molecules at the molecular level. Therefore guiding the design of a specific lead molecule for the protein target. Thus, the development of different molecular docking methods to predict protein-ligand complexes and their binding affinities is of great interest in drug design.
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Fig. (3))


        Protein – Ligand docking: Representation of protein-ligand docking using HIV-1 protease and nonpeptide cyclic urea inhibitor xk263.



        Most of the earlier docking programs were all based on the lock-and-key principle postulated by Emil Fischer [162], i.e. that structural complementary of the contact regions of the interacting small drug molecules (ligands) and the large biomolecules are important for molecular recognition processes and hence complex formation; and treated both binding partners as rigid entities during docking calculations. However, it is now accepted that both the protein and the ligand molecules are flexible in solution, so the idea of the “lock and key” mode of interaction of a ligand and its protein partner is not an accurate description of most biological complexes. This was subsequently refined by the introduction of the concept of induced fit [162, 163] (Fig. 4) where both partners are flexible and adjust to complement each other. Thus, the ligand and the protein might undergo conformational changes when binding to one another during the formation of the protein-ligand complex. The complex can modify its shape and mold its complementarity to increase favorable contacts and reduce adverse interactions, maximizing the total binding free energy.
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Fig. (4))


        (Left) Lock-and-key and (right) Induced-fit models for protein-ligand interactions.



        The protein-ligand docking experiments are aimed to predict the complex 3D structure formed upon the mutual binding between protein and ligand molecules. For this purpose, two integral components are required: 1) a search optimization method used to predict the bound conformation of a ligand by sampling the conformational space of the ligand with respect to the protein and 2) a mathematical expression (scoring function), which evaluates the proposed poses according to their potential binding strengths. Both aspects are important for obtaining a high quality of results. The generated poses should ensure that most of the conformational space of the ligand is explored, and the scoring function should efficiently evaluate each of the poses and identify active compounds and near-native conformations. In practice, these two fundamental components limit the applicability of the approach for screening large numbers of molecules, since for effective high-throughput docking (HTD), a compromise between speed and accuracy is desired. Over the years several small molecule docking methods have been developed and applied to protein-ligand docking for proteins, RNA, DNA and peptides [52, 54, 164-169]. Several widely used protein-ligand docking programs are summarized in Table 1. Each docking program has its own algorithms for the generation and scoring of the ligand poses, and as a result exhibit individual strengths and weaknesses for specific ligands (Table 1) and/or targets. Although these available methods are far from being perfect, their applicability in HTD has been largely demonstrated and reported [164-169].




        

          Table 1 Docking programs widely used for protein-ligand docking.




          

            

              

                	AutoDock



                	Lamarckian genetic algorithm which incorporates local optimization to create flexible ligand conformation. Includes amino acid side chains for protein flexibility.



                	http://autodock.scripps.edu

              




              

                	AutoDock Vina



                	Iterated local search global optimizer, a quasi-Newton method with multithreading for generation of the ligand conformations. Includes amino acid side chains for protein flexibility.



                	http://vina.scripps.edu

              




              

                	DOCK



                	An algorithm for fast and rigid docking using geometric matching and incremental construction algorithm for ligand conformer generation.



                	http://dock.compbio.ucsf.edu

              




              

                	eHITS



                	The docking method uses incremental construction algorithm for ligands conformation and optimized within protein binding site.



                	http://www.simbiosys.ca/ehits

              




              

                	FRED



                	A program that uses exhaustive search algorithm to generate ligand conformation database and dock into the protein binding site.



                	http://www.eyesopen.com/oedocking

              




              

                	FlexX



                	Incremental construction algorithm for generation of ligands conformation. Ensemble docking is used for protein flexibility.



                	http://www.biosolveit.de/flexx

              




              

                	Glide



                	A fast docking method using exhaustive search for ligand conformations and hierarchical filters to explore and efficiently reduce large data sets. Possibly extends to induced-fit docking using Prime.



                	http://www.schrodinger.com/Glide

              




              

                	GOLD



                	Genetic algorithm based docking method as a part of GOLD suite. Protein flexibility is introduced by side chain flexibility and ensemble of proteins.



                	http://ccdc.cam.ac.uk

              




              

                	ICM-Dock



                	A pseudo Brownian sampling and local minimization method for protein-ligand docking. Extended to protein-peptide and protein-protein docking.



                	http://www.molsoft.com/docking.html

              




              

                	PLANTS



                	A docking algorithm based on stochastic optimization algorithm utilizes swarm intelligence called Ant Colony Optimization.



                	http://tcd.uni-konstanz.de

              




              

                	RosettaLigand



                	A docking method for small molecules into the protein binding site employing Monte Carlo minimization and the protein side chain conformations are optimized simultaneously.



                	https://www.rosettcommons.org/software

              


            

          




        




        

          3.8.1. Molecular Docking Methods




          

            3.8.1.1. Search Methods




            In general, docking methods can be classified into two types, as rigid-body docking or flexible docking methods, depending on the extent to which they consider ligand and protein flexibility during the docking process. The rigid body docking methods usually consider only static geometric/physiochemical complementarity between ligand and target and ignore flexibility. For simplifying the space of possible protein-ligand complexes to a six-dimensional problem (three rotations and three translations) both the protein and the ligand are treated as rigid entities during the generation of poses. The rigidity considered during this so-called “rigid-body” docking method reduces the computational requirements dramatically. However, since the conformations of both the ligand and protein are altered upon the formation of the complex, most rigid body docking tools are unable to accurately reproduce the experimental observed binding pose. With the increase in availability and efficiency of computational resources, the application of flexible docking methods are becoming more common. Therefore, most of the current docking implementations introduce ligand flexibility by default and consider protein flexibility partially. The simulations based on rigid docking are generally preferred when time is critical, i.e., if a large number of compounds are to be docked during an initial HTD. However, flexible docking methods are needed for further refinement and optimization of poses obtained from an initial rigid docking procedure. Some of the most popular search approaches which incorporate ligand flexibility include systematic enumeration of conformations, Monte Carlo search algorithms with Metropolis criterion (MCM), and genetic algorithms.




            Systematic Methods: Systematic algorithms consider ligand flexibility through a comprehensive exploration of a molecule’s degrees of freedom. The algorithms explore all degrees of freedom (rotation and translation) of a ligand and generate all possible conformations of a ligand within the active site of the protein. The methods are largely applied to rigid protein and flexible ligand docking. A stepwise or incremental search can be obtained through docking the ligands by dividing them into fragments, as rigid and flexible units. Then the fragments are incrementally grown by placing one fragment into the binding site, or by placing all fragments appropriately in the binding site and covalently linking all of them. LUDI [170] and FlexX [171] are examples of these types of fragmentation methods. Alternatively, by systematically rotating all possible rotatable bonds of the ligand at a common interval, the possible conformations are generated in an exhaustive search method. However, large conformational spaces often prohibit an exhaustive systematic search. Some geometric and chemical constraints are applied to filter the ligand conformations. Glide [172, 173] and FRED [174] are two examples of this type of sampling methodology. Alternatively, all possible ligand conformations are generated using ensemble methods and the binding energies of these conformations in the binding site are ranked according to a scoring function [175, 176].




            Stochastic Methods: Due to the high conformational dimension of the molecular docking problem, a systematic search of the molecules is impossible. Thus, heuristic approaches provide promising alternatives for the exhaustive exploration of the search space [177]. In these stochastic-based (heuristic) methods, the orientation and conformations of a single or population of ligands are operated by random changes. Based on probabilistic criteria the newly obtained conformation of the ligand will be accepted or rejected. Stochastic search methods are more suitable for higher-dimensional problems, such as flexible protein-ligand docking to find the minimum binding energy conformation of the bound ligand, i.e., global minimum solution. Although these methods find a minimum solution, it is not necessarily the global minimum. Hence, there is a need for running these optimizations many times to improve the probability of identifying the global minimum via statistic measurements. These stochastic methods are widely used in protein-ligand molecular docking [178-181]. MCM simulations have been implemented in flexible docking applications such as in MCDOCK [178], Internal Coordinate Mechanics (ICM) [179], and RosettaLigand [180, 181].




            Genetic Algorithms: In genetic algorithm based methods, molecular flexibility is introduced through recombination of parent conformations to child conformations [182]. In this simulated evolutionary process, the “fittest” or best scoring conformations are stored and utilized for further rounds of recombination. In this way, the best possible set of solutions are transferred by retaining favorable features from one to the next generation. In docking, a set of values are used to describe the ligand pose in the protein are called as state variables. It includes sets of values describing translation, orientation, conformation, number of hydrogen bonds, etc. The state corresponds to the genotype; the resulting structural model of the ligand in the protein corresponds to the phenotype, and binding energy corresponds to the fitness of the individual. To give rise to new individuals, genetic operators of the algorithm may swap large regions of the parent’s genes or randomly change (mutate) the value of certain ligand states. Well-known docking tools that use genetic algorithm approaches to explore ligand flexibility are, Genetic Optimization for Ligand Docking (GOLD) [183] and AutoDock [184].


          




          

            3.8.1.2. Scoring Functions




            Protein-ligand complexes generated by docking applications need to be accessed rapidly and accurately, i.e., approximate the energy of the interaction. The affinity of a protein-ligand complex quantifies the tendency of two molecules to bind together and is expressed as the dissociation constant Kd. The Kd values are determined experimentally in binding studies. From a theoretical perspective, different approaches are presently employed to rank or predict the binding affinity of a protein-ligand complex using a high dimensional function called a scoring function. In virtual screening, the scoring function should be able to select the active molecules from the data set of molecules. A docking simulation may generate hundreds of thousands of protein-ligand complex conformations (poses), and an efficient scoring function is necessary to rank these complexes and differentiate valid binding mode predictions from invalid ones. Furthermore, the scoring function should distinguish the active and inactive molecules from a single chemotype. Subsequently, identified lead molecules may be chemically modified to improve their biological activity. Although much effort has been invested in the development of scoring functions, correctly predicting the binding affinity, or ranking the protein-ligand complexes, varies across the different scoring functions. Scoring functions can be grouped into four types: (1) force-field or molecular mechanics-based scoring functions [185], (2) empirical scoring functions [186-191], (3) knowledge-based scoring functions [192-195], and (4) consensus scoring functions [196, 197].




            Force-Field Based Scoring: The functions belonging to force-field based scoring use classical molecular mechanics for energy calculations. These scoring functions estimate the binding of protein and ligands by including inter- and intra-molecular interactions. These functions utilize parameters derived from experimental data and ab initio quantum mechanical calculations [185]. The estimated binding free energy of protein-ligand complexes are the sum of van der Waals and electrostatic interactions. However, standard force field scoring functions have limitations because they overemphasize polar interactions and do not consider solvation and entropic terms.




            Empirical Scoring Functions: Empirical scoring functions are based on empirical data and are used to determine the binding affinity between the protein and ligand molecules. Various terms, for instance, hydrogen bonds, metal ligation, hydrophobic and hydrophilic contacts, form the basis of these scoring functions. The individual weights of these terms are determined by means of regression analyses. In the different empirical scoring functions, like ChemScore [187, 188], SCORE [189], LigScore [190] and eHITS [191], the number and nature of the considered terms vary. Empirical scoring functions are fast, but their accuracy is completely dependent upon the experimental data set used to train the scoring function. As a consequence, terms from differently fitted scoring functions cannot be easily recombined into a new scoring function.




            Knowledge Based Scoring Functions: The information contained in experimentally determined complex structures are utilized in the Knowledge based scoring functions. The dissociation constant of a protein-ligand complex is related to the binding free energy, and formulated under the assumption that interatomic distances occurring more often than average distances represent favorable contacts. Additionally, interactions that are found to occur with lower frequencies are likely to decrease affinity. The atomic pair interaction potentials are generated based upon probability distributions of interatomic distances. The values are derived from the complexes taken from the Protein Data Bank. The probability distribution is then converted into distance-dependent interaction energies. The approach is simple and designed to reproduce known experimental structures. Several knowledge based potentials have been developed to predict binding affinity, such as PMF [192], DrugScore [193], SmoG [194]. Bleep [195].




            Consensus-Scoring Functions: In the consensus scoring approach, the predicted protein–ligand poses are rescored several times with different scoring functions. The scores from multiple scoring functions can then be combined in different ways to rank solutions [196, 197]. Simple statistics like the linear combination of weighted methods, rank by rank method, or averaged rank among the solutions, is used to determine the final score for each pose. These consensus-scoring functions have been demonstrated to achieve improved accuracies over a single ranking method as described above [198, 199].


          


        




        

          3.8.2. Protein Flexibility in Docking




          Although most of the current docking approaches treat the ligand as flexible, the protein is still treated as a rigid entity or only considered partially flexible. In many real cases, rearrangements in the protein’s binding pocket upon complex formation have been observed [200-204]. It is widely believed that the ligand-bound state is selected from an ensemble of protein conformations by the ligand; and upon binding both the ligand and protein molecules undergo conformational changes to accommodate each other. Which means that the protein flexibility in the calculation dramatically affects the accuracy of the prediction of binding modes and affinities. Therefore proper treatment of flexibility for both the ligand and protein is required during the HTD. However, the size and complexity of proteins makes it difficult to fully account for their mobility during a docking process.




          Generally, conformational flexibility of only a few residues, specifically those within a protein active sites, are explored during docking [205-209]. Either an exhaustive search for each active rotatable bond of the side chain can be performed, or the conformations can be selected on-the-fly by taking into account the physical features of the pocket. Alternatively, side chain flexibility of binding site residues can be incorporated by an ensemble of conformations using a rotamer library. As the flexibility is restricted to side chains, important changes in the protein backbone, such as loop movements, are not considered. Another way to model protein flexibility is to allow deeper penetration of the ligand into the protein surface by lowering the weight of intermolecular clashing atoms. Although the protein is treated as a rigid object, softening the repulsive terms of the Lennard-Jones potential enables the ligand to penetrate into a protein surface to some extent, and to account for localized changes that would occur in a flexible environment. Although this approach is quick, as it doesn’t require additional calculations, the conformational flexibility that can be accounted is minimal.




          Multiple protein docking is another method to account for protein flexibility during docking [210-213]. In this procedure, instead of docking into a single structure of the target protein, the ligands are sequentially docked into an ensemble protein of conformations. A more realistic protein-ligand bound state can be obtained using this approach, as an ensemble of structures represents both the local and global flexibility of a target molecule.


        


      


    




    

      4. MOLECULAR DYNAMICS SIMULATIONS IN DRUG DISCOVERY AND DESIGN




      Computer simulations, especially Molecular Dynamics (MD) simulations, have evolved as powerful methods to study the structure and dynamics of biomolecules. Because of the high time resolution and detailed atomic level representations, MD simulations have played an increasingly important role in biology, biochemistry and biophysics. Although by using MD simulation one can simulate the formation of the most stable protein-ligand complex, the time scale required for such a complex formation would be very long. Recently the DE Shaw research group has shown such a drug binding process using a special purpose super computer [214]. However, such an observation of a direct binding process for multiple protein–ligand complexes would not possible with current simulation capabilities. In addition, the inherent tendency of MD simulation to get trapped in local minima further limits the applicability of MD simulation for routine docking. Several approaches have been proposed to overcome this sampling problem [215-221]. Although all these approaches enhance sampling and are faster than conventional MD simulations to reproduce a possible binding event, they cannot be applied on a large scale.




      MD simulations can however be used at several stages of the drug discovery process: refinement of protein homology models, identification of putative binding sites/cryptic binding sites in the target structure, preparation of the receptor structure before docking, accounting for protein and ligand flexibility during docking, refinement of docked complexes, to evaluate the stability of predicted complex models, and to estimate the binding energies to provide an reliable ranking of the potential ligands. In recent years, MD simulations have played an important role in improving the docking procedures [222, 223]. In the following section we discuss the applications of MD simulations at different stages of the drug discovery process.




      

        4.1. MD Simulations




        MD simulations describe the realistic motions or dynamics of a biomolecular system within timescales ranging from a few picoseconds to microseconds. The motions are based on the physical interactions between particles of the system including explicit solvent molecules and ions in addition to the biomolecules of interest. Obtaining the dynamics of a system is an iterative procedure whereby the initial coordinates of the particles are used to calculate the potential energy from which the forces and motions are then calculated. These are then used to generate new positions for the particles (via solving Newton’s equations of motion) which yield the new energy and forces, and the process is repeated. Thus, the MD simulations are in principle deterministic.




        MD simulations use classical force fields to define the motions of particles. Molecular mechanics is based on a simple model of interactions within a system, with contributions from internal processes such as bond stretching, bond angle and bond rotational motions as well as the interactions between non-bonded parts of the system. A typical force field equation for a macromolecule consisting of N particles contains the following energy contributions:
V(rN) = Etot = Ebond + Eangle + Etorsion + Elj + Eelec



        Where Etot is the total energy of a molecule, Ebond is the bond stretching energy term, Eangle is the angle bending energy term, Etorsion is the torsional energy term, Elj is the Lennard-Jones energy term and Eelec is the electrostatic energy term. The Ebond, Eangle and Etorsion correspond to bonded interactions and are summed over the sets of all bonds, angles and dihedral angles respectively. The Elj and Eelec correspond to the non-bonded interactions such as Lennard-Jones and Columbic potential and sum over all atom pairs (i,j) that are separated by three bonds or more.


      




      

        4.2. Refinement of Homology Models




        In the absence of experimental structures, target protein models are generated using comparative modeling techniques based on the sequence similarity to a known template structure [224]. Although Template based comparative (or homology) modeling methods are by far the most reliable approach for modeling protein structures, the prediction accuracy is limited by the availability of suitable template structures, the accuracy of the target–template sequence alignment, and the modeling of segments with low (or no) similarity to a template [224]. Often homology models of proteins are much less accurate for a region that has no similarity to a template, and flexible regions such as loops that connect conserved structural elements and contribute to enzymatic activity or ligand binding [225]. Therefore atomic level refinement of homology models is necessary for better use of these models in the drug discovery process.




        MD can serve as tool for conformational searches of a flexible loop as well for atomic refinement of protein models [226-231]. MD simulations in both implicit and explicit solvents have already been used to refine homology modelled proteins to achieve reasonable refinement, with refined models in closer agreement with experiment than the start structures [226-231]. At room temperature, MD simulations can be kinetically trapped and explore only the energy basins near the starting structures. To overcome this barrier crossing problem, methods such as low barrier MD simulations [232, 233], adjustable – barrier dihedral potentials [234, 235] and Hamiltonian –replica exchange [236, 237] methods have been proposed with promising results.


      




      

        4.3. Combining Docking and MD Simulations




        Molecular docking is a procedure of the prediction of ligand poses (conformation and orientation) within a receptor binding site. It is known that both the ligand and receptor molecule are flexible in solution, and hence, might undergo conformational changes the formation of the protein-ligand complex. However most of the docking programs still consider only the ligand molecule as flexible and treat the receptor molecule as either rigid or partially flexible. The size and complexity of proteins makes it difficult to fully account for their mobility during a docking process. In Structure based drug discovery approach, molecule docking techniques are used to virtually screen large libraries of compounds to quickly identify a candidate molecule. On the other hand, MD simulations can account for flexibility of both ligand and protein molecules, allowing for induced fit and further inclusion of explicit water molecules. This provides a more realistic description of protein-ligand environment. In addition, drug binding free energies can be obtained through MD simulations. However this is a very time consuming process and therefore can’t be applied on a large scale. As both these methods have pros and cons on their own, the combination of these two techniques, were fast and inexpensive docking is used for the identification of putative hits by screening large libraries, is combined with more accurate, but expensive, MD simulations to evaluate the potential binders, is a logical approach to improve the drug discovery process.




        

          4.3.1. Receptor Conformation (Preparation of Receptor Structure)




          The three dimensional (3D) structure of both the ligand and the protein is a prerequisite for docking. While experimental methods have been a major source for determining protein structures not all proteins targeted for drug design have an experimentally determined structure. In the absence of experimental structures, computational techniques can be used to predict the 3D structure of a protein based on the known structure of closely related protein. However, the quality of homology models is limited by several factors, and obtaining a model that is readily available for docking calculations is not yet possible. Even if the experimental structure is known, the single static structure represents an average structure of the protein target. Moreover, the lowest energy conformation of ligand and protein obtained in its unbound form may not correspond to that of the bound form, and additionally the bound conformation of receptor may differ with the bound ligand. As the success of the Structure based virtual screening campaign is highly dependent on the quality of small molecule databases as well the 3D structure of the receptor molecule, it is necessary to have high quality receptor structures, and several studies have highlighted the importance of the receptor conformation for docking analysis [202-204]. Therefore, it is of great importance to carefully prepare the structure of the protein target for the docking process. Some problems associated with inadequate conformations of the protein can be overcome by allowing conformational changes during the docking process. However as mentioned earlier, the size and complexity of proteins makes it difficult to fully account for their mobility during a docking process. An alternative is to use multiple structures (ensembles) of a target protein that could provide a better representation of the protein receptor. Docking against protein ensembles increases the chances of finding a receptor in the right conformational state to accommodate a particular ligand and lead to qualitatively different results, and opens new opportunities for the discovery of novel potential drugs [238].


        




        

          4.3.2. Ensemble Generation




          Multiple structures of a protein molecule can either be obtained from experimental methods or generated using computational tools. MD simulations provide a practical alternative to explore the conformational space of the protein receptor, in many cases where multiple experimental conformations are not available. MD simulations have been shown to reproduce the general protein structural and dynamic changes occurring on short timescale periods [239-241]. Due to the limited conformational sampling of conventional MD simulations, a single MD trajectory may not sufficiently represent the conformational diversity of the simulated protein molecule. Several methods, such as multiple-trajectory methods, replica-exchange MD methods and modified MD simulations, have been shown to improve the conformational sampling of the system and can be used to represent multiple conformations that exist in equilibrium [215-218]. In addition, MD simulations of both the apo and ligand bound forms of the protein may provide a more suitable variety of conformations for the docking protocol, as the dynamical behavior of the free and bound forms of the protein might be very different. Once an ensemble of adequate structures has been obtained, two main approaches can be used.




          Ensemble Docking Approach: In the ensemble approach, accounting for protein mobility involves docking the ligand to every single conformation. Ensemble docking constitutes the most comprehensive, although expensive, approach [236-238]. While this strategy is not a realistic option for the virtual screening of a large library, it is a valid approach for lead optimization and refinement. This ensemble approach has proven to be effective in finding the correct docking pose within a flexible receptor, as well for discovering alternate binding modes which otherwise couldn't be found using a single static structure.




          Combined Protein Grid Docking Approach: In the combined protein grid approach, several structures of the protein receptors are combined into a single representation of the ensemble to account for large conformational changes that may be critical for the binding process [212, 242]. The averaging can be over atomic coordinates, to generate a final average structure, or over the grid representation of all receptor conformations, to produce an average docking grid. Combined grid docking methods have provided better results than grids from single structures [212, 242].


        




        

          4.3.3. Refinement of Docked Complexes




          As with most of the current protein–ligand docking programs, the flexibility of receptor molecules as well as the solvent molecules is ignored during the docking process due to time considerations. Therefore, the initial docked models need refinement with more accurate methods that take into account all these effects and provide a more realistic protein–ligand complex. Molecular dynamics simulations present an attractive approach for structural refinement of the docked protein–ligand complexes. MD simulations incorporate flexibility for both the ligand and protein receptor, facilitating the relaxation of the complete system, improving interactions and enhancing complementarity between them, and thus accounting for induced fit effects. In addition, explicit incorporation of solvent molecules and their interactions in the simulations of the docked systems is very important for understanding the role of water and its effect on the stability of the ligand–protein complexes. Furthermore, the time-dependent evolution of the system during the simulation provides a dynamic picture of the complex, indicating their stability and reliability, and helps to discriminate the correctly docked conformations from the unstable ones. Incorrectly docked structures are likely to produce unstable trajectories, leading to the disruption of the complex, while realistic complexes will likely show stable behavior. Several literature examples have highlighted the importance and applications of MD simulations to optimize docked structures, analyze the stability of different complexes, and account for solvent effects in terms of structure optimization [243-253].


        


      




      

        4.4. Free Energy Calculations




        Accurate prediction of binding affinities for ligands, as well as their ranking with respect to each other, represents a major challenge in computer-aided drug design, in particular in lead identification/optimization processes. Due to this, a large number of computational methods have been developed with various levels of efficiency and accuracy, ranging from highly accurate free energy calculations (Free Energy Perturbation (FEP), Thermodynamic Integration (TI), to highly efficient docking-based scoring functions [254-256]. However, docking-based scoring functions often poorly rank the ligands according to experimental activity, as the performance of these scoring functions is limited by several factors. The majority of these scoring functions have been designed for virtual screening purposes, meaning that these scoring functions are generally capable of distinguishing binders (active) from non-binders (inactive), but are unable to rank the binders. On the other hand, methods such as FEP and TI are very time consuming as they require significant amounts of sampling (from molecular dynamics simulations), and this prevents their routine use in structure-based ligand design [257-259]. However, with advancements in sampling algorithm, force fields, and fast computers, particularly GPUs, protein-ligand binding affinity calculations using free energy perturbation type of techniques are increasingly being used in many drug discovery projects [260, 261]. Alternatively, several end point methods such as LIE (Linear Interaction Energy) [262-264] and MM-PBSA (Molecular Mechanics Poisson Boltzmann Solvent Accessibility), MM-GBSA (Molecular Mechanics Generalized Born Solvent Accessibility) [265, 266] provide relatively good energy values at a moderate cost.




        Linear Interaction Energy Method: The LIE method is a semi-empirical MD approach and was developed by Åqvist et al. [262-264] for calculation of binding free energies of protein-ligand complexes. The basis of this methods is that the free energy of binding shows a linear dependence on the polar and nonpolar changes in the ligand and its surroundings. With the LIE method, interaction energies of the ligand, when free in solution and when bound to the protein, are calculated from molecular dynamics simulations. The energy is divided into electrostatic and van der Waals components.




        Molecular Mechanics/Poisson–Boltzmann Surface Area Method: The MM/PBSA method was introduced by Srinivasan et al. [266]. It combines molecular mechanics (MM) and continuum solvent approaches to estimate binding energies. The free energy of binding is calculated by taking the change in molecular mechanical energy, solvation free energy and the conformational entropy upon binding. An MD simulation of a protein–ligand complex in explicit solvent provides a thermally averaged ensemble of structures. Several snapshots are then processed, removing all water and counterion molecules, and used to calculate the total binding free energy of the system. MM free energy is the average MM energy in the gas phase and is calculated for each desolvated snapshot with the same MM potential used during the simulation. The solvation free energy is then calculated in two parts: the electrostatic component using a Poisson–Boltzmann approach or generalized born approach and a non-polar component using the solvent-accessible surface area (SASA) model. The entropy is the most difficult term to evaluate and restricted to conformational entropy. It can be estimated by quasi-harmonic analysis of the trajectory or normal mode analysis. The entropy change is often omitted during the calculations of relative binding energies of a series of structurally similar compounds, as the assumption is that the conformational changes associated will be similar. Application of the MM-PBSA approach has produced reasonable binding energies for several systems, at a moderate computational cost [265, 267, 268].
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Fig. (5))


        The relationship between in silico, in vitro and in vivo screening model of ADME properties in the lead optimization process. In vitro models provide high quality data for in silico model building and subsequently the model is refined and validated with in vitro assay (adopted from Selick et al. Pharmacol Rev 2014, 66, 334-395).

      


    




    

      5. ASSESSMENT OF ABSORPTION DISTRIBUTION METABOLISM EXCRETION AND TOXICITY PROPERTIES




      Accelerating drug discovery and development is debatably the major challenge in pharmaceutical and biotechnology companies worldwide. Once a lead that is significantly effective and not too toxic is identified, the compound will proceed to pre-clinical studies, where the compound is screened for ADMET (absorption, distribution, metabolism, excretion and toxicity) properties. Although it is a common practice to filter the small molecule compound database with ADMET properties early on in the discovery process, considerable attention is given for an identified lead molecule to improve its in vivo DMPK/ADMET properties without losing its biological activity. In order to speed up the process, in addition to in vitro and in vivo methods, various computational techniques (in silico) have been used. Computational methods include both structure and ligand based; in the structure-based methods (e.g. docking or free-energy calculations) provide detailed information of interactions of a ligand (candidate) with a protein that plays a crucial role in determining DMPK/ADMET profile, and the ligand-based methods are being used to establish the activity-property relationships (QSAR/ QSPR) which will assist the lead optimization process. The relationship between in silico, in vitro and in vivo screening models in lead optimization is shown in Fig. (5).
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