
[image: image]



Ultimate
Microservices with
RabbitMQ

[image: ]

Master Microservices Architecture and
RabbitMQ Integration to Build Scalable,
Resilient Systems, and to Drive
Innovation in Software Development

[image: ]

Peter Morlion


[image: ]


www.orangeava.com





Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: May 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,

N1 7AA, United Kingdom

ISBN: 978-81-97256-30-1

www.orangeava.com





Dedicated To

Liesbet and Fien,
My Daily Driving Forces

and Céleste of Course






About the Author



Peter Morlion, after obtaining a master's degree in Political Science, decided to become a software developer instead. He received his bachelor’s degree in Software Development in 2008, but had already found a job as a developer in 2007.

Since then, Peter worked with a wide range of programming languages, including VB.NET, C#, JavaScript (front-end and back-end), TypeScript (front-end and back-end), Python, PHP and Java.

As a software development consultant since 2015, Peter has been helping organizations reduce their technical debt and increase the stability of their systems. He has done so in different architectures (monolith, SOA, microservices, and serverless), always focusing on the quality of the system.

In addition to his professional work, Peter organizes a local developer’s meetup group and is active in the parent-teacher association of his daughter’s school and the local sea scouts group.

He lives in Bruges, Belgium, with his wife, daughter, dog, and two cats.






About the Technical Reviewer



Phil is a Principal Software Engineer with an MBA (org psych concentration) and over 15 years of software engineering experience. Prior to working in software development, he worked in audio production and electronics repair. Phil is passionate about continuous learning and improvement, believing it to be the best way to achieve lasting progress. He has diverse interests, including playing music, flying small aircraft, brewing beer, and exploring new topics. Phil occasionally writes about software engineering on his Substack blog at https://philvuollet.substack.com/.

You can find his writing at

https://blog.thedailylessonlearned.com and watch his videos on his YouTube channel at https://www.youtube.com/channel/UCU_UXEvAgQ2VC-gu4NwGqzg.






Acknowledgements



I have always loved writing. Not that I am an incessant writer, but it has been quite constant during my life. My earliest memories of writing are short stories of knights and dragons in 5th grade (thank you for reading them, Ms. Collins). As a teenager, I published a DIY punk zine in the late 90s and engaged in hefty political discussions in online forums when those were still a thing. Later, I started blogging on software development while learning the craft in night school.

The list of people who shape who we are is endless. Nevertheless, I must make an effort to mention some who were important in the creation of this book.

Of course, my parents. Without the endless love and support throughout the last 41 years, I would not stand where I do now.

Many thanks to my older brother and sister who guided me in my formative years; and to my parents-in-law, without whom I may not even have considered studying software development in night school.

I must also thank Erik Dietrich and Amanda Muledy for taking me on board at HitSubscribe and helping me professionalize my writing. It is there that I started reaching a wider audience (a Blogspot blog only reaches so far) and that sparked the journey towards online courses which in turn culminated in this book you are reading now.

Gratitude is due to Phil Vuollet who was prepared to review this book. He has the knowledge and expertise, but also the professionalism to provide meaningful (and sometimes funny!) remarks, in a direct but respectful manner.

OrangeAVA deserves special thanks for giving me this opportunity and making the collaboration a joy. I had already dabbled with some book-writing before, but it never took off. This book and OrangeAVA provided a more structured way to get it finished.

And thank you everyone in the software development community producing content and teaching others, often without any monetary compensation (something that makes our industry fairly unique). This book wouldn’t have been possible without these efforts. I’m convinced that together, we all push the industry forward.

Finally, my eternal gratitude goes out to my dear wife Liesbet and daughter Fien, my biggest sources of energy. Life would be meaningless without loved ones, and I would not have finished (or even begun) this book if it were not for their love and support.






Preface



The history of software architecture has been fascinating ever since the first pieces of code were written. The concept of microservices is a popular approach to harness the complexity and size of modern-day systems. Messaging is a crucial component of many of these systems, and RabbitMQ is one of the most popular and mature message brokers available.

Ultimate Microservices with RabbitMQ will guide you from start to finish through these two subjects and how they interact with each other. This unique approach gives you a high-level overview with enough detail so you can embark on your own journey through this architectural pattern.

The book has many subjects to cover, but it should be suitable for both novices and experts. Newcomers will get a comprehensible introduction to all the aspects that they must be aware of when working with RabbitMQ-enabled microservices. Professionals with more experience can use this book as a reminder and overview of what it takes to build and maintain their systems.

The book is comprised of eight chapters. Let’s dive deeper into the specifics of what each chapter explores.

Chapter 1. An Introduction to Microservices: This chapter explains what microservices are and why they exist. See what a typical microservices architecture looks like and what problems it tries to solve. Explore the history of this architectural pattern and look at some use cases and examples.

Chapter 2. A Deeper Look Into Microservices: This chapter dives deeper into the problems microservices can solve, where they excel and what challenges you will face. Explore concepts like scaling, independent software development lifecycles, and team autonomy. Learn about troubleshooting, breaking changes, eventual consistency and scenarios where microservices are not the solution.

Chapter 3. An Introduction to RabbitMQ: This chapter introduces messaging, message brokers and RabbitMQ. Discover communication patterns in distributed systems and learn about different message brokers and protocols. Take a look at messaging topologies in RabbitMQ and some important RabbitMQ extensions.

Chapter 4. RabbitMQ Use Cases: This chapter helps you identify use cases for RabbitMQ so you can better use it in your professional life. Explore possible messaging patterns, scenarios where RabbitMQ shines and some real-life examples of companies that use RabbitMQ.

Chapter 5. Designing a Microservices Architecture With RabbitMQ: This chapter demystifies all the necessary steps to create a microservices architecture with RabbitMQ. Learn about greenfield and brownfield development. Discover how to identify your microservices and their boundaries. Gain insights into the software development lifecycle of microservices, the consequences for your organization and the details of connecting microservices with RabbitMQ.

Chapter 6. Running A Microservices Architecture with RabbitMQ: This chapter explores what is necessary to run and maintain a living system built with microservices and RabbitMQ. Learn about automation, observability and reliability. Discover important security aspects and strategies to recover from disasters. Read about the agile organization to realize what the microservices architecture will mean for your company.

Chapter 7. The Future of Microservices: This chapter takes a look into the future and attempts to see where the world of microservices is heading. Learn about the improved tooling that is being built, the evolution of the architecture itself and what artificial intelligence may mean in this space.

Chapter 8. The Future of RabbitMQ: This chapter uncovers what is coming for RabbitMQ. Take a look at stream filtering and the upcoming protocol-agnostic core. Read up on the Khepri database, RabbitMQ 4.0 and the future of RabbitMQ beyond that.

The world of microservices is an exciting albeit sometimes complex one. Yet any software developer or IT manager must be aware of the many aspects and approaches they entail. With RabbitMQ, we have a stable and mature communication platform to support our microservices. In this book, we set out to explain and clarify this wide range of subjects for people of all technical levels. I hope you enjoy it and learn something that aids you in implementing and running a reliable and scalable system, to the enjoyment of those using it.






Colored Images



Please follow the links or scan the QR codes to download the Images of the book:

You can find code bundles of our books on our official Github Repository. Go to the following link to and QR code to explore the further:

https://github.com/orgs/ava-orange-education/repositories


[image: ]


Please follow the link to download the Colored Images of the book:
https://rebrand.ly/9898fd


[image: ]


In case there's an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd, and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.






DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.









CHAPTER 1


An Introduction to Microservices



Introduction

In this chapter, we will take an introductory look at the microservice architecture. We will look at its history and the problems it tries to solve. We will also see what a microservice architecture looks like and explore some use cases and examples.

Structure

This chapter will cover the following topics:


	The Need for Software Architecture

	The Construction Metaphor

	A Software Architecture Example





	History of Microservices

	Unix

	Early Distributed Computing

	Service-oriented Architecture

	Microservices





	The Microservices Architectural Pattern

	Characteristics of a Microservices Architecture

	Use Cases

	Examples







The Need for Software Architecture

Before we start looking at microservices, let’s take a look at what software architecture is and why it’s important. This will set the context for the rest of this book.


The Construction Metaphor


When we hear the word “architecture”, we immediately think about building and construction. The architecture of a building comprises a lot of aspects of a building: the shape and design of the outside, the location of rooms and facilities inside, the layout of the electrical wiring and plumbing, and many more.

The metaphor is used when we talk about software architecture. Software architecture consists of designing and planning how to build a piece of software. From a high-level overview of components and their relations and interactions to the internal details of such components.

Architects create blueprints of buildings and lead the construction projects. So do software architects: they create blueprints for software applications and oversee the software development project.

A Software Architecture Example

Let’s look at a simple example of software architecture. Let’s assume we need an application to automate an industrial machine. At a high level, this architecture could simply look like Figure 1.1:


[image: ]


Figure 1.1: An example architecture

Industrial machines often contain a PLC, a Programmable Logic Controller. It’s an interface that you can output and receive signals. In our case, the application receives certain measurements from the machine, performs calculations, makes decisions, and sends commands to the machine. This cycle repeats continuously.

At a certain point in time, the company may want to store the measurements and commands to see a history of what happened in the system. The architecture is then expanded with a database, as shown in Figure 1.2:



[image: ]


Figure 1.2: An example architecture

These are simple diagrams, and a real diagram may contain more information like the names of applications, the physical addresses of servers and databases, communication protocols, teams responsible, and more. Architectural diagrams can become quite complex, which is why they are often split up depending on the context.

The idea behind this is that the application has a certain architecture: how the different components of the application relate to each other. Our example was a high-level view, but the architecture also comprises lower details, such as the internals of the application. It might look something as illustrated in Figure 1.3:


[image: ]


Figure 1.3: The internal architecture of an application

The details aren’t too important now. What you can see is how the application is structured internally.

All these things build up to the architecture of a system. Regardless of whether it is documented or not, every software system has an architecture. This can be a clean architecture or a messy one. It can be a well-planned and thought-of architecture or can have grown over time.

Over the years, smart people have discovered and designed software architecture patterns and given them names. These patterns, sometimes also called design patterns, define the components and their interactions that a software system can have to solve certain problems. Each pattern will come with trade-offs: while it solves one set of problems, it can create a new set of challenges. And not every pattern is a good fit for every problem.

However, adhering to a pattern does give organizations some predictability. Previously defined software architecture patterns are usually well-documented online and in books, and well-known among developers. This makes it easier for them to build and maintain the software. If they have any questions or issues, the existing patterns may already provide elegant solutions.

History of Microservices

Before we go into more detail on microservices, let’s take a moment to see where this idea came from and what problems it tries to solve.

Dr. Peter Rodgers first coined the term “micro-web-services” in 2005 (Foote, 2021). In 2011, a workshop for software architects near Venice decided to use the phrase “microservice” (Lewis and Fowler, 2014). However, the idea behind microservices is older than that.

Unix

As Martin Fowler and James Lewis put it, “its roots go back at least to the design principles of Unix” (Lewis and Fowler, 2014). In Unix, applications are often small and excel at performing a single task. They act as a sort of filter: receiving a request, applying logic, and returning a response.

Consider this command, for example:

ls | wc -l

These are, in fact, two applications chained together: “ls” and “wc”. The “ls” application lists information about files in the current directory. With the pipe symbol (“|”), we pass the output of the “ls” application as input to the “wc” application. When used with the “-l” flag, this application will count the number of lines it received as input.

As such, combining these two applications will give us the number of files in the current directory.1 Unix and Linux experts use this approach of combining smaller applications all the time to help them in their daily tasks.

Early Distributed Computing

In the 1960s and 1970s, programming network communication required a deep knowledge of low-level network protocols. As a first step, standard protocols like the File Transfer Protocol (FTP) were drafted.

As the price of computers dropped in the 1980s, companies began to use them more extensively, both as desktop and server. The idea of “distributed computing” emerged: enabling business processes by making computer applications communicate with each other over the network. Initially, some companies saw an opportunity to sell “middleware”, software that makes it easier to send messages from one server to another.

Then, in the early 1990s, the standard Common Object Request Broker Architecture (CORBA) emerged, but it failed to gain widespread adoption. Likewise, Microsoft’s proprietary alternative, DCOM, also lacked significant uptake.

In 1997, IBM released Enterprise Java Beans (EJB). It was an early attempt at a framework that teams could use to build different services without having to reimplement the same components for every service. With EJB, developers could focus on the business logic that made each separate service unique while letting EJB handle common concerns such as persistence or security.

It was already focused on distributed systems from the start, although in later revisions, it was possible to make calls from one service to another without going over the network.

While EJB was popular in some circles, others didn’t like it or were unfamiliar with it, especially because EJB could only be used with Java. The widespread adoption of the internet gave companies the option of implementing distributed computing using platform-agnostic, language-agnostic, and vendor-agnostic technologies.

Service-Oriented Architecture

This is where we see the emergence of Service-oriented Architecture (SOA). In SOA, we see different application components that provide a service to other components, using an agreed-upon communication protocol over the network.

If this sounds a lot like microservices, it’s because there are similarities, but also differences. Whether or not it was originally intended, companies adopting SOA tend to have a strong focus on central governance. This can be seen in the importance of a central Enterprise Service Bus (ESB) in SOA systems and in the lack of autonomy for individual teams.

The ESB in an SOA system often acts as a central point, doing more than just accepting messages and passing them along. In many cases, the ESB will contain business logic, which causes tight coupling between services and the ESB: if business logic needs to change, it needs to change in one or more services and in the ESB. This complicates software development as there is an increased need for team coordination regarding development, deployment, and testing.

This in turn causes a lack of autonomy for teams, as architects and managers take over the role of coordinator. The reduced autonomy then causes the organization to have difficulty adapting to changing circumstances and to lose money on failing projects.

These problems aren’t always caused by the principles of SOA. In theory, it would be possible to set up a SOA system in an agile organization with lots of team autonomy. However, over time, the SOA name tainted, and a new paradigm was necessary.

Microservices

So, that’s how the concept of microservices came to the scene. Some would say microservices represent a successful implementation of SOA principles.

In microservices architecture, there is more focus on team autonomy. The microservices architecture stresses lightweight protocols (for example, simple JSON instead of the heavy XML-based SOAP). It refuses the notion of a bloated ESB. As an alternative, it proposes to use either direct HTTP calls or a messaging platform that is little more than a way to reliably route messages asynchronously and at scale (like RabbitMQ).

The Microservices Architectural Pattern

Now that we know there are several ways to organize the different components in a software application and that there is already a long history of distributed computing, let’s take a look at the microservices pattern. In this section, we will see what such an architecture looks like, where it came from, and what it tries to solve. Then, we will cover some use cases and examples.

Characteristics of a Microservices Architecture

Depending on who you ask, you will get several slightly different answers. But mostly, the microservices architecture is a software architecture where an application consists of a collection of smaller services that have specific characteristics. Most architects agree these services should be:


	Independently deployable

	Loosely coupled

	Developed by small and independent teams

	Using well-defined APIs and lightweight protocols for communication

	Organized around specific business capabilities

	Adopting a DevOps mindset

	Decentralized



So, what does that mean exactly? Let’s dive into each of these characteristics. As you will see, the microservices architecture is more than just a technical architecture; it has profound consequences on the organization as well.

Independently Deployable

The microservices architecture builds an application by having several smaller applications (called “services”) work together. These services should be independently deployable.

Take, for example, a microservices architecture with four microservices. If there is a bug in one of them, the owning team should be able to fix the bug and deploy the one microservice, without the need for any changes in the other microservices, as shown in Figure 1.4:


[image: ]


Figure 1.4: Deploying a microservice independently

On the left, the current situation has four services, each at version 1. When a bug is found in Service 4, the team can fix it and deploy their fix (v1.0.1). The other services don’t need to be updated.

This is in contrast to organizations that (need to) deploy all their services at the same time. This sometimes happens because the dependencies between the components are too rigid, or because all components have a certain dependency that always needs to be at the same version for everything to work.

While it can be necessary at times to update two or more microservices together, this points to a wrong implementation of the microservices pattern if it needs to happen all the time.

Loosely Coupled

In order to achieve the independently deployable services, they must be loosely coupled. Coupling in software is how dependent one component is on another. If it can’t function well without the dependency in its current implementation, we say it’s tightly coupled. If it can function without the dependency or if it doesn’t have to know where the other component is located or looks like, we say they are loosely coupled.

Christ Richardson, author of the microservices.io website, defines two different types of coupling:


	Runtime coupling

	Design-time coupling



Runtime coupling is about how one service depends on another at runtime. This is about the degree to which one service can continue functioning when the availability of another service is degraded.

Let’s assume Service 1 calls Service 2, which in turn calls Service 3. What happens if Service 3 is unavailable, as shown in Figure 1.5?


[image: ]


Figure 1.5: Service dependencies and failures

Does the call from Service 1 to Service 2 fail as well? Or can Service 1 trust that Service 2 will try again later, ensuring that Service 1 can continue its work as foreseen?

If it can do the latter, we consider it to be loosely coupled at runtime. Evidently, this makes the implementation more complex, but the system will be more robust.

The other type of coupling, design-time coupling, occurs when two services almost always require changes to occur together. If this is the case, we consider them tightly coupled and maybe they should be a single service. Loosely coupled services can change without having the need for the depending on other services to change.


Small and Independent Teams


The two previous subjects enable the next characteristic of microservices: the fact that they are (or can be) developed by small and independent teams.

If a microservice only covers a small piece of the entire application, it will be smaller in size. This allows the team to be smaller in size as well, as they have less code to manage, maintain, and support. In turn, smaller teams are easier to manage and allow them to manage themselves to a great deal.

This enables them to be more independent. They can make their own choices about how to implement features, which tools to use, and how to run their day-to-day operation. Of course, companies can expect certain minimum standards, but they can still give the teams the freedom and autonomy that many developers seek.

This reduced size and independence ensures teams can quickly adapt to changing circumstances, keep morale high, make and deploy code changes swiftly, and overall better contribute to the company mission.

APIs and Protocols

Another tenet of microservices is that they communicate with each other over well-defined APIs and lightweight protocols.

This means that, firstly, the publicly facing API of a single microservice must be well-defined. For other teams to integrate their services with another service, they need to know how to communicate with the other service. They don’t need to know the internal details of the service, but they should know what the payload of a request must look like and what they can expect as a response. They need to know which protocol to use and what is the address (or URL) of the service. These are things teams should define and document for the services they are responsible for.

Secondly, services should communicate with each other using lightweight protocols. While the exact definition of a lightweight protocol is unclear, the key idea is that it must be a protocol that isn’t burdened by a lot of metadata or other aspects that increase the size of the message from one service to the other.

Typically, a protocol like HTTPS or gRPC is used, but others are possible, as we will see with RabbitMQ. The idea is that a message from one service to another is sent over the network in a package that contains (almost) only the necessary pieces to ensure a working application. Good microservice architectures also ensure that messages are exchanged very fast, in the order of tens of milliseconds or lower.

In contrast to many SOA systems, any messaging system in a microservices architecture should contain as little logic as possible. The microservices community talks about “smart endpoints and dumb pipes.” The services contain the business logic, and the systems responsible for relaying messages do only that, that is, they are “dumb pipes.” They don’t transform messages, and they also aren’t responsible for deciding who receives which message. If a team decides it needs to receive a message from another service, it’s up to them to take the necessary action, that is, subscribe to a specific message queue or make a synchronous request to the service.

Business Capabilities

How do you choose what to put in one microservice and what not? The idea is to organize your services around “business capabilities.” So, what are business capabilities?

A business capability is something a business or organization can do. It is something business can achieve, given certain conditions. In theory, this could also be something the organization is not yet doing but could hypothetically be capable of doing. In practice, and specifically regarding microservices, we define the business capabilities around activities that the business is already actively doing.

Business capabilities don’t have to map one-on-one with the organization’s departments. In fact, one business capability may be the result of several teams and departments working together.

An example of a business capability for a company may be “Customer Data Management.” The capability of the business is to store, update, and use data from its customers. You could envisage a microservice that is responsible for everything regarding customer data (names, addresses, privacy preferences, and so on). Managing this data may be the responsibility of a single customer department, but it could also be the result of interaction between the customer and the sales department.

Another example is quality control in a manufacturing plant. This business capability includes methods and procedures to check the quality of manufactured products. A microservice built around this capability may be responsible for defining these procedures, storing the results for each finished product, and creating reports on these results.

A business capability is different from a business process. The first defines what a business can do, and the second is how it is done.

The DevOps Mindset

Microservices go well with a DevOps mindset. In essence, this can be summarized with the “you build it, you run it” quote. If different teams are developing different services in different ways, it becomes increasingly complex for a single systems operations team to know the specifics of running these services.

This is why we are seeing a trend toward enablement: system operations teams set up systems into which development teams can plug in their services, often via a self-service platform. The system operations team is responsible for offering the development teams a stable and reliable platform where the development teams can deploy, run, and monitor their services. Keeping a service running is no longer the system operations team’s responsibility. This incentivizes the developers to write quality code that can easily be monitored, debugged, and updated.

To do so, the DevOps mindset also encourages automation. If more aspects of the software development lifecycle fall into the hands of developers, they will need more tools to help them, or else they risk being swamped with non-development work. If set up correctly by the system operations team, automation tools help developers spin up new parts of infrastructure (for example, servers, containers, and databases), manage the quality of their code (with tests but also scanning code for vulnerabilities or bad practices), generate documentation, and more.

Decentralization

When we build, deploy, and run our different services independently, this decentralization has consequences in other areas.

One such area is data management. With microservices, data gets decentralized too. In many cases, each separate service has its own persistence store (usually a database). In some cases, these can even be entirely different technologies. This means that there is some level of data duplication happening in the system: a certain concept may be stored multiple times but under different forms across multiple databases. While this may seem strange at first, it can prove to be useful when different contexts have differing views on the same object. For example, the sales department may want to use a different model to store customer data than the marketing department.

Another area where we see a consequence of decentralization is testing. If there is just a single application to test, it is clearer where, when, and how to test. In a microservices architecture, testing a change to a single service may not be enough. The behavior of the entire distributed system may have changed because of a change in a single component. Consequently, testing becomes more complex. There will be decentralized testing (that is, each team tests its own services), but the organization must also have a plan to test the composition of all services together.

Use Cases and Examples

Now that we have a clearer understanding of where microservices came from and what they look like, let’s explore some use cases and examples for microservices. Keep in mind that these use cases may also be a good fit for other architectural patterns, and there may be other use cases for microservices not mentioned here.


Monolith Refactoring


The “monolith” is a name given to an architecture where a single application contains the bulk of the business logic and functionalities. Usually, it consists of a single codebase and is deployed as a single package.

The monolith is a natural evolution in many organizations. An application may start out small and simple, but as time moves on, features are added and bugs fixed. After several years, the application contains a large amount of code, many complexities, and strange quirks.

This is also why many developers have negative feelings towards the monolith. While the monolith can have value as an architectural pattern (when applied correctly), it’s associated with low-quality code, complexity, and regression bugs.

At a certain point in time, teams may decide that the architecture of the monolith needs an overhaul. One alternative may be the microservices pattern. To achieve this, the team can set up a plan to extract functionalities out of the monolith and move them to microservices. Instead of making an in-process call, the monolith can then make a call to the other microservices.


[image: ]


Figure 1.6: Moving from a monolith to microservices

In Figure 1.6, we can see that the monolith is reduced in size and complexity piece by piece, until everything becomes manageable and stable again. Whether the monolith disappears completely or just ends up being a microservice in itself doesn’t really matter. The core takeaway is that the microservices pattern is a good objective to regain control of a monolith, if done correctly.

If teams don’t work around business capabilities, they may end up with a distributed monolith. This is a distributed system of tightly coupled monoliths that breaks when a single microservices breaks.

Scaling

The microservices pattern is also a great fit for applications that need to handle high loads, either constantly or periodically. Microservices can be implemented in a way that allows them to scale automatically, both horizontally and vertically.

Horizontal scaling happens when a single microservice is duplicated. For example, say you have a microservice that sends out text messages to customers’ phones. Under a heavy load, a single microservice may no longer be able to send out messages fast enough to be satisfactory. Some platforms can be configured to start a new instance of the microservice. If there are two instances of the microservice running, they can split the load and send out twice as many text messages at the same time.

This works well for microservices that don’t need to store internal state. If a service needs to keep some user session information in memory, horizontal scaling isn’t an option. Because when a subsequent request from the user is routed to a different instance of the service, the session information wouldn’t be available. In this case, vertical scaling can be an option, that is, increasing the power of the hardware the service is running on. A more powerful CPU or more RAM may increase the performance of the service.

Of course, this last way of scaling is also available for non-microservice architectures (like the monolith). This is why microservices are a great match for horizontal scaling scenarios: spin up extra instances of a service to handle the current load and stop them when the load reduces.

Complex Systems

In large enterprises, with many different complex systems, microservices can enable teams to integrate with each other without the need for central oversight. If one team needs information from another team’s application, it helps if the other team has implemented a service with a clearly defined API that can easily be accessed.

If you think about it, this is how the internet works. Any application you write can easily communicate with publicly available APIs, as long as you comply with any rules the other organization has set (like using the correct credentials or respecting rate limits).

Inside a company, teams could also offer “public” services for other teams to use. This is especially true in companies that build different products. For example, a provider of healthcare software may split up its offerings into several products: one for the electronic health records of patients, another to manage medicine stocks, and yet another to run hospital laboratories (visualized in Figure 1.7). Each of these would expose well-documented APIs so that they can work together, but also so that external applications can tap into the data and functionality they provide.


OEBPS/images/1.1.jpg


OEBPS/images/1.2.jpg


OEBPS/images/1.3.jpg


OEBPS/images/1.4.jpg


OEBPS/images/1.5.jpg


OEBPS/images/1.6.jpg


OEBPS/images/cover.jpg


OEBPS/images/line.jpg


OEBPS/nav.xhtml


Table of Contents



		Cover Page


		Title Page


		Copyright Page


		Dedication Page


		About the Author


		About the Technical Reviewer


		Acknowledgements


		Preface


		Errata


		Table of Contents


		1. An Introduction to Microservices

		Introduction


		Structure


		The Need for Software Architecture

		The Construction Metaphor


		A Software Architecture Example






		History of Microservices

		Unix


		Early Distributed Computing


		Service-Oriented Architecture


		Microservices






		The Microservices Architectural Pattern

		Characteristics of a Microservices Architecture


		Independently Deployable


		Loosely Coupled


		Small and Independent Teams


		APIs and Protocols


		Business Capabilities


		The DevOps Mindset


		Decentralization


		Use Cases and Examples


		Monolith Refactoring


		Scaling


		Complex Systems


		Chained Business Processes


		Data Processing


		Asynchronous Tasks


		Examples


		Amazon


		QuickBooks


		Other Examples






		Conclusion


		References






		2. A Deeper Look Into Microservices

		Introduction


		Structure


		Advantages of Microservices

		Scaling


		Enterprise-Ready


		Independent Software Development Lifecycle


		Multiple Technologies


		Reduced Cognitive Load


		Better DORA Metrics


		Testing New Technologies


		Increased Reliability


		Encouraging Successful Teams


		Upgrading a Monolith






		Challenges of Microservices

		Troubleshooting


		Technical Knowledge


		Breaking Changes


		The Size of a Microservice


		Technical Failures


		Eventual Consistency


		Business Failures






		Scenarios Not Fit for Microservices

		Proof-of-concepts and Testing for Market Fit


		Desktop and Mobile


		One-off Applications






		Conclusion


		References






		3. An Introduction to RabbitMQ

		Introduction


		Structure


		Message Brokers

		Messaging versus Direct Calls


		Advantages of Message Brokers


		Choosing Between Direct Calls and Messaging


		Difference with an Enterprise Service Bus


		RabbitMQ and Alternatives


		RabbitMQ


		ActiveMQ


		AWS SQS, SNS, and MQ


		More Alternatives


		The Case for RabbitMQ






		RabbitMQ Protocols

		Protocols


		AMQP 0-9-1


		The AMQP 0-9-1 Model


		The AMQP 0-9-1 Messages


		AMQP 1.0


		MQTT


		Quality of Service


		Persistent Sessions


		Retained Messages


		STOMP


		RabbitMQ Stream Protocol


		Choosing A Protocol






		Exchanges, Queues, and Bindings

		Queues


		Exchanges


		Bindings


		Direct Exchange


		Fanout Exchange


		Topic Exchange


		Headers Exchange


		Default Exchange


		Other Exchange Types


		Exchange Considerations






		Plugins


		RabbitMQ Extensions

		Time-To-Live


		Queue Length Limit


		Dead-Lettering


		Publisher Confirms


		Exchange to Exchange Bindings


		Priority Queues


		Consumer Priorities


		Single Active Consumer






		Conclusion


		References






		4. RabbitMQ Use Cases

		Introduction


		Structure


		Messaging Patterns

		Competing Consumers


		Publish/Subscribe


		Request/Reply


		Conversations






		RabbitMQ Use Cases

		Mobile Applications


		Asynchronous Processing


		Internet of Things


		Event-Driven Architectures


		Sequential Processing






		Real-life Examples Of RabbitMQ

		ElephantSQL Backups


		Softonic File Scanning


		Adidas Runtastic






		Conclusion


		References






		5. Designing a Microservices Architecture With RabbitMQ

		Introduction


		Structure


		Greenfield or Brownfield

		Greenfield Development


		Brownfield Development


		Refactoring


		Rewriting


		The Hybrid Approach






		Identifying Microservices

		Business Capabilities


		Capability Mapping


		Data and Processes


		Adapt to Change






		Designing Microservices

		The Software Development Lifecycle


		Analysis


		Single Microservice


		Multiple Microservices


		Avoid Reinventing the Wheel


		Development


		Technological Choices


		Common Concerns


		Security


		Deployment


		Testing


		Testing The System


		Contract Testing


		Maintenance


		Observability


		Support


		Documentation






		The Microservice Organization

		Cross-functional Teams


		DevOps Autonomy


		Self-servicing


		Collaboration


		Underperforming Teams






		The User Interface

		A Monolithic User Interface


		Micro Front-ends






		Connecting Microservices

		The Hybrid Option


		External Services


		Retry Strategies


		The Circuit Breaker Pattern


		The API Gateway


		Messaging Topologies


		Message Design


		Transactional Outbox Pattern


		Idempotency


		Ownership






		Evolutionary Architecture


		Conclusion


		References






		6. Running A Microservices Architecture With RabbitMQ

		Introduction


		Structure


		Management

		Infrastructure as Code


		Configuration as Code


		Deployment


		Containers


		Feature Management


		Manual versus Automated


		The Command-Line Interface


		Management User Interfaces


		Management APIs


		Upgrading


		RabbitMQ Policies






		Observability

		RabbitMQ Logging


		Monitoring


		RabbitMQ Alarms






		Reliability

		The Basics


		Clustering


		Federation


		Shovel


		Quorum Queues


		Chaos Engineering






		Security


		Disaster Recovery

		Recovering Microservices


		Recovering Microservice Data


		Recovering RabbitMQ


		Recovery Procedures






		The Agile Organization


		Conclusion


		References






		7. The Future of Microservices

		Introduction


		Structure


		Tooling

		Programming Languages


		Microservices Orchestration


		Service Meshes


		Focus on Business Value


		OpenTelemetry


		Increased Automation


		Custom Tooling


		Low-Code and No-Code Microservices






		The Microservices Architecture

		Feature Management


		Increased Cloud Usage


		Serverless


		Micro Frontends


		Alternative Architectures


		Backlash


		Edge Computing


		Event-based Systems






		Security

		DevSecOps


		Post-factum Procedures






		Artificial Intelligence

		Artificial Intelligence as a Tool


		Artificial Intelligence in Your Product






		Conclusion


		References






		8. The Future of RabbitMQ

		Introduction


		Structure


		RabbitMQ 3.x

		GitHub Issues


		Performance Improvements


		New Features


		Protocol Updates






		Protocol-Agnostic Core


		Khepri


		RabbitMQ 4.0


		The Long-term Future Of RabbitMQ


		Conclusion


		References






		Index







Guide



		Title Page


		Copyright Page


		Table of Contents


		1. An Introduction to Microservices








OEBPS/images/qr1.jpg


OEBPS/images/qr.jpg


OEBPS/images/logo.jpg


