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Preface



This book will introduce you to the various techniques currently available for parallel and concurrent programming with the Python language. There are many libraries and techniques that allow you to take advantage of different architectures available to make the calculations more efficient and performing (GPU, cores, resources distributed on the network, etc.). This book will try to gradually introduce the readers to the concepts behind these techniques with example codes.

Chapter 1 will start with an introduction to parallelism in Python and then will explain how the operating system handles multiple processes and threads. Its purpose will be to introduce you to the concept of parallel programming by talking about all the fundamental concepts that are involved, and which are necessary to fully understand the features and uses. Once these general concepts have been introduced, you will see the peculiarities of Python in this area, especially with threads, talking about the GIL (Global Interpreter Lock) and the problems it introduces. We will also learn about standard Python library modules such as threading and multiprocessing.

Chapter 2 will cover parallel programming in Python that uses Threads as concurrent elements. Specifically, the chapter will deal with the threading module that allows us to easily implement threads and provide a whole series of useful tools for their synchronization.

Chapter 3 will cover parallel programming in Python that uses Processes. There are two main approaches by which processes can be implemented in parallel programming: the multiprocessing module of the standard library and the mpi4py library which extends the MPI protocol also for the Python language. Both libraries will be treated in detail, with a series of examples that will show how they work and their main characteristics.

Chapter 4 will cover aspects of asynchronous programming in Python including the AsyncIO library as an example library.

Chapter 5 will cover the distributed systems as they fall within the scope of parallel and concurrent programming and can prove to be a valid solution. The Celery library is the reference point in Python for the realization of distributed systems. With a series of examples, we will see how to use this library to perform multiple concurrent operations, called tasks, and how these are distributed and executed in parallel on a Celery-based system. In addition, we will subsequently move on to other alternative solutions, starting from a very similar one, such as Dramatiq to a simpler one, but which conceptually differs from these, such as SCOOP.

Chapter 6 will cover GPU programming since these processors are designed to process vector data extremely quickly and efficiently for image rendering, 3D engines and manipulation of polygonal primitives. Python offers good solutions with various libraries such as Numba (CUDA) and PyOpenCL.

Chapter 7 will introduce you to the world of parallel computing applications, showing how this approach is now present in many scientific and professional disciplines.

Chapter 8 will cover parallel computing specifically with regard to Data Science. Many of the libraries commonly used in Data Science such as Numpy, Pandas and Scikit-learn can be extended to parallel computing thanks to the Dask library. This library provides objects such as nparrays, dataframes and machine learning api designed to work in parallel. There are many other scientific libraries that can be integrated with Dask.

Chapter 9 will cover another very interesting field of application, which in part extends to what was said in Data Science: Artificial Intelligence. Machine Learning and Deep Learning are subsets of Artificial Intelligence and they provide us with a good tool to explore data. Lately, these techniques are expanding enormously by exploiting parallel and distributed computing.

Chapter 10 will show you how developments and trends of this way of programming are fitting perfectly with the most innovative new technologies.
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CHAPTER 1


Introduction to Parallel Programming



In this first chapter of the book, we will introduce the concept of parallel programming by talking about all the fundamental concepts that are involved, and which are necessary to fully understand the features and uses. We will first talk about the hardware components that have allowed execution in parallel on new computers, such as CPUs and cores, and then about the entities of the operating system that are the real actuators of parallelism: processes and threads. Subsequently, the programming models of parallelism will be illustrated in detail, introducing fundamental concepts such as concurrency, synchronicity, and asynchronicity.

Once these general concepts have been introduced, we will see the peculiarities of Python in this area, especially with threads, talking about the Global Interpreter Lock (GIL) and the problems it introduces. We will mention standard Python library modules such as threading and multiprocessing which we will cover in more depth in the next chapters. Finally, we will close the chapter by talking about the evaluation methods of a parallel program, such as speedup and scaling, and discussing the problems that can be introduced by programming in parallel (race condition, deadlock, and so on).

By the end of this chapter, you will have understood all the fundamental concepts and terminology behind parallel programming. You will have built a general scheme in your mind in which all the protagonists of the parallel execution will be present and how they act to achieve it. Then, you will be ready to tackle the practical part of programming covered in the following chapters.


Structure


In this chapter, we will discuss the following topics:


	CPU and cores

	Processes and threads

	Parallel and concurrent programming

	GIL and threads with Python

	Speedup and Scaling



Parallel programming

If you are reading this book, it is certainly because you have already understood the need to increase the potential of your code, discovering the limits of traditional models that follow, for historical reasons (limit of old computers), a serial approach.

The advent of new hardware technologies has given us the opportunity to be able to run multiple programs simultaneously on our computers. In fact, our computers, even the simplest ones, have a multi-core system that allows programs to run in parallel. Why not take advantage of this architecture then?

Too often you have found yourself developing a Python program to perform a series of operations. Often in the scientific field, it is necessary to implement a series of algorithms to carry out very laborious calculations. But at the end of your work, by running the program on your computer, you will find with disappointment that it is not as fast as you hoped, and the execution times become too long as the size of the problem you are processing grows. But it’s not just a speed issue. More and more frequently, today, we have to deal with ever larger amounts of data, and with the calculations related to it, programs need ever greater memory resources, which, despite their power, our computers do not manage to deal with.

Parallel programming allows you to execute parts of the code of one of our programs simultaneously, significantly increasing performance. Programming in parallel, therefore, means reducing the execution time of a program, using resources more efficiently, and being able to perform more complex operations that previously would have been prohibitive.


Technological evolution of computers and parallelism


Today, for many programmers, parallel programming is still an unfamiliar thing, since it is still a fairly recent technique. In fact, only a few years ago, all computers available to developers were equipped with a single Arithmetic Logic Unit (ALU) and serial programming was the only conceivable. The program instructions were executed one at a time in a sequential manner (see Figure 1.1):
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Figure 1.1: Serial execution

Many of you will in fact remember the characteristics of the computer generally indicated with the frequency of the processor in Hz, which indicates the instructions that can be executed per second. The power of a computer was primarily measured by its computing frequency. The higher this value was, the faster the programs ran.

The concept of parallelism is a concept that was gradually created with the evolution of the hardware present inside computers. Until 1980s, computers were very limited: they ran one program at a time, instruction after instruction, in a strictly sequential manner. It is clear that in such a technological environment, the concept of parallelism could not even be imagined in the slightest.

With the advent of the Intel 80386 processor, the possibility was introduced for the computer to interrupt the execution of one program in order to work on another. Consequently, concepts such as pre-emptive programming and time-slicing were born. This technological advance introduced a pseudo-parallelism effect since the user saw multiple programs working at the same time. With the subsequent Intel 80486 processor, the situation was further improved by introducing a pipeline system based on the subdivision of programs into subtasks. These were performed independently, alternating between the various programs. Furthermore, the internal architecture made it possible, for the first time, to assemble several different instructions (even from different programs) and execute them altogether at the same time (but not simultaneously). And this is where the real development of concurrent programming took place. The instruction portions of the different subtasks are completed in order to be executed as soon as possible (see Figure 1.2):
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Figure 1.2: Concurrent execution

The situation went on for over a decade, seeing the release of increasingly powerful processor models, able to work at higher frequencies than the previous ones. But this situation soon went into crisis due to a series of problems and physical limitations. Increasing the frequency of execution means at the same time increasing the generation of heat and the consequent energy consumption. It was clear that the frequency boost would soon reach its limits.

And that’s how processors took a leap of innovation, with the introduction of cores in their system. These, also known as logical processors, are allowed to simulate the presence of multiple processors within a single CPU, resulting in multi-core CPUs. In practice, one could have a multiprocessor computer capable of executing instructions from different programs simultaneously, in parallel. And it is therefore in the early 2000s that parallel programming was developed, giving the possibility for developers to be able to simultaneously execute different parts of the same program.

CPU, cores, threads, and processes

To understand the concepts that we will cover in this book, it is essential to first know what threads and processes are, and how they are closely related to the execution modes by the CPU and cores.

These are not abstract concepts, but real entities existing in our operating system. So to get familiar with them we can go and take a look directly at our operating system. For example, if you are working on Windows, open the Task Manager and click on the Performance tab.

You will get a window very similar to the one shown in Figure 1.3 where it is possible to monitor in real-time the consumption of the various resources, such as the CPU, memory, and Wi-Fi network:
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Figure 1.3: Task manager in Windows

In addition, a variety of information such as the number of processes and currently running threads are also shown. On the right, are listed some characteristics of the system we are working on such as the number of cores.

If, on the other hand, you work on Linux systems such as Ubuntu, you can have a corresponding application by writing from the terminal:

$ top

A screen very similar to the one shown in Figure 1.4 will appear:
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Figure 1.4: top on Ubuntu terminal

As we can see, at the top all the resources in use are shown with their values which are updated in a current way. In the lower part, there is a list of all active processes in the operating system. As you can see, each process is identified by a unique number, the process identification number (PID).

Since Linux systems are much more flexible and powerful, especially thanks to the numerous shell commands, we can also monitor all the threads related to every single command. For this purpose, we will use a more specific command to monitor processes: pid.

$ pid -T <PID>

The -T option is used to indicate that the threads that are realistic to the process will be shown. The pid of the process that you want to monitor in detail is then passed to the pid command. In my case, choosing for example the process with pid 2176, I will get the result as shown in Figure 1.5, in which all the threads of the preceding one are shown with their identification number, SPID:
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Figure 1.5: pid command results on Ubuntu terminal

The Central Processing Unit (CPU) is the real brain of our computer and basically, it is the place where our code is processed. The CPU is characterized by cycles, that is, the time units used by the CPU to perform an operation on the processor. Often we indicate the power of a CPU considering the frequency of cycles per second (see the 2.87GHz speed value in Figure 1.3).

The CPU can have one (single-core CPU) or multiple cores (multi-core CPU) inside. Cores are data execution units within the CPU. Each core is capable of running multiple processes. A process is essentially a program that runs on the machine and to which a section of memory is reserved. Furthermore, each process can in turn start other processes (sub-process), or run one (MainThread), or more threads within it. A diagram of all this is shown in Figure 1.6:
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Figure 1.6: CPU, core, process, and threads

Threads, in turn, can be considered sub processes that run concurrently within a single processor. Like processes, threads also have a series of similar mechanisms that manage their synchronization, data exchange, and state transitions during their execution (ready, running, and blocked).

This is the general framework that we must have in mind to better understand how the processes and threads within our machines operate and consequently model the programming in parallel in the best possible way.

Concurrent and parallel programming

There is often confusion between concurrency and parallelism and it is not uncommon for the two terms to be used interchangeably, but this is incorrect. The two concepts, although closely related, are different in the context of parallel programming, and it is very important to understand the differences.

Let’s start with the things the two concepts have in common. Both concurrency and parallelism occur when we have a program that must perform multiple tasks at the same time. But this is precisely the meaning of concurrency.

Concurrency means managing (and not executing) multiple tasks at the same time, but they won’t necessarily run simultaneously.

So a program that will have to perform several tasks at the same time, can do it even by processing only one task at a time. As soon as it has finished executing the instructions relating to a task or a portion of it (subtask), the program will move on to the next task, and so on. One task after another, alternating between them, will be concluded and the program will complete its task. If it helps, you can think of tasks as competing with each other for execution.

So in this case, even if our computer has a single core CPU, a competing program can easily run (see Figure 1.7):
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Figure 1.7: Concurrency in a single core CPU

From the outside, the user will see several tasks being performed simultaneously, but internally, only one task at a time will be executed in the CPU.

But concurrent programming also extends to multi-core CPUs or multi-processor computers. In this case, you could have a competition case as follows:


[image: ]


Figure 1.8: Concurrency in a multi-core CPU

As we can see in Figure 1.8, things get more complicated. Since there are multiple processing units (multiple cores), subtasks can be assigned to each and executed simultaneously. We, therefore, have the phenomenon of parallelism.

Parallelism means performing multiple tasks at the same time simultaneously.

Hence parallelism is a special case of concurrent programming.

Parallelism occurs when a program assigns each task to a core CPU so that each of them can be processed simultaneously, that is, in parallel, as shown in Figure 1.9:
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Figure 1.9: Parallelism in a multi-core CPU

Hence, parallelism requires hardware with multiple process units, essentially a multicore CPU. In a single-core CPU, concurrency can be mimicked but not parallelism.

Threads and processes in Python for concurrent and parallel models

Having now understood the difference between concurrent programming and parallel programming, let’s take it a step further. In many programming languages, it is common practice to associate threads with concurrency and processes with parallelism. In fact, these two entities of the operating system will incorporate the two different functionalities of concurrency and parallelism.

As far as Python is concerned, however, it is good to divide these cases into two distinct programming models. In fact, threads in Python don’t behave as perfectly as threads in the operating system. Threads in Python cannot run concurrently, and therefore cannot operate in parallel. Working with threads in Python is like working with a single-core CPU, although this is not the case.

Python thread problem: the GIL

The fact that threads in Python, unlike other programming languages, cannot be executable simultaneously on two different cores, is closely linked to the Python interpreter itself. In fact, the interpreter on which Python code has always been running was implemented in CPython, and during its implementation, it was realized that it was not fully thread-safe. That is, the more threads tried to access a certain object in common (the memory is shared between the threads), it often ran into a state of inconsistency, due to the phenomenon of the race condition. To avoid this huge problem, the Global Interpreter Lock (GIL) has been included within the interpreter. The Python designers therefore made the choice that within a process, only one thread can be executed at a time, eliminating the parallelism of this type of entity (no multithreading).

GIL is only acquired by one thread at a time while all other threads are waiting. As soon as the thread has finished its task, the GIL is released which is thus acquired by the next thread. There is, therefore, a real concurrent execution. Concurrent programs are generally less costly in terms of resources than parallel programs, as creating new processes is much more expensive than creating threads. It should be borne in mind, however, that the operations of acquisition and release of the lock affect slowing down the execution of the entire program.

But things are not that bad. In fact, later we will see how to adapt this peculiarity of the Python language threads in parallel programming models. Furthermore, many external libraries do not rely on the GIL, since they have been implemented with other languages such as C and Fortran, and therefore will take advantage of internal mechanisms that use multithreading. One of these libraries is precisely NumPy, a fundamental library for numerical computation in Python.

Elimination of GIL to achieve multithreading

As for the possibility of removing the GIL from the Python interpreter, it has always been a hot topic. However, this possibility has become increasingly difficult with time since it would be too difficult to remove the GIL without excluding many official, and third-party packages, and modules used in Python.

Another possibility could be to use other Python implementations other than CPython. The most widespread of these, PyPy, famous for its greater performance, has unfortunately also implemented a GIL very similar to that of CPython. Instead, Jython, a version of Python implemented in Java and IronPython, implemented with .NET, do not have GILs in them, and can make use of multithreading, and therefore take advantage of the presence of multiple cores or processors.


Threads versus processes in Python


Summarizing then, threads and processes are the tools that Python provides us for the implementation of programs in concurrent and parallel form, respectively.

In Table 1.1, you can see some characteristics of the two entities compared with each other and which must be taken into account during programming.







	
Threads


	
Processes





	
Memory sharing (of the process)


	
No memory sharing





	
Light consumption of resources


	
They require a lot of resources





	
Quick creation with little load


	
Slower and heavier creation





	
Synchronization mechanisms required


	
No synchronization needed






Table 1.1: Threads versus processes in Python

Concurrency and parallelism in Python

Therefore, for concurrent programming in Python, taking into account the behavior of the threads in this language, we can correct the definition of concurrency previously given, eliminating the possibility of parallelism.

Concurrency means managing multiple tasks at the same time, but they won’t necessarily run simultaneously.

So we can imagine concurrent programming in Python with threads that each perform their tasks independently and in competition with each other for execution. They will alternate with each other in the general flow of execution until they are completed, as shown in Figure 1.10:
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Figure 1.10: Concurrency in Python

While for parallel programming in Python, processes are perfect for executing tasks simultaneously, that is, in parallel. Each of them will be assigned a task and all together at the same time will be able to execute the instructions inside them, until the completion of the program, as shown in Figure 1.11:
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Figure 1.11: Parallelism in Python

It is therefore clear that while for other programming languages the terms concurrent and parallel could lead to confusion, in Python, concurrency and parallelism not sharing the same common aspects of simultaneity, are two completely different concepts.

The light concurrency with greenlets

As we have just seen, the competition finds in threads a valid tool to implement its programming models.

But in addition to threads, Python offers another possible alternative: greenlets. From the point of view of competition, using greenlets or threads is equivalent, because in Python the threads are never executed in parallel and therefore with this programming language both work perfectly in concurrent programming. But the creation and management of greenlets are much less expensive in resources than threads. This is why their use in programming is defined as light concurrency. For this reason, greenlets are often used when you need to manage a large number of simple I / O functions, such as what happens in web servers. We will see how to create and manage greenlets with a few simple examples later in the book.

Parallel programming with Python

Understanding the role that threads and processes can play in Python. We can delve into parallel programming closely related to the Python language.

In this language, therefore, parallel programming is expressed exclusively on processes. A program is then divided into several parallelizable subtasks which are each assigned to a different process. Within each of them, we can therefore choose whether to perform the various steps synchronously or asynchronously.


Synchronous and asynchronous programming


In this book, and in much of the online documentation regarding parallel programming, the terms synchronous or asynchronous are often referred to, sometimes also referred to as sync and async. In all these cases we refer to two different programming models.

Unconsciously, when we implement a program in parallel or in competition between multiple processes or threads, it comes naturally to us to structure it synchronously. This is because generally, we all come from a serial programming background and tend to think this way. That is, in the presence of two or more processes (but they could be threads as well as simple functions within a program), a process (PROCESS 1 in Figure 1.12) goes on with its execution, up to a point where it will perform an external call, passing the execution to another process to obtain a service, a calculation or any other operation. The other process (PROCESS 2 in Fig.1.12) will be performed to complete its task and then will return the outcome of the service to the initial process that has been pending in the meantime. Once the necessary result has been obtained, the initial process will resume its execution:
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Figure 1.12: Synchronous programming

But in reality, asynchronous programming models are actually much more efficient than synchronous ones, both for more efficient use of computing resources and for the amount of time spent running the program. Let’s look at the previous case together but this time seen asynchronously, as shown in Figure 1.13:
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Figure 1.13: Asynchronous programming

As in the synchronous case, the initial process (PROCESS 1 in Figure 1.13) will continue its execution until the call that will start a second process (PROCESS 2 in Figure.1.13). But this time, the initial trial will not interrupt its execution to wait for the completion of the second trial. It will continue going forward with its execution, regardless of when and how it will obtain the outcome of the second trial.

As we can guess, asynchronous programming allows us to take advantage in many cases in which we would waste a lot of time waiting for operations that require an external response or a long execution time. It is therefore important to know both models well if you want to make the most of all the potential of parallel programming.

As for its practical implementation, although not yet completely intuitive for us, it is perfectly possible. All programming languages have internal mechanisms that allow them to be implemented. We will cover asynchronous programming in depth in Chapter 6, Maximizing Performance with GPU Programming using CUDA.

Map and reduce

A scheme widely used in parallel programming is that of the Map-Reduce which is mainly based on two phases:


	Mapping

	Reducing



The first phase, that of mapping, is based on the subdivision of the tasks to be carried out by a program into several parts (tasks) and then assigning them to different processes that will execute them simultaneously, that is, in parallel. Often the execution of each process leads to obtaining a result. So there will be a subsequent phase to the one strictly linked to parallel execution, in which all the results must be recombined together, that is, the reducing phase. Figure 1.14 shows a diagram that can help you better understand what was just said:
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Figure 1.14: Map and reduce pattern in parallel programming


CPU-bound and I/O-bound operations


During the design phase of a parallel program, however, attention must be paid to the individual tasks, evaluating whether among them there may be some that require too long an execution time. If this were the case, there would be a high-performance degradation, as all other processes would be waiting to complete the mapping phase. In fact, to pass to the reducing phase, all the results obtained from each process will be required. Let us consider a case like the one represented in Figure 1.15 where one of the parallel processes requires too much execution time compared to the others. In this case, we will have all the other processes waiting to continue the execution and to pass the results to the reducing phase. In this case, parallel programming is no longer performing:
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Figure 1.15: Parallel programming with low performance

So in these cases, we have to consider the various operations that are performed in every single process (task). These tasks could include internal operations such as reading a file or calling an external web service. In this case, the process will have to wait for a response from an external device and therefore the execution times can be unpredictable. This type of operation is called I/O bound. While operations that only involve internal CPU calculations are called CPU bound.

In parallel programming, when dealing with subtasks or CPU-bound operations, then the use of multiple processes that execute the instructions in parallel makes the program more efficient. But in the case of I/O bounds, we have to work differently.

In this case, the most suitable programming is concurrent programming, and this is where threads come into play. Within the process, we can create multiple threads. One will continue to take care of the CPU-bound operation while the others will take care of the various I/O bound operations. When one of these threads containing bound I/O operations waits for data or a response from an external source, the other threads will continue to perform their operations.

In this case, by running the threads concurrently we save execution time:
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Figure 1.16: Concurrency by threads for I/O bound operations

As you can see in Figure 1.16, the creation of an additional thread, in addition to the MainThread (this is always present in a process), allows you to manage (asynchronously or synchronously) the I/O bound operation separately, allowing the MainThread to continue in the meantime with data processing.

Additional precautions in parallel programming

When dealing with concurrent programming, particular attention must still be paid when using threads, in particular with regard to the management of shared data. As shown in Figure 1.17, in fact, the threads within a process have both their own individual memory (not accessible to other threads) and a shared memory space, where there are objects accessible to all threads:
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Figure 1.17: Process with its threads

Despite the presence of GIL in the Python interpreter working with multiple threads, it will still be necessary to lock the global objects present in the shared memory space if you do not want to fall into data inconsistency problems. But how is this possible if the GIL guarantees that only one thread is executed at a time within a process?

The fact is that the interpreter will only take care of the internal objects of Python, but as regards the objects we define and create during the execution of our program, there will be no control or lock, managed independently. It will be up to us to manage the locking of the global objects we create, to ensure that we do not get unexpected results.

In this regard, as we will see shortly, there are modules of the standard Python library that, in addition to implementing processes and in particular threads, provide a whole series of tools that allow us to manage also the locking of global objects to which we refer here we report.

Threading and multiprocessing modules

Moving on to the actual implementation, we can take advantage of both concurrent and parallel models with threads and processes, using two modules that the standard library makes available to us: threading and multiprocessing. These modules provide a set of functions in Python that interface with the operating system to create, execute, and manage processes, and threads with Python.

Note: If you notice, there is no specific module for threads it is not called multithreading, like that of processes, since Python is not actually multithreaded, but can only execute one thread at a time.

The threading module offers an abstraction layer to the _thread module which is a low-level module that provides primitives for working with multiple threads. In addition, it also provides a whole host of tools that help the programmer during the difficult task of managing concurrent systems such as threads: lock, condition, and semaphores. The functionality of this module along with these tools will be covered in depth in the next Chapter 2, Building Multithreaded Programs with a whole series of example codes that will help you understand how and when to use them.

The multiprocessing module, on the other hand, offers a valid API for the implementation of process-based parallelism. In addition to the creation and management of processes, this module also offers a large number of features that help manage the coexistence of multiple processes within a program. For example, Queue and Pipe are objects that allow the exchange of information (objects) between the various processes, or the pools that simplify the management of multiple processes at the same time. Also, this module and its functionalities will be extensively discussed in the Chapter 3, Working with Multiprocessing and mpi4py Library.

Memory organization and communication

So far we have discussed parallel programming, exclusively with regard to execution when approaching hardware systems that allow parallel execution is analyzing how the memory is organized.

In fact, even if we have a very powerful and fast CPU, with the presence of numerous processing units such as cores, the performance of a program will also greatly depend on how the memory organization is.

All operations involving data transfer into memory are generally not as fast as those in the CPU, and during these operations, the memory remains occupied until the end of the memory cycle, and no other component can use it.

A concept closely related to memory organization is the communication between the various components involved within the program. The forms of communication will be strictly related to the particular memory organization, and therefore the perfect functioning of a parallel program will have to better manage the passage of information between the entities in execution such as processes and threads, which takes place thanks to the memory. Depending on the memory organization, different mechanisms must be used to synchronize the passage of information between the various program objects in order to avoid the risk of data inconsistency or other problems such as deadlocks and erroneous behavior.

So it is clear that memory plays a very important role in the performance of parallel programming and it is, therefore, important to evaluate its behavior during our projects.

Memory organization within a process

For Python, there are essentially three different memory organization models possible within a program:


	Embarrassingly parallel

	Shared memory

	Message passing



These models are explained as follows:


	The first model, embarrassingly parallel, refers to the particular case in which the program entities, whether threads or processes, do not require any exchange of information and are able to carry their execution to the end, where the single results will be combined together. In fact, there are particular algorithms that respond to this behavior and are called precisely embarrassingly parallel.

	
Shared memory is the model of memory organization typical of threads in Python. The threads within a process can communicate with each other through a shared memory made available to the process itself. There are several possible communication mechanisms that respond to this model, some valid and others not, and we will see some of them throughout the book.

	
Message passing, on the other hand, is the memory organization model of processes. These in fact have no shared memory and therefore their only way of communicating is through messages. There are several solutions to this, often offered in the form of ready-made packages called Message Passing Interface (MPI). The standard Python library itself offers an MPI module totally dedicated to this task.



Memory organization between multiple processors

So far we’ve been thinking about a single multi-core CPU machine. But the reality of parallel programming naturally extends to the use of multiple CPUs. These may be present on a single machine or on different machines connected in some way to each other.

It is clear that here too the organization of memory comes into play in the perfect functioning of parallel computing.

The two previous models, shared memory and message passing, are also extended in this area in the form of these two models:


	Shared memory

	Distributed memory



In the systems that follow the shared memory model that exists, all the processors present can access a particular memory area to share data and pass information. Systems of this kind are normally based on a physical bus that allows the connection of a certain number of physically separate processors (but they can be on the same machine or on different machines) as shown in Figure 1.18:
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Figure 1.18: Shared memory systems

Each processor has its own local memory represented by a cache, generally with high performance, since the exchange of data between the CPU and this memory area is very frequent. But this area is limited and also often the various processors will have to share data to work on and this can only be done using the shared memory connected to the bus.

This is where the situation becomes delicate. The programmer will have to carefully manage the synchronization of the data used simultaneously between the various processors.

One of the CPUs will take the value of data from shared memory and copy it to its cache to process it in some way. In the meantime, another CPU will need the same value, and it will also make a copy of it from the shared memory to its cache. After some time, the first CPU will finish its processing and write the result to the shared memory, updating the value inside. In the meantime, however, the second CPU is processing a value that is no longer valid, and therefore here that the data coherency is lost. It is therefore clear that concurrency management mechanisms and synchronization similar to that of threads within a single process must be implemented (via hardware or programmatically).

So why use this model? Well, the main reason is that shared memory systems are very fast, as they rely heavily on hardware rather than software. In fact, many control and synchronization mechanisms on access to shared memory resources by the CPUs can be resolved through hardware.

Another model is the Distributed Memory model which is widely used today. Unlike the previous model, instead of a physical bus connecting the various CPUs to each other, there is a network interconnection. This is in fact the model mainly used for CPUs that are located on physically separate machines, even at a considerable distance from each other. A scheme of this type of system is shown in Figure 1.19:
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Figure 1.19: Distributed memory system

In this type of model, each CPU in addition to having its own dedicated cache also has a local memory, which it can normally use at full load. When there is a need to share data with another CPU, the data will be sent over the network. In this way, there will be no more data coherency problems, as each processor is responsible for its own data. Another advantage is that since there is no longer a physical bus, but only a network connection, the number of CPUs that can be added to this system is theoretically infinite.

The disadvantage of this model, however, is the fact that the network connection is not as fast as a physical bus, but above all, a message passing mechanism is required for communication and data exchange between the various CPUs. The management of messages, with their creation, sending and reading by the individual CPUs, on the one hand eliminates coherency problems, but significantly slows down the execution of programs.

Distributed programming

The existence of complex models such as distributed memory has led to further evolution on the part of parallel programming, so much so that it is defined as distributed programming. In fact, a program can be executed in parallel by different processes that run on different machines connected to the network. Today this system is very widespread and used, so much so that there are many Python packages that offer solutions in this regard. In this book we will also deal with this further extension of parallel programming, using some packages freely available on the net, dedicating an entire chapter to them, Chapter 5, Realizing Parallelism with Distributed Systems.

Evaluation of parallel programming

An aspect strictly related to parallel programming is the need to develop a whole series of methods to evaluate its performance. This evaluation is essential during the development of a program to decide if the choices made are convenient or if it is necessary to consider some other solution.

When you decide to use parallelism it is because you have been driven by the need to solve big problems in the shortest possible time. To achieve this goal, however, many factors come into play, such as the degree of parallelism used, the hardware and above all the programming model. It is therefore necessary to carry out a performance analysis to evaluate the validity of our choices during the development of the program.

There are a whole series of performance indices that can be used by evaluating their numerical value to measure the performance of our program. These are nothing more than numerical values obtained through appropriate calculations, which allow us in a systematic and precise way to compare programs or algorithms with each other. Among these indices, the best known and most used is speedup.


Speedup


Speedup is a number that expresses the difference between the performance of two systems that are running the same problem. In our case, the speedup S can be considered as the ratio between the time taken in the execution of a serial program ts with the time tp taken by our parallel program created to perform the same operations. The time t taken is a function of the number of processing units N, which can be CPUs, cores or GPUs, but N is generally referred to as the number of processors. And therefore, the time taken in a parallel system can be expressed as t(N), while that in a serial system as t(1) since it is equivalent to a system with a single processor:
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In other words, the speedup gives us information on what the performance benefits have been for having adopted the solution in parallel, compared to the serial one. Furthermore, if we compare the number of N processors with the speedup index, we can further classify our algorithm or program:


	If S = N then the speedup is linear or ideal


	If S <N then the speedup is real


	If S> N then the speedup is super real




The speedup index is also linked to Amdahl’s law, widely used in parallel computing. This law is used to predict the maximum speedup achievable by a program while using infinite processors. It describes how in a program the percentage of serial code present determines the maximum achievable speedup value:
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Where S is the speedup index and α is the portion of the time taken by the part of the program implemented in parallel.

So, if we have a program that takes 90 minutes to run the code in parallel, and 10 minutes to run the code in serial, so 100 minutes in total, then α = 0.9. So in this case the maximum obtainable speedup will be:
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The maximum speedup obtainable by our program will be 10. By gradually adding cores or processors to the execution we will have a gradual improvement of the performance of our program until we reach a speedup close to 10. Once we reach that value, even if we add more processors or cores to run in parallel, we will not have any further improvement. See the graph shown in Figure 1.20:
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Figure 1.20: Amdahl’s law

Therefore, if we want to improve the speedup of a program or an algorithm more and more, it will therefore be necessary to reduce the serial code parts as much as possible. Only in this way, by increasing the number of processors (or cores), we will have an ever more linear performance improvement.

Furthermore, once the parallelizable part of the code has been maximized, the next task would be to find the right compromise in which the speedup is as high as possible but using the correct number of processors (see Figure 1.21). This avoids unnecessary workloads with too much unnecessary parallelism due to the addition of too many processors:
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Figure 1.21: Optimization of the number of processors needed

Scaling

Scaling is the ability of a system to increase its computing efficiency by adding additional hardware (number of processors). In the context of parallel computing, scaling refers to parallelization efficiency, that is, the ratio between the real and the ideal speedup, as the number of processors used increases.

Scaling can be divided into two types:


	Strong scaling

	Weak scaling



Strong scaling occurs when the number of processors increases while the size of the problem remains constant. In ideal situations, this should result in an increasingly reduced workload for each processor.

Weak scaling occurs when the number of processors increases with the size of the processors. In this case, the workload for each processor should remain constant.

We have seen a strong scaling measure with the application of Amdahl’s law, where the speedup is calculated by keeping the size of the problem constant and increasing the number of processors. Already, in this case, the law has shown us how speedup still has a maximum limit due to the impossibility of parallelizing 100% of the code. In addition, there are many other factors that come into play, which make it increasingly difficult to maintain a good strong scaling as the number of processors increases. For example, the latter, increasing in number, will require an ever-increasing load of work necessary to communicate with each other.

As for weak scaling, the speedup in this case has no upper maximum limits and therefore can grow indefinitely (in theory). This is confirmed by Gustafson’s law, which defines the speedup calculation differently from Amdahl’s law:

S = (1 – α) + α * N

In fact, Gustafson sensed that by increasing the size of the problem, only the speedup of the parallel part of the code α increased with the increase in the number of processors, while the serial one (1- α) did not. In fact, the graph shown in Figure 1.22 shows the trends of the various speedups growing linearly with the addition of processors gradually, and therefore without ever reaching a limit:
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Figure 1.22: Gustafson’s law

Thanks to the concept of strong and weak scaling, and the two laws of Amdahl and Gustafson, useful considerations can be drawn: for small problems, it is better to use small systems, for big problems it is better to use large systems.

Benchmarking in Python

The action of systematically testing performance under different conditions is called benchmarking. So far we have seen the evaluation of the performance of a program from a theoretical point of view. But from the practical one? Well, in Python there are a whole series of tools that allow us to measure the performance of a program or a piece of code.

In the following chapters, we will see some practical examples of how we will make these measurements. For example, to calculate the time taken (also useful for calculating the speedup) for the execution of a portion of code we will use the time module of the standard Python library. This module provides access to several types of clocks and using the call to the time() method we will get real stopwatch readings. Then, by making differences between the times read, we will obtain the time taken by the code included between the two calls:

started = time.time()

# Code here

elapsed = time.time()

print(“Elapsed time=”, elapsed - started)

Profiling

The analysis of which parts of the program contribute to performance, and identifying any bottlenecks is called profiling.

In Python, there are currently several tools in this regard, each useful for its peculiarities. Regarding the consumption of memory resources, it is possible to use a powerful tool: the package memory profiler. This module allows you to monitor the memory consumption of different processes/jobs in Python. In addition, it is able to perform a line-by-line analysis of the code for the consumption of resources and therefore can also be useful as a line profiler.


Conclusion


In this chapter, most of the concepts underlying parallel programming have been discussed in detail. Parallel programming has evolved over time in line with the available technologies, sharing the concepts and entities that have gradually developed. The processes and threads that run within the operating system are matched in parallel programming using process and thread objects that can be implemented with the threading and multiprocessing modules of the standard Python library. In the next two chapters, we will see how to use these two modules for parallel programming and to make the most of all the features they offer.

Points to remember


	
Concurrency: This means managing multiple tasks at the same time, but they won’t necessarily run simultaneously.

	
Parallelism: This means running multiple tasks at the same time simultaneously.

	
Threads: Threads in Python cannot run concurrently, and therefore cannot operate in parallel.



Questions


	What is the difference between parallelism and concurrency?

	What are the advantages and disadvantages of a distributed memory system?

	When and how are weak scaling and strong scaling maintained?
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