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GEODESY (from the Gr. γῆ, the earth, and δαίειν, to divide), the science of surveying (q.v.) extended to large tracts of country, having in view not only the production of a system of maps of very great accuracy, but the determination of the curvature of the surface of the earth, and eventually of the figure and dimensions of the earth. This last, indeed, may be the sole object in view, as was the case in the operations conducted in Peru and in Lapland by the celebrated French astronomers P. Bouguer, C.M. de la Condamine, P.L.M. de Maupertuis, A.C. Clairault and others; and the measurement of the meridian  arc of France by P.F.A. Méchain and J.B.J. Delambre had for its end the determination of the true length of the “metre” which was to be the legal standard of length of France (see Earth, Figure of the).

The basis of every extensive survey is an accurate triangulation, and the operations of geodesy consist in the measurement, by theodolites, of the angles of the triangles; the measurement of one or more sides of these triangles on the ground; the determination by astronomical observations of the azimuth of the whole network of triangles; the determination of the actual position of the same on the surface of the earth by observations, first for latitude at some of the stations, and secondly for longitude; the determination of altitude for all stations.

For the computation, the points of the actual surface of the earth are imagined as projected along their plumb lines on the mathematical figure, which is given by the stationary sea-level, and the extension of the sea through the continents by a system of imaginary canals. For many purposes the mathematical surface is assumed to be a plane; in other cases a sphere of radius 6371 kilometres (20,900,000 ft.). In the case of extensive operations the surface must be considered as a compressed ellipsoid of rotation, whose minor axis coincides with the earth’s axis, and whose compression, flattening, or ellipticity is about 1/298.

Measurement of Base Lines.



To determine by actual measurement on the ground the length of a side of one of the triangles (“base line”), wherefrom to infer the lengths of all the other sides in the triangulation, is not the least difficult operation of a trigonometrical survey. When the problem is stated thus—To determine the number of times that a certain standard or unit of length is contained between two finely marked points on the surface of the earth at a distance of some miles asunder, so that the error of the result may be pronounced to lie between certain very narrow limits,—then the question demands very serious consideration. The representation of the unit of length by means of the distance between two fine lines on the surface of a bar of metal at a certain temperature is never itself free from uncertainty and probable error, owing to the difficulty of knowing at any moment the precise temperature of the bar; and the transference of this unit, or a multiple of it, to a measuring bar will be affected not only with errors of observation, but with errors arising from uncertainty of temperature of both bars. If the measuring bar be not self-compensating for temperature, its expansion must be determined by very careful experiments. The thermometers required for this purpose must be very carefully studied, and their errors of division and index error determined.

In order to avoid the difficulty in exactly determining the temperature of a bar by the mercury thermometer, F.W. Bessel introduced in 1834 near Königsberg a compound bar which constituted a metallic thermometer.1 A zinc bar is laid on an iron bar two toises long, both bars being perfectly planed and in free contact, the zinc bar being slightly shorter and the two bars rigidly united at one end. As the temperature varies, the difference of the lengths of the bars, as perceived by the other end, also varies, and affords a quantitative correction for temperature variations, which is applied to reduce the length to standard temperature. During the measurement of the base line the bars were not allowed to come into contact, the interval being measured by the insertion of glass wedges. The results of the comparisons of four measuring rods with one another and with the standards were elaborately computed by the method of least-squares. The probable error of the measured length of 935 toises (about 6000 ft.) has been estimated as 1/863500 or 1.2 μ (μ denoting a millionth). With this apparatus fourteen base lines were measured in Prussia and some neighbouring states; in these cases a somewhat higher degree of accuracy was obtained.

The principal triangulation of Great Britain and Ireland has seven base lines: five have been measured by steel chains, and two, more exactly, by the compensation bars of General T.F. Colby, an apparatus introduced in 1827-1828 at Lough Foyle in Ireland. Ten base lines were measured in India in 1831-1869 by the same apparatus. This is a system of six compound-bars self-correcting for temperature. The bars may be thus described: Two bars, one of brass and the other of iron, are laid in parallelism side by side, firmly united at their centres, from which they may freely expand or contract; at the standard temperature they are of the same length. Let AB be one bar, A′B′ the other; draw lines through the corresponding extremities AA′ (to P) and BB′ (to Q), and make A′P = B′Q, AA′ being equal to BB′. If the ratio A′P/AP equals the ratio of the coefficients of expansion of the bars A′B′ and AB, then, obviously, the distance PQ is constant (or nearly so). In the actual instrument P and Q are finely engraved dots 10 ft. apart. In practice the bars, when aligned, are not in contact, an interval of 6 in. being allowed between each bar and its neighbour. This distance is accurately measured by an ingenious micrometrical arrangement constructed on exactly the same principle as the bars themselves.

The last base line measured in India had a length of 8913 ft. In consequence of some suspicion as to the accuracy of the compensation apparatus, the measurement was repeated four times, the operations being conducted so as to determine the actual values of the probable errors of the apparatus. The direction of the line (which is at Cape Comorin) is north and south. In two of the measurements the brass component was to the west, in the others to the east; the differences between the individual measurements and the mean of the four were +0.0017, −0.0049, −0.0015, +0.0045 ft. These differences are very small; an elaborate investigation of all sources of error shows that the probable error of a base line in India is on the average ±2.8 μ. These compensation bars were also used by Sir Thomas Maclear in the measurement of the base line in his extension of Lacaille’s arc at the Cape. The account of this operation will be found in a volume entitled Verification and Extension of Lacaille’s Arc of Meridian at the Cape of Good Hope, by Sir Thomas Maclear, published in 1866. A rediscussion has been given by Sir David Gill in his Report on the Geodetic Survey of South Africa, &c., 1896.

A very simple base apparatus was employed by W. Struve in his triangulations in Russia from 1817 to 1855. This consisted of four wrought-iron bars, each two toises (rather more than 13 ft.) long; one end of each bar is terminated in a small steel cylinder presenting a slightly convex surface for contact, the other end carries a contact lever rigidly connected with the bar. The shorter arm of the lever terminates below in a polished hemisphere, the upper and longer arm traversing a vertical divided arc. In measuring, the plane end of one bar is brought into contact with the short arm of the contact lever (pushed forward by a weak spring) of the next bar. Each bar has two thermometers, and a level for determining the inclination of the bar in measuring. The manner of transferring the end of a bar to the ground is simply this: under the end of the bar a stake is driven very firmly into the ground, carrying on its upper surface a disk, capable of movement in the direction of the measured line by means of slow-motion screws. A fine mark on this disk is brought vertically under the end of the bar by means of a theodolite which is planted at a distance of 25 ft. from the stake in a direction perpendicular to the base. Struve investigated for each base the probable errors of the measurement arising from each of these seven causes: Alignment, inclination, comparisons with standards, readings of index, personal errors, uncertainties of temperature, and the probable errors of adopted rates of expansion. He found that ±0.8 μ was the mean of the probable errors of the seven bases measured by him. The Austro-Hungarian apparatus is similar; the distance of the rods is measured by a slider, which rests on one of the ends of each rod. Twenty-two base lines were measured in 1840-1899.

General Carlos Ibañez employed in 1858-1879, for the measurement of nine base lines in Spain, two apparatus similar to the apparatus previously employed by Porro in Italy; one is complicated, the other simplified. The first, an apparatus of the brothers Brunner of Paris, was a thermometric combination of two bars, one of platinum and one of brass, in length 4 metres, furnished with three levels and four thermometers. Suppose A, B, C three micrometer microscopes very firmly supported at intervals of 4 metres with their axes vertical, and aligned in the plane of the base line by means of a transit instrument, their micrometer screws being in the line of measurement. The measuring bar is brought under say A and B, and those micrometers read; the bar is then shifted and brought under B and C. By repetition of this process, the reading of a micrometer indicating the end of each position of the bar, the measurement is made.

Quite similar apparatus (among others) has been employed by the French and Germans. Since, however, it only permitted a distance of about 300 m. to be measured daily, Ibañez introduced a simplification; the measuring rod being made simply of steel, and provided with inlaid mercury thermometers. This apparatus was used in Switzerland for the measurement of three base lines. The accuracy is shown by the estimated probable errors: ±0.2 μ to ±0.8 μ. The distance measured daily amounts at least to 800 m.

A greater daily distance can be measured with the same accuracy by means of Bessel’s apparatus; this permits the ready measurement of 2000 m. daily. For this, however, it is important to notice that a large staff and favourable ground are necessary. An important improvement was introduced by Edward Jäderin of Stockholm, who measures with stretched wires of about 24 metres long; these wires are about 1.65 mm. in diameter, and when in use are stretched by an accurate spring balance with a tension of 10 kg.2 The nature of the ground has a very trifling effect on this method. The difficulty of temperature determinations is removed by employing wires made of invar, an alloy of steel (64%) and nickel (36%) which has practically no linear expansion for small thermal changes  at ordinary temperatures; this alloy was discovered in 1896 by Benôit and Guillaume of the International Bureau of Weights and Measures at Breteuil. Apparently the future of base-line measurements rests with the invar wires of the Jäderin apparatus; next comes Porro’s apparatus with invar bars 4 to 5 metres long.

Results have been obtained in the United States, of great importance in view of their accuracy, rapidity of determination and economy. For the measurement of the arc of meridian in longitude 98° E., in 1900, nine base lines of a total length of 69.2 km. were measured in six months. The total cost of one base was $1231. At the beginning and at the end of the field-season a distance of exactly 100 m. was measured with R.S. Woodward’s “5-m. ice-bar” (invented in 1891); by means of the remeasurement of this length the standardization of the apparatus was done under the same conditions as existed in the case of the base measurements. For the measurements there were employed two steel tapes of 100 m. long, provided with supports at distances of 25 m., two of 50 m., and the duplex apparatus of Eimbeck, consisting of four 5-m. rods. Each base was divided into sections of about 1000 m.; one of these, the “test kilometre,” was measured with all the five apparatus, the others only with two apparatus, mostly tapes. The probable error was about ±0.8 μ, and the day’s work a distance of about 2000 m. Each of the four rods of the duplex apparatus consists of two bars of brass and steel. Mercury thermometers are inserted in both bars; these serve for the measurement of the length of the base lines by each of the bars, as they are brought into their consecutive positions, the contact being made by an elastic-sliding contact. The length of the base lines may be calculated for each bar only, and also by the supposition that both bars have the same temperature. The apparatus thus affords three sets of results, which mutually control themselves, and the contact adjustments permit rapid work. The same device has been applied to the older bimetallic-compensating apparatus of Bache-Würdemann (six bases, 1847-1857) and of Schott. There was also employed a single rod bimetallic apparatus on F. Porro’s principle, constructed by the brothers Repsold for some base lines. Excellent results have been more recently obtained with invar tapes.

The following results show the lengths of the same German base lines as measured by different apparatus:




	 
	metres.



	Base at Berlin
	1864
	Apparatus of
	Bessel
	2336·3920



	   ”    ”
	1880
	”
	Brunner
	·3924



	Base at Strehlen
	1854
	”
	Bessel
	2762·5824



	   ”    ”
	1879
	”
	Brunner
	·5852



	Old base at Bonn
	1847
	”
	Bessel
	2133·9095



	   ”    ”
	1892
	”
	”
	·9097



	New base at Bonn
	1892
	”
	”
	2512·9612



	   ”    ”
	1892
	”
	Brunner
	·9696





It is necessary that the altitude above the level of the sea of every part of a base line be ascertained by spirit levelling, in order that the measured length may be reduced to what it would have been had the measurement been made on the surface of the sea, produced in imagination. Thus if l be the length of a measuring bar, h its height at any given position in the measurement, r the radius of the earth, then the length radially projected on to the level of the sea is l(1 − h/r). In the Salisbury Plain base line the reduction to the level of the sea is −0.6294 ft.
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	Fig. 1.





The total number of base lines measured in Europe up to the present time is about one hundred and ten, nineteen of which do not exceed in length 2500 metres, or about 1½ miles, and three—one in France, the others in Bavaria—exceed 19,000 metres. The question has been frequently discussed whether or not the advantage of a long base is sufficiently great to warrant the expenditure of time that it requires, or whether as much precision is not obtainable in the end by careful triangulation from a short base. But the answer cannot be given generally; it must depend on the circumstances of each particular case. With Jäderin’s apparatus, provided with invar wires, bases of 20 to 30 km. long are obtained without difficulty.

In working away from a base line ab, stations c, d, e, f are carefully selected so as to obtain from well-shaped triangles gradually increasing sides. Before, however, finally leaving the base line, it is usual to verify it by triangulation thus: during the measurement two or more points, as p, q (fig. 1), are marked in the base in positions such that the lengths of the different segments of the line are known; then, taking suitable external stations, as h, k, the angles of the triangles bhp, phq, hqk, kqa are measured. From these angles can be computed the ratios of the segments, which must agree, if all operations are correctly performed, with the ratios resulting from the measures. Leaving the base line, the sides increase up to 10, 30 or 50 miles occasionally, but seldom reaching 100 miles. The triangulation points may either be natural objects presenting themselves in suitable positions, such as church towers; or they may be objects specially constructed in stone or wood on mountain tops or other prominent ground. In every case it is necessary that the precise centre of the station be marked by some permanent mark. In India no expense is spared in making permanent the principal trigonometrical stations—costly towers in masonry being erected. It is essential that every trigonometrical station shall present a fine object for observation from surrounding stations.

Horizontal Angles.

In placing the theodolite over a station to be observed from, the first point to be attended to is that it shall rest upon a perfectly solid foundation. The method of obtaining this desideratum must depend entirely on the nature of the ground; the instrument must if possible be supported on rock, or if that be impossible a solid foundation must be obtained by digging. When the theodolite is required to be raised above the surface of the ground in order to command particular points, it is necessary to build two scaffolds,—the outer one to carry the observatory, the inner one to carry the instrument,—and these two edifices must have no point of contact. Many cases of high scaffolding have occurred on the English Ordnance Survey, as for instance at Thaxted church, where the tower, 80 ft. high, is surmounted by a spire of 90 ft. The scaffold for the observatory was carried from the base to the top of the spire; that for the instrument was raised from a point of the spire 140 ft. above the ground, having its bearing upon timbers passing through the spire at that height. Thus the instrument, at a height of 178 ft. above the ground, was insulated, and not affected by the action of the wind on the observatory.

At every station it is necessary to examine and correct the adjustments of the theodolite, which are these: the line of collimation of the telescope must be perpendicular to its axis of rotation; this axis perpendicular to the vertical axis of the instrument; and the latter perpendicular to the plane of the horizon. The micrometer microscopes must also measure correct quantities on the divided circle or circles. The method of observing is this. Let A, B, C ... be the stations to be observed taken in order of azimuth; the telescope is first directed to A and the cross-hairs of the telescope made to bisect the object presented by A, then the microscopes or verniers of the horizontal circle (also of the vertical circle if necessary) are read and recorded. The telescope is then turned to B, which is observed in the same manner; then C and the other stations. Coming round by continuous motion to A, it is again observed, and the agreement of this second reading with the first is some test of the stability of the instrument. In taking this round of angles—or “arc,” as it is called on the Ordnance Survey—it is desirable that the interval of time between the first and second observations of A should be as small as may be consistent with due care. Before taking the next arc the horizontal circle is moved through 20° or 30°; thus a different set of divisions of the circle is used in each arc, which tends to eliminate the errors of division.

It is very desirable that all arcs at a station should contain one point in common, to which all angular measurements are thus referred,—the observations on each arc commencing and ending with this point, which is on the Ordnance Survey called the “referring object.” It is usual for this purpose to select, from among the points which have to be observed, that one which affords the best object for precise observation. For mountain tops a “referring object” is constructed of two rectangular plates of metal in the same vertical plane, their edges parallel and placed at such a distance apart that the light of the sky seen through appears as a vertical line about 10″ in width. The best distance for this object is from 1 to 2 miles.

This method seems at first sight very advantageous; but if, however, it be desired to attain the highest accuracy, it is better, as shown by General Schreiber of Berlin in 1878, to measure only single angles, and as many of these as possible between the directions to be determined. Division-errors are thus more perfectly eliminated, and errors due to the variation in the stability, &c., of the instruments are diminished. This method is rapidly gaining precedence.

The theodolites used in geodesy vary in pattern and in size—the horizontal circles ranging from 10 in. to 36 in. in diameter. In Ramsden’s 36-in. theodolite the telescope has a focal length of 36 in. and an aperture of 2.5 in., the ordinarily used magnifying power being 54; this last, however, can of course be changed at the requirements of the observer or of the weather. The probable error of a single observation of a fine object with this theodolite is about 0″.2. Fig. 2 represents an altazimuth theodolite of an improved pattern used on the Ordnance Survey. The horizontal circle of 14-in. diameter is read by three micrometer microscopes; the vertical circle has a diameter of 12 in., and is read by two microscopes. In the great trigonometrical survey of India the theodolites used in the more important parts of the work have been of 2 and 3 ft. diameter—the circle read by five equidistant microscopes. Every angle is measured twice in each position of the zero of the horizontal circle, of which there are generally ten; the entire  number of measures of an angle is never less than 20. An examination of 1407 angles showed that the probable error of an observed angle is on the average ±0″.28.

For the observations of very distant stations it is usual to employ a heliotrope (from the Gr. ἥλιος, sun; τρόπος, a turn), invented by Gauss at Göttingen in 1821. In its simplest form this is a plane mirror, 4, 6, or 8 in. in diameter, capable of rotation round a horizontal and a vertical axis. This mirror is placed at the station to be observed, and in fine weather it is kept so directed that the rays of the sun reflected by it strike the distant observing telescope. To the observer the heliotrope presents the appearance of a star of the first or second magnitude, and is generally a pleasant object for observing.

Observations at night, with the aid of light-signals, have been repeatedly made, and with good results, particularly in France by General François Perrier, and more recently in the United States by the Coast and Geodetic Survey; the signal employed being an acetylene bicycle-lamp, with a lens 5 in. in diameter. Particularly noteworthy are the trigonometrical connexions of Spain and Algeria, which were carried out in 1879 by Generals Ibañez and Perrier (over a distance of 270 km.), of Sicily and Malta in 1900, and of the islands of Elba and Sardinia in 1902 by Dr Guarducci (over distances up to 230 km.); in these cases artificial light was employed: in the first case electric light and in the two others acetylene lamps.
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Fig. 2.—Altazimuth Theodolite.





Astronomical Observations.

The direction of the meridian is determined either by a theodolite or a portable transit instrument. In the former case the operation consists in observing the angle between a terrestrial object—generally a mark specially erected and capable of illumination at night—and a close circumpolar star at its greatest eastern or western azimuth, or, at any rate, when very near that position. If the observation be made t minutes of time before or after the time of greatest azimuth, the azimuth then will differ from its maximum value by (450t)² sin 1″ sin 2δ/sin z, in seconds of angle, omitting smaller terms, δ being the star’s declination and z its zenith distance. The collimation and level errors are very carefully determined before and after these observations, and it is usual to arrange the observations by the reversal of the telescope so that collimation error shall disappear. If b, c be the level and collimation errors, the correction to the circle reading is b cot z ± c cosec z, b being positive when the west end of the axis is high. It is clear that any uncertainty as to the real state of the level will produce a corresponding uncertainty in the resulting value of the azimuth,—an uncertainty which increases with the latitude and is very large in high latitudes. This may be partly remedied by observing in connexion with the star its reflection in mercury. In determining the value of “one division” of a level tube, it is necessary to bear in mind that in some the value varies considerably with the temperature. By experiments on the level of Ramsden’s 3-foot theodolite, it was found that though at the ordinary temperature of 66° the value of a division was about one second, yet at 32° it was about five seconds.

In a very excellent portable transit used on the Ordnance Survey, the uprights carrying the telescope are constructed of mahogany, each upright being built of several pieces glued and screwed together; the base, which is a solid and heavy plate of iron, carries a reversing apparatus for lifting the telescope out of its bearings, reversing it and letting it down again. Thus is avoided the change of temperature which the telescope would incur by being lifted by the hands of the observer. Another form of transit is the German diagonal form, in which the rays of light after passing through the object-glass are turned by a total reflection prism through one of the transverse arms of the telescope, at the extremity of which arm is the eye-piece. The unused half of the ordinary telescope being cut away is replaced by a counterpoise. In this instrument there is the advantage that the observer without moving the position of his eye commands the whole meridian, and that the level may remain on the pivots whatever be the elevation of the telescope. But there is the disadvantage that the flexure of the transverse axis causes a variable collimation error depending on the zenith distance of the star to which it is directed; and moreover it has been found that in some cases the personal error of an observer is not the same in the two positions of the telescope.

To determine the direction of the meridian, it is well to erect two marks at nearly equal angular distances on either side of the north meridian line, so that the pole star crosses the vertical of each mark a short time before and after attaining its greatest eastern and western azimuths.

If now the instrument, perfectly levelled, is adjusted to have its centre wire on one of the marks, then when elevated to the star, the star will traverse the wire, and its exact position in the field at any moment can be measured by the micrometer wire. Alternate observations of the star and the terrestrial mark, combined with careful level readings and reversals of the instrument, will enable one, even with only one mark, to determine the direction of the meridian in the course of an hour with a probable error of less than a second. The second mark enables one to complete the station more rapidly and gives a check upon the work. As an instance, at Findlay Seat, in latitude 57° 35′, the resulting azimuths of the two marks were 177° 45′ 37″.29 ± 0″.20 and 182° 17′ 15″.61 ± 0″.13, while the angle between the two marks directly measured by a theodolite was found to be 4° 31′ 37″.43 ± 0″.23.
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	Fig. 3.





We now come to the consideration of the determination of time with the transit instrument. Let fig. 3 represent the sphere stereographically projected on the plane of the horizon,—ns being the meridian, we the prime vertical, Z, P the zenith and the pole. Let p be the point in which the production of the axis of the instrument meets the celestial sphere, S the position of a star when observed on a wire whose distance from the collimation centre is c. Let a be the azimuthal deviation, namely, the angle wZp, b the level error so that Zp = 90° − b. Let also the hour angle corresponding to p be 90° − n, and the declination of the same = m, the star’s declination being δ, and the latitude φ. Then to find the hour angle ZPS = τ of the star when observed, in the triangles pPS, pPZ we have, since pPS = 90 + τ − n,




	

   − Sin c = sin m sin δ + cos m cos δ sin (n − τ),

   Sin m = sin b sin φ − cos b cos φ sin a,

Cos m sin n = sin b cos φ + cos b sin φ sin a.









And these equations solve the problem, however large be the errors of the instrument. Supposing, as usual, a, b, m, n to be small, we have at once τ = n + c sec δ + m tan δ, which is the correction to the observed time of transit. Or, eliminating m and n by means of the second and third equations, and putting z for the zenith distance of the star, t for the observed time of transit, the corrected time is t + (a sin z + b cos z + c) / cos δ. Another very convenient form for stars near the zenith is τ = b sec φ + c sec δ + m (tan δ − tan φ).

Suppose that in commencing to observe at a station the error of the chronometer is not known; then having secured for the instrument a very solid foundation, removed as far as possible level and collimation errors, and placed it by estimation nearly in the meridian, let two stars differing considerably in declination be observed—the instrument not being reversed between them. From these two stars, neither of which should be a close circumpolar star, a good approximation to the chronometer error can be obtained; thus  let ε1, ε2, be the apparent clock errors given by these stars if δ1, δ2 be their declinations the real error is

ε = ε1 + (ε1 − ε2) (tan φ − tan δ1) / (tan δ1 − tan δ2).

Of course this is still only approximate, but it will enable the observer (who by the help of a table of natural tangents can compute ε in a few minutes) to find the meridian by placing at the proper time, which he now knows approximately, the centre wire of his instrument on the first star that passes—not near the zenith.

The transit instrument is always reversed at least once in the course of an evening’s observing, the level being frequently read and recorded. It is necessary in most instruments to add a correction for the difference in size of the pivots.

The transit instrument is also used in the prime vertical for the determination of latitudes. In the preceding figure let q be the point in which the northern extremity of the axis of the instrument produced meets the celestial sphere. Let nZq be the azimuthal deviation = a, and b being the level error, Zq = 90° − b; let also nPq = τ and Pq = ψ. Let S′ be the position of a star when observed on a wire whose distance from the collimation centre is c, positive when to the south, and let h be the observed hour angle of the star, viz. ZPS′. Then the triangles qPS′, gPZ give




	

   −Sin c = sin δ cos ψ − cos δ sin ψ cos (h + τ),

   Cos ψ = sin b sin φ + cos b cos φ cos a,

Sin ψ sin τ = cos b sin a.









Now when a and b are very small, we see from the last two equations that ψ = φ − b, a = τ sin ψ, and if we calculate φ′ by the formula cot φ′ = cot δ cos h, the first equation leads us to this result—

φ = φ′ + (a sin z + b cos z + c) / cos z,

the correction for instrumental error being very similar to that applied to the observed time of transit in the case of meridian observations. When a is not very small and z is small, the formulae required are more complicated.
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Fig. 4.—Zenith Telescope constructed for the International Stations at Mizusawa, Carloforte, Gaithersburg and Ukiah, by Hermann Wanschaff, Berlin.





The method of determining latitude by transits in the prime vertical has the disadvantage of being a somewhat slow process, and of requiring a very precise knowledge of the time, a disadvantage from which the zenith telescope is free. In principle this instrument is based on the proposition that when the meridian zenith distances of two stars at their upper culminations—one being to the north and the other to the south of the zenith—are equal, the latitude is the mean of their declinations; or, if the zenith distance of a star culminating to the south of the zenith be Z, its declination being δ, and that of another culminating to the north with zenith distance Z′ and declination δ′, then clearly the latitude is ½(δ + δ′) + ½(Z − Z′). Now the zenith telescope does away with the divided circle, and substitutes the measurement micrometrically of the quantity Z′ − Z.

In fig. 4 is shown a zenith telescope by H. Wanschaff of Berlin, which is the type used (according to the Central Bureau at Potsdam) since about 1890 for the determination of the variations of latitude due to different, but as yet imperfectly understood, influences. The instrument is supported on a strong tripod, fitted with levelling screws; to this tripod is fixed the azimuth circle and a long vertical steel axis. Fitting on this axis is a hollow axis which carries on its upper end a short transverse horizontal axis with a level. This latter carries the telescope, which, supported at the centre of its length, is free to rotate in a vertical plane. The telescope is thus mounted eccentrically with respect to the vertical axis around which it revolves. Two extremely sensitive levels are attached to the telescope, which latter carries a micrometer in its eye-piece, with a screw of long range for measuring differences of zenith distance. Two levels are employed for controlling and increasing the accuracy. For this instrument stars are selected in pairs, passing north and south of the zenith, culminating within a few minutes of time and within about twenty minutes (angular) of zenith distance of each other. When a pair of stars is to be observed, the telescope is set to the mean of the zenith distances and in the plane of the meridian. The first star on passing the central meridional wire is bisected by the micrometer; then the telescope is rotated very carefully through 180° round the vertical axis, and the second star on passing through the field is bisected by the micrometer on the centre wire. The micrometer has thus measured the difference of the zenith distances, and the calculation to get the latitude is most simple. Of course it is necessary to read the level, and the observations are not necessarily confined to the centre wire. In fact if n, s be the north and south readings of the level for the south star, n′, s′ the same for the north star, l the value of one division of the level, m the value of one division of the micrometer, r, r′ the refraction corrections, μ, μ′ the micrometer readings of the south and north star, the micrometer being supposed to read from the zenith, then, supposing the observation made on the centre wire,—

φ = ½ (δ + δ′) + ½ (μ − mu′)m + ¼ (n + n′ − s − s′)l + ½ (r − r′).

It is of course of the highest importance that the value m of the screw be well determined. This is done most effectually by observing the vertical movement of a close circumpolar star when at its greatest azimuth.

In a single night with this instrument a very accurate result, say with a probable error of about 0″.2, could be obtained for latitude from, say, twenty pair of stars; but when the latitude is required to be obtained with the highest possible precision, two nights at least are necessary. The weak point of the zenith telescope lies in the circumstance that its requirements prevent the selection of stars whose positions are well fixed; very frequently it is necessary to have the declinations of the stars selected for this instrument specially observed at fixed observatories. The zenith telescope is made in various sizes from 30 to 54 in. in focal length; a 30-in. telescope is sufficient for the highest purposes and is very portable. The net observation probable-error for one pair of stars is only ±0″.1.

The zenith telescope is a particularly pleasant instrument to work with, and an observer has been known (a sergeant of Royal Engineers, on one occasion) to take every star in his list during eleven hours on a stretch, namely, from 6 o’clock P.M. until 5 A.M., and this on a very cold November night on one of the highest points of the Grampians. Observers accustomed to geodetic operations attain considerable powers of endurance. Shortly after the commencement of the observations on one of the hills in the Isle of Skye a storm carried away the wooden houses of the men and left the observatory roofless. Three observatory roofs were subsequently demolished, and for some time the observatory was used without a roof, being filled with snow every night and emptied every morning. Quite different, however, was the experience of the same party when on the top of Ben Nevis, 4406 ft. high. For about a fortnight the state of the atmosphere was unusually calm, so much so, that a lighted candle could often be carried between the tents of the men and the observatory, whilst at the foot of the hill the weather was wild and stormy.

The determination of the difference of longitude between two stations A and B resolves itself into the determination of the local time at each of the stations, and the comparison by signals of the clocks at A and B. Whenever telegraphic lines are available these comparisons are made by telegraphy. A small and delicately-made apparatus introduced into the mechanism of an astronomical clock or chronometer breaks or closes by the action of the clock an electric circuit every second. In order to record the minutes as well as seconds, one second in each minute, namely that numbered 0 or 60, is omitted. The seconds are recorded on a chronograph, which consists of a cylinder revolving uniformly at the rate of one revolution per minute covered with white paper, on which a pen having a slow movement in the direction of the axis of the cylinder describes a continuous spiral. This pen is deflected through the agency of an electromagnet every second, and thus the seconds of the clock are recorded on the chronograph by offsets from the spiral curve. An observer having his hand on a contact key in the same circuit can record in the same manner his observed times of transits of stars. The method of determination of difference of longitude is, therefore, virtually as follows. After the necessary observations for instrumental corrections, which are recorded only at the station of observation, the clock at A is put in connexion with the circuit so as to write on both chronographs, namely, that at A and that at B. Then the clock at B is made to write on both chronographs. It is clear that by this double operation one can eliminate the effect of the small interval of time consumed in the transmission of signals, for the difference of longitude obtained from the one chronograph will be in excess by as much as that obtained from the other will be in defect. The determination of the personal errors of the observers in this delicate operation is a matter of the greatest importance, as therein lies probably the chief source of residual error.



These errors can nevertheless be almost entirely avoided by using the impersonal micrometer of Dr Repsold (Hamburg, 1889). In this device there is a movable micrometer wire which is brought by hand into coincidence with the star and moved along with it; at fixed points there are electrical contacts, which replace the fixed wires. Experiments at the Geodetic Institute and Central Bureau at Potsdam in 1891 gave the following personal equations in the case of four observers:—




	 
	Older Procedure.
	New Procedure.



	A − B
	−0s.108
	−0s.004



	A − G
	−0s.314
	−0s.035



	A − S
	−0s.184
	−0s.027



	B − G
	−0s.225
	+0s.013



	B − S
	−0s.086
	−0s.023



	G − S
	+0s.109
	−0s.006





These results show that in the later method the personal equation is small and not so variable; and consequently the repetition of longitude determinations with exchanged observers and apparatus entirely eliminates the constant errors, the probable error of such determinations on ten nights being scarcely ±0s.01.

Calculation of Triangulation.

The surface of Great Britain and Ireland is uniformly covered by triangulation, of which the sides are of various lengths from 10 to 111 miles. The largest triangle has one angle at Snowdon in Wales, another on Slieve Donard in Ireland, and a third at Scaw Fell in Cumberland; each side is over a hundred miles and the spherical excess is 64″. The more ordinary method of triangulation is, however, that of chains of triangles, in the direction of the meridian and perpendicular thereto. The principal triangulations of France, Spain, Austria and India are so arranged. Oblique chains of triangles are formed in Italy, Sweden and Norway, also in Germany and Russia, and in the United States. Chains are composed sometimes merely of consecutive plain triangles; sometimes, and more frequently in India, of combinations of triangles forming consecutive polygonal figures. In this method of triangulating, the sides of the triangles are generally from 20 to 30 miles in length—seldom exceeding 40.

The inevitable errors of observation, which are inseparable from all angular as well as other measurements, introduce a great difficulty into the calculation of the sides of a triangulation. Starting from a given base in order to get a required distance, it may generally be obtained in several different ways—that is, by using different sets of triangles. The results will certainly differ one from another, and probably no two will agree. The experience of the computer will then come to his aid, and enable him to say which is the most trustworthy result; but no experience or ability will carry him through a large network of triangles with anything like assurance. The only way to obtain trustworthy results is to employ the method of least squares. We cannot here give any illustration of this method as applied to general triangulation, for it is most laborious, even for the simplest cases.

Three stations, projected on the surface of the sea, give a spherical or spheroidal triangle according to the adoption of the sphere or the ellipsoid as the form of the surface. A spheroidal triangle differs from a spherical triangle, not only in that the curvatures of the sides are different one from another, but more especially in this that, while in the spherical triangle the normals to the surface at the angular points meet at the centre of the sphere, in the spheroidal triangle the normals at the angles A, B, C meet the axis of revolution of the spheroid in three different points, which we may designate α, β, γ respectively. Now the angle A of the triangle as measured by a theodolite is the inclination of the planes BAα and CAα, and the angle at B is that contained by the planes ABβ and CBβ. But the planes ABα and ABβ containing the line AB in common cut the surface in two distinct plane curves. In order, therefore, that a spheroidal triangle may be exactly defined, it is necessary that the nature of the lines joining the three vertices be stated. In a mathematical point of view the most natural definition is that the sides be geodetic or shortest lines. C.C.G. Andrae, of Copenhagen, has also shown that other lines give a less convenient computation.

K.F. Gauss, in his treatise, Disquisitiones generales circa superficies curvas, entered fully into the subject of geodetic (or geodesic) triangles, and investigated expressions for the angles of a geodetic triangle whose sides are given, not certainly finite expressions, but approximations inclusive of small quantities of the fourth order, the side of the triangle or its ratio to the radius of the nearly spherical surface being a small quantity of the first order. The terms of the fourth order, as given by Gauss for any surface in general, are very complicated even when the surface is a spheroid. If we retain small quantities of the second order only, and put A, B, C for the angles of the geodetic triangle, while A, B, C are those of a plane triangle having sides equal respectively to those of the geodetic triangle, then, σ being the area of the plane triangle and a, b, c the measures of curvature at the angular points,




	

A = A + σ(2a + b + c) / 12,

B = B + σ(a + 2b + c) / 12,

C = C + σ(a + b + 2c) / 12.









For the sphere a = b = c, and making this simplification, we obtain the theorem previously given by A.M. Legendre. With the terms of the fourth order, we have (after Andrae):




	
A − A =
	ε
	+
	σ
	k (

	m² − a²
	k +
	
a − k
	
),



	3
	3
	20
	4k








	
B − B =
	ε
	+
	σ
	k (

	m² − b²
	k +
	
b − k
	
),



	3
	3
	20
	4k








	
C − C =
	ε
	+
	σ
	k (

	m² − c²
	k +
	
c − k
	
),



	3
	3
	20
	4k





in which ε = σk {1 + (m²k / 8)}, 3m² = a² + b² + c², 3k = a + b + c. For the ellipsoid of rotation the measure of curvature is equal to 1/ρn, ρ and n being the radii of curvature of the meridian and perpendicular.

It is rarely that the terms of the fourth order are required. As a rule spheroidal triangles are calculated as spherical (after Legendre), i.e. like plane triangles with a decrease of each angle of about ε/3; ε must, however, be calculated for each triangle separately with its mean measure of curvature k.

The geodetic line being the shortest that can be drawn on any surface between two given points, we may be conducted to its most important characteristics by the following considerations: let p, q be adjacent points on a curved surface; through s the middle point of the chord pq imagine a plane drawn perpendicular to pq, and let S be any point in the intersection of this plane with the surface; then pS + Sq is evidently least when sS is a minimum, which is when sS is a normal to the surface; hence it follows that of all plane curves on the surface joining p, q, when those points are indefinitely near to one another, that is the shortest which is made by the normal plane. That is to say, the osculating plane at any point of a geodetic line contains the normal to the surface at that point. Imagine now three points in space, A, B, C, such that AB = BC = c; let the direction cosines of AB be l, m, n, those of BC l’, m′, n′, then x, y, z being the co-ordinates of B, those of A and C will be respectively—




	

x − cl : y − cm : z − cn

x + cl′ : y + cm′ : z + cn′.









Hence the co-ordinates of the middle point M of AC are x + ½c(l′ − l), y + ½c(m′ − m), z + ½c(n′ − n), and the direction cosines of BM are therefore proportional to l′ − l: m′ − m: n′ − n. If the angle made by BC with AB be indefinitely small, the direction cosines of BM are as δl : δm : δn. Now if AB, BC be two contiguous elements of a geodetic, then BM must be a normal to the surface, and since δl, δm, δn are in this case represented by δ(dx/ds), δ(dy/ds), δ(dz/ds), and if the equation of the surface be u = 0, we have




	d²x
	/
	du
	=
	d²y
	/
	du
	=
	d²z
	/
	du
	,



	ds²
	dx
	ds²
	dy
	ds²
	dz





which, however, are equivalent to only one equation. In the case of the spheroid this equation becomes




	y
	d²x
	−
	d²y
	= 0,



	ds²
	ds²





which integrated gives ydx − xdy = Cds. This again may be put in the form r sin a = C, where a is the azimuth of the geodetic at any point—the angle between its direction and that of the meridian—and r the distance of the point from the axis of revolution.

From this it may be shown that the azimuth at A of the geodetic joining AB is not the same as the astronomical azimuth at A of B or that determined by the vertical plane AαB. Generally speaking, the geodetic lies between the two plane section curves joining A and B which are formed by the two vertical planes, supposing these points not far apart. If, however, A and B are nearly in the same latitude, the geodetic may cross (between A and B) that plane curve which lies nearest the adjacent pole of the spheroid. The condition of crossing is this. Suppose that for a moment we drop the consideration of the earth’s non-sphericity, and draw a perpendicular from the pole C on AB, meeting it in S between A and B. Then A being that point which is nearest the pole, the geodetic will cross the plane curve if AS be between ¼AB and 3⁄8AB. If AS lie between this last value and ½AB, the geodetic will lie wholly to the north of both plane curves, that is, supposing both points to be in the northern hemisphere.

The difference of the azimuths of the vertical section AB and of the geodetic AB, i.e. the astronomical and geodetic azimuths, is very small for all observable distances, being approximately:—

Geod. azimuth = Astr. azimuth −1/12 [e²/(1 − e²)] [(s²/ρn (cos²φ sin 2α + (s/4a) | sin 2φ sin α)], in which: e and a are the numerical eccentricity and semi-major axis respectively of the meridian ellipse, φ and α are the latitude and azimuth at A, s = AB, and ρ and n are the radii of curvature of the meridian and perpendicular at A. For s = 100 kilometres, only the first term is of moment; its value is 0″.028 cos² φ sin 2α, and it lies well within the errors of observation. If we imagine the geodetic AB, it will generally trisect the angles between the vertical sections at A and B, so that the geodetic at A is near  the vertical section AB, and at B near the section BA.3 The greatest distance of the vertical sections one from another is e²s³ cos² φ0 sin 2α0/16a², in which φ0 and α0 are the mean latitude and azimuth respectively of the middle point of AB. For the value s = 64 kilometres, the maximum distance is 3 mm.

An idea of the course of a longer geodetic line may be gathered from the following example. Let the line be that joining Cadiz and St Petersburg, whose approximate positions are—




	Cadiz.
	St Petersburg.



	Lat.   36° 22′ N.
	59° 56′ N.



	Long. 6°   18′ W.
	30° 17′ E.





If G be the point on the geodetic corresponding to F on that one of the plane curves which contains the normal at Cadiz (by “corresponding” we mean that F and G are on a meridian) then G is to the north of F; at a quarter of the whole distance from Cadiz GF is 458 ft., at half the distance it is 637 ft., and at three-quarters it is 473 ft. The azimuth of the geodetic at Cadiz differs 20″ from that of the vertical plane, which is the astronomical azimuth.

The azimuth of a geodetic line cannot be observed, so that the line does not enter of necessity into practical geodesy, although many formulae connected with its use are of great simplicity and elegance. The geodetic line has always held a more important place in the science of geodesy among the mathematicians of France, Germany and Russia than has been assigned to it in the operations of the English and Indian triangulations. Although the observed angles of a triangulation are not geodetic angles, yet in the calculation of the distance and reciprocal bearings of two points which are far apart, and are connected by a long chain of triangles, we may fall upon the geodetic line in this manner:—

If A, Z be the points, then to start the calculation from A, we obtain by some preliminary calculation the approximate azimuth of Z, or the angle made by the direction of Z with the side AB or AC of the first triangle. Let P1 be the point where this line intersects BC; then, to find P2, where the line cuts the next triangle side CD, we make the angle BP1P2 such that BP1P2 + BP1A = 180°. This fixes P2, and P3 is fixed by a repetition of the same process; so for P4, P5 .... Now it is clear that the points P1, P2, P3 so computed are those which would be actually fixed by an observer with a theodolite, proceeding in the following manner. Having set the instrument up at A, and turned the telescope in the direction of the computed bearing, an assistant places a mark P1 on the line BC, adjusting it till bisected by the cross-hairs of the telescope at A. The theodolite is then placed over P1, and the telescope turned to A; the horizontal circle is then moved through 180°. The assistant then places a mark P2 on the line CD, so as to be bisected by the telescope, which is then moved to P2, and in the same manner P3 is fixed. Now it is clear that the series of points P1, P2, P3 approaches to the geodetic line, for the plane of any two consecutive elements Pn−1 Pn, Pn Pn+1 contains the normal at Pn.

If the objection be raised that not the geodetic azimuths but the astronomical azimuths are observed, it is necessary to consider that the observed vertical sections do not correspond to points on the sea-level but to elevated points. Since the normals of the ellipsoid of rotation do not in general intersect, there consequently arises an influence of the height on the azimuth. In the case of the measurement of the azimuth from A to B, the instrument is set to a point A′ over the surface of the ellipsoid (the sea-level), and it is then adjusted to a point B′, also over the surface, say at a height h′. The vertical plane containing A′ and B′ also contains A but not B: it must therefore be rotated through a small azimuth in order to contain B. The correction amounts approximately to −e²h′ cos²φ sin 2α/2a; in the case of h′ = 1000 m., its value is 0″.108 cos²φ sin 2α.

This correction is therefore of greater importance in the case of observed azimuths and horizontal angles than in the previously considered case of the astronomical and the geodetic azimuths. The observed azimuths and horizontal angles must therefore also be corrected in the case, where it is required to dispense with geodetic lines.

When the angles of a triangulation have been adjusted by the method of least squares, and the sides are calculated, the next process is to calculate the latitudes and longitudes of all the stations starting from one given point. The calculated latitudes, longitudes and azimuths, which are designated geodetic latitudes, longitudes and azimuths, are not to be confounded with the observed latitudes, longitudes and azimuths, for these last are subject to somewhat large errors. Supposing the latitudes of a number of stations in the triangulation to be observed, practically the mean of these determines the position in latitude of the network, taken as a whole. So the orientation or general azimuth of the whole is inferred from all the azimuth observations. The triangulation is then supposed to be projected on a spheroid of given elements, representing as nearly as one knows the real figure of the earth. Then, taking the latitude of one point and the direction of the meridian there as given—obtained, namely, from the astronomical observations there—one can compute the latitudes of all the other points with any degree of precision that may be considered desirable. It is necessary to employ for this purpose formulae which will give results true even for the longest distances to the second place of decimals of seconds, otherwise there will arise an accumulation of errors from imperfect calculation which should always be avoided. For very long distances, eight places of decimals should be employed in logarithmic calculations; if seven places only are available very great care will be required to keep the last place true. Now let φ, φ′ be the latitudes of two stations A and B; α, α* their mutual azimuths counted from north by east continuously from 0° to 360°; ω their difference of longitude measured from west to east; and s the distance AB.

First compute a latitude φ1 by means of the formula φ1 = φ + (s cos α)/ρ, where ρ is the radius of curvature of the meridian at the latitude φ; this will require but four places of logarithms. Then, in the first two of the following, five places are sufficient—




	ε =
	s²
	sin α cos a,   η =
	s²
	sin² α tan φ1,



	2ρn
	2ρn








	φ′ − φ =
	s
	cos (α − 2⁄3ε) − η,



	rho0









	ω =
	s sin (alpha − 1⁄3ε)
	,



	n cos (φ′ + 1⁄3η)





α* − α = ω sin (φ′ + 2⁄3η) − ε + 180°.

Here n is the normal or radius of curvature perpendicular to the meridian; both n and ρ correspond to latitude φ1, and ρ0 to latitude ½(φ + φ′). For calculations of latitude and longitude, tables of the logarithmic values of ρ sin 1″, n sin 1″, and 2 n ρ sin 1″ are necessary. The following table contains these logarithms for every ten minutes of latitude from 52° to 53° computed with the elements a = 20926060 and a : b = 295 : 294 :—




	Lat.
	Log. 1/ρ sin 1″.
	Log. 1/n sin 1″.
	Log. 1/2ρn sin 1″.



	°   ′
	 
	 
	 



	52 0
	7.9939434
	7.9928231
	0.37131



	10
	9309
	8190
	29



	20
	9185
	8148
	28



	30
	9060
	8107
	26



	40
	8936
	8065
	24



	50
	8812
	8024
	23



	53 0
	8688
	7982
	22





The logarithm in the last column is that required also for the calculation of spherical excesses, the spherical excess of a triangle being expressed by a b sin C/(2ρn) sin 1″.

It is frequently necessary to obtain the co-ordinates of one point with reference to another point; that is, let a perpendicular arc be drawn from B to the meridian of A meeting it in P, then, α being the azimuth of B at A, the co-ordinates of B with reference to A are

AP = s cos (α − 2⁄3ε), BP = s sin (α − 1⁄3ε),

where ε is the spherical excess of APB, viz. s² sin α cos α multiplied by the quantity whose logarithm is in the fourth column of the above table.

If it be necessary to determine the geographical latitude and longitude as well as the azimuths to a greater degree of accuracy than is given by the above formulae, we make use of the following formula: given the latitude φ of A, and the azimuth α and the distance s of B, to determine the latitude φ′ and longitude ω of B, and the back azimuth α′. Here it is understood that α′ is symmetrical to α, so that α* + α′ = 360°.

Let

θ = sΔ / a, where Δ = (1 − e² sin² φ)1/2

and




	ξ =
	e² θ²
	cos² φ sin 2α,   ξ′ =
	e² θ³
	cos² φ cos² α;



	4 (1 − e²)
	6 (1 − e²)





ξ, ξ′ are always very minute quantities even for the longest distances; then, putting κ = 90° − φ,




	tan
	α′ + ξ − ω
	=
	sin ½(κ − θ − ξ′)
	cot
	α



	2
	sin ½(κ + θ + ξ′)
	2








	tan
	α′ + ξ − ω
	=
	cos ½(κ − θ − ξ′)
	cot
	α



	2
	cos ½(κ + θ + ξ′)
	2








	φ′ − φ =
	s sin ½(α′ + ξ − α)
	
( 1 +
	θ²
	cos²
	α′ − α
	
);



	ρ0 sin ½(α′ + ξ + α)
	12
	2





here ρ0 is the radius of curvature of the meridian for the mean latitude ½(φ + φ′). These formulae are approximate only, but they are sufficiently precise even for very long distances.

For lines of any length the formulae of F.W. Bessel (Astr. Nach., 1823, iv. 241) are suitable.

If the two points A and B be defined by their geographical  co-ordinates, we can accurately calculate the corresponding astronomical azimuths, i.e. those of the vertical section, and then proceed, in the case of not too great distances, to determine the length and the azimuth of the shortest lines. For any distances recourse must again be made to Bessel’s formula.4

Let α, α′ be the mutual azimuths of two points A, B on a spheroid, k the chord line joining them, μ, μ′ the angles made by the chord with the normals at A and B, φ, φ′, ω their latitudes and difference of longitude, and (x² + y²)/a² + z² b² = 1 the equation of the surface; then if the plane xz passes through A the co-ordinates of A and B will be




	x = (a/Δ) cos φ,
	x′ = (a/Δ’) cos φ′ cos ω,



	y = 0
	y′ = (a/Δ’) cos φ′ sin ω,



	z = (a/Δ) (1 − e²) sin φ,
	z′ = (a/Δ′) (1 − e²) sin φ′,





where Δ = (1 − e² sin² φ)1/2, Δ′ = (1 − e² sin² φ′)1/2, and e is the eccentricity. Let f, g, h be the direction cosines of the normal to that plane which contains the normal at A and the point B, and whose inclinations to the meridian plane of A is = α; let also l, m, n and l’, m’, n’ be the direction cosines of the normal at A, and of the tangent to the surface at A which lies in the plane passing through B, then since the first line is perpendicular to each of the other two and to the chord k, whose direction cosines are proportional to x′ − x, y′ − y, z′ − z, we have these three equations




	f (x′ − x) + gy′ + h (z′ − z) = 0



	fl + gm + hn = 0



	fl′ + gm′ + hn′ = 0.





Eliminate f, g, h from these equations, and substitute




	l = cos φ
	l′ = − sin φ cos α



	m = 0
	m′ = sin α



	n = sin φ
	n′ = cos φ cos α,





and we get

(x′ − x) sin φ + y′ cot α − (z′ − z) cos φ = 0.

The substitution of the values of x, z, x′, y′, z′ in this equation will give immediately the value of cot α; and if we put ζ, ζ’ for the corresponding azimuths on a sphere, or on the supposition e = 0, the following relations exist




	cot α − cot ζ = e²
	cos φ Q



	cos φ′ Δ








	cot α′ − cot ζ′ = −e²
	cos φ′ Q
	



	cos φ Δ′





Δ′ sin φ − Δ sin φ′ = Q sin ω.

If from B we let fall a perpendicular on the meridian plane of A, and from A let fall a perpendicular on the meridian plane of B, then the following equations become geometrically evident:




	k sin μ sin α = (a/Δ′) cos φ′ sin ω



	k sin μ′ sin α′ = (a/Δ) cos φ sin ω.





Now in any surface u = 0 we have

k² = (x′ − x)² + (y′ − y)² + (z′ − z)²




	−cos μ = [ (x′ − x)
	du
	+ (y′ − y)
	du
	+ (z′ − z)
	du
	
] / k (

	du²
	+
	du²
	+
	du²
	)
	1/2



	dx
	dy
	dz
	dx²
	dy²
	dz²








	cos μ′ = [ (x′ − x)
	du
	+ (y′ − y)
	du
	+ (z′ − z)
	du
	
] / k (

	du²
	+
	du²
	+
	du²
	)
	1/2
	.



	dx′
	dy′
	dz′
	dx′²
	dy′²
	dz′²





In the present case, if we put




	1 −
	xx′
	−
	zz′
	= U,



	a²
	b²





then




	k²
	= 2U − e² (

	z′ − z
	)
	²



	a²
	b





cos μ = (a/k) ΔU; cos μ′ = (a/k) Δ′U.

Let u be such an angle that




	(1 − e²)½ sin φ = Δ sin u



	cos φ = Δ cos u,





then on expressing x, x′, z, z′ in terms of u and u′,

U = 1 − cos u cos u′ cos ω − sin u sin u′;

also, if v be the third side of a spherical triangle, of which two sides are ½π − u and ½π − u′ and the included angle ω, using a subsidiary angle ψ such that

sin ψ sin ½v = e sin ½ (u′ − u) cos ½ (u′ + u),

we obtain finally the following equations:—




	k
	= 2a cos ψ sin ½v



	cos μ
	= Δ sec ψ sin ½v



	cos μ′
	= Δ′ sec ψ sin ½v



	sin μ sin α
	= (a/k) cos u′ sin ω



	sin μ′ sin α′
	= (a/k) cos u sin ω.





These determine rigorously the distance, and the mutual zenith distances and azimuths, of any two points on a spheroid whose latitudes and difference of longitude are given.

By a series of reductions from the equations containing ζ, ζ′ it may be shown that

α + α′ = ζ + ζ′ + ¼e4ω (φ′ − φ)² cos4 φ0 sin φ0 + ...,

where φ0 is the mean of φ and φ′, and the higher powers of e are neglected. A short computation will show that the small quantity on the right-hand side of this equation cannot amount even to the thousandth part of a second for k < 0.1a, which is, practically speaking, zero; consequently the sum of the azimuths α + α′ on the spheroid is equal to the sum of the spherical azimuths, whence follows this very important theorem (known as Dalby′s theorem). If φ, φ′ be the latitudes of two points on the surface of a spheroid, ω their difference of longitude, α, α′ their reciprocal azimuths,

tan ½ω = cot ½ (α + α′) {cos ½ (φ′ − φ) / sin ½ (φ′ + φ)}.

The computation of the geodetic from the astronomical azimuths has been given above. From k we can now compute the length s of the vertical section, and from this the shortest length. The difference of length of the geodetic line and either of the plane curves is

e4s5 cos4 φ0 sin² 2α0/360 a4.

At least this is an approximate expression. Supposing s = 0.1a, this quantity would be less than one-hundredth of a millimetre. The line s is now to be calculated as a circular arc with a mean radius r along AB. If φ0 = ½ (φ + φ′), α0 = ½ (180° + α − α′), Δ0 = (1 − e² sin² φ0)1/2, then 1/r = Δ0/a [1 + (e²/(1 − e²) cos² φ0 cos² α0], and approximately sin (s/2r) = k/2r. These formulae give, in the case of k = 0.1a, values certain to eight logarithmic decimal places. An excellent series of formulae for the solution of the problem, to determine the azimuths, chord and distance along the surface from the geographical co-ordinates, was given in 1882 by Ch. M. Schols (Archives Néerlandaises, vol. xvii.).

Irregularities of the Earth’s Surface.

In considering the effect of unequal distribution of matter in the earth’s crust on the form of the surface, we may simplify the matter by disregarding the considerations of rotation and eccentricity. In the first place, supposing the earth a sphere covered with a film of water, let the density ρ be a function of the distance from the centre so that surfaces of equal density are concentric spheres. Let now a disturbance of the arrangement of matter take place, so that the density is no longer to be expressed by ρ, a function of r only, but is expressed by ρ + ρ′, where ρ′ is a function of three co-ordinates θ, φ, r. Then ρ′ is the density of what may be designated disturbing matter; it is positive in some places and negative in others, and the whole quantity of matter whose density is ρ′ is zero. The previously spherical surface of the sea of radius a now takes a new form. Let P be a point on the disturbed surface, P′ the corresponding point vertically below it on the undisturbed surface, PP′ = N. The knowledge of N over the whole surface gives us the form of the disturbed or actual surface of the sea; it is an equipotential surface, and if V be the potential at P of the disturbing matter ρ′, M the mass of the earth (the attraction-constant is assumed equal to unity)




	M
	+ V = C =
	M
	−
	M
	N + V.



	a + N
	a
	a²





As far as we know, N is always a very small quantity, and we have with sufficient approximation N = 3V/4πδa, where δ is the mean density of the earth. Thus we have the disturbance in elevation of the sea-level expressed in terms of the potential of the disturbing matter. If at any point P the value of N remain constant when we pass to any adjacent point, then the actual surface is there parallel to the ideal spherical surface; as a rule, however, the normal at P is inclined to that at P′, and astronomical observations have shown that this inclination, the deflection or deviation, amounting ordinarily to one or two seconds, may in some cases exceed 10″, or, as at the foot of the Himalayas, even 60″. By the expression “mathematical figure of the earth” we mean the surface of the sea produced in imagination so as to percolate the continents. We see then that the effect of the uneven distribution of matter in the crust of the earth is to produce small elevations and depressions on the mathematical surface which would be otherwise spheroidal. No geodesist can proceed far in his work without encountering the irregularities of the mathematical surface, and it is necessary that he should know how they affect his astronomical observations. The whole of this subject is dealt with in his usual elegant manner by Bessel in the Astronomische Nachrichten, Nos. 329, 330, 331, in a paper entitled “Ueber den Einfluss der Unregelmässigkeiten der Figur der Erde auf geodätische Arbeiten, &c.” But without entering into further details it is not difficult to see how local attraction at any station affects the determinations of latitude, longitude and azimuth there.

Let there be at the station an attraction to the north-east throwing the zenith to the south-west, so that it takes in the celestial sphere a position Z′, its undisturbed position being Z. Let the rectangular components of the displacement ZZ′ be ξ measured southwards  and η measured westwards. Now the great circle joining Z′ with the pole of the heavens P makes there an angle with the meridian PZ = η cosec PZ′ = η sec φ, where φ is the latitude of the station. Also this great circle meets the horizon in a point whose distance from the great circle PZ is η sec φ sin φ = η tan φ. That is, a meridian mark, fixed by observations of the pole star, will be placed that amount to the east of north. Hence the observed latitude requires the correction ξ; the observed longitude a correction η sec φ; and any observed azimuth a correction η tan φ. Here it is supposed that azimuths are measured from north by east, and longitudes eastwards. The horizontal angles are also influenced by the deflections of the plumb-line, in fact, just as if the direction of the vertical axis of the theodolite varied by the same amount. This influence, however, is slight, so long as the sights point almost horizontally at the objects, which is always the case in the observation of distant points.

The expression given for N enables one to form an approximate estimate of the effect of a compact mountain in raising the sea-level. Take, for instance, Ben Nevis, which contains about a couple of cubic miles; a simple calculation shows that the elevation produced would only amount to about 3 in. In the case of a mountain mass like the Himalayas, stretching over some 1500 miles of country with a breadth of 300 and an average height of 3 miles, although it is difficult or impossible to find an expression for V, yet we may ascertain that an elevation amounting to several hundred feet may exist near their base. The geodetical operations, however, rather negative this idea, for it was shown by Colonel Clarke (Phil. Mag., 1878) that the form of the sea-level along the Indian arc departs but slightly from that of the mean figure of the earth. If this be so, the action of the Himalayas must be counteracted by subterranean tenuity.

Suppose now that A, B, C, ... are the stations of a network of triangulation projected on or lying on a spheroid of semiaxis major and eccentricity a, e, this spheroid having its axis parallel to the axis of rotation of the earth, and its surface coinciding with the mathematical surface of the earth at A. Then basing the calculations on the observed elements at A, the calculated latitudes, longitudes and directions of the meridian at the other points will be the true latitudes, &c., of the points as projected on the spheroid. On comparing these geodetic elements with the corresponding astronomical determinations, there will appear a system of differences which represent the inclinations, at the various points, of the actual irregular surface to the surface of the spheroid of reference. These differences will suggest two things,—first, that we may improve the agreement of the two surfaces, by not restricting the spheroid of reference by the condition of making its surface coincide with the mathematical surface of the earth at A; and secondly, by altering the form and dimensions of the spheroid. With respect to the first circumstance, we may allow the spheroid two degrees of freedom, that is, the normals of the surfaces at A may be allowed to separate a small quantity, compounded of a meridional difference and a difference perpendicular to the same. Let the spheroid be so placed that its normal at A lies to the north of the normal to the earth’s surface by the small quantity ξ and to the east by the quantity η. Then in starting the calculation of geodetic latitudes, longitudes and azimuths from A, we must take, not the observed elements φ, α, but for φ, φ + ξ, and for α, α + η tan φ, and zero longitude must be replaced by η sec φ. At the same time suppose the elements of the spheroid to be altered from a, e to a + da, e + de. Confining our attention at first to the two points A, B, let (φ′), (α′), (ω) be the numerical elements at B as obtained in the first calculation, viz. before the shifting and alteration of the spheroid; they will now take the form




	

(φ′) + fξ + gη + hda + kde,

(α′) + f′ξ + g′η + h′da + k′de,

ω + f″ξ + g″η + h″da + k″de,









where the coefficients f, g, ... &c. can be numerically calculated. Now these elements, corresponding to the projection of B on the spheroid of reference, must be equal severally to the astronomically determined elements at B, corrected for the inclination of the surfaces there. If ξ′, η′ be the components of the inclination at that point, then we have




	ξ′
	= (φ′) − φ′ + fξ + gη + hda + kde,



	η′ tan φ′
	= (α′) − α′ + f′ξ + g′η + h′da + k′de,



	η′ sec φ′
	= (ω) − ω + f″ξ + g″η + h″da + k″de,





where φ′, α′, ω are the observed elements at B. Here it appears that the observation of longitude gives no additional information, but is available as a check upon the azimuthal observations.

If now there be a number of astronomical stations in the triangulation, and we form equations such as the above for each point, then we can from them determine those values of ξ, η, da, de, which make the quantity ξ² + η² + ξ′² + η′² + ... a minimum. Thus we obtain that spheroid which best represents the surface covered by the triangulation.

In the Account of the Principal Triangulation of Great Britain and Ireland will be found the determination, from 75 equations, of the spheroid best representing the surface of the British Isles. Its elements are a = 20927005 ± 295 ft., b : a − b = 280 ± 8; and it is so placed that at Greenwich Observatory ξ = 1″.864, η = −0″.546.

Taking Durham Observatory as the origin, and the tangent plane to the surface (determined by ξ = −0″.664, η = −4″.117) as the plane of x and y, the former measured northwards, and z measured vertically downwards, the equation to the surface is

.99524953 x² + .99288005 y² + .99763052 z² − 0.00671003xz − 41655070z = 0.

Altitudes.

The precise determination of the altitude of his station is a matter of secondary importance to the geodesist; nevertheless it is usual to observe the zenith distances of all trigonometrical points. Of great importance is a knowledge of the height of the base for its reduction to the sea-level. Again the height of a station does influence a little the observation of terrestrial angles, for a vertical line at B does not lie generally in the vertical plane of A (see above). The height above the sea-level also influences the geographical latitude, inasmuch as the centrifugal force is increased and the magnitude and direction of the attraction of the earth are altered, and the effect upon the latitude is a very small term expressed by the formula h (g′ − g) sin 2 φ/ag, where g, g′ are the values of gravity at the equator and at the pole. This is h sin 2 φ/5820 seconds, h being in metres, a quantity which may be neglected, since for ordinary mountain heights it amounts to only a few hundredths of a second. We can assume this amount as joined with the northern component of the plumb-line perturbations.

The uncertainties of terrestrial refraction render it impossible to determine accurately by vertical angles the heights of distant points. Generally speaking, refraction is greatest at about daybreak; from that time it diminishes, being at a minimum for a couple of hours before and after mid-day; later in the afternoon it again increases. This at least is the general march of the phenomenon, but it is by no means regular. The vertical angles measured at the station on Hart Fell showed on one occasion in the month of September a refraction of double the average amount, lasting from 1 P.M. to 5 P.M. The mean value of the coefficient of refraction k determined from a very large number of observations of terrestrial zenith distances in Great Britain is .0792 ± .0047; and if we separate those rays which for a considerable portion of their length cross the sea from those which do not, the former give k = .0813 and the latter k = .0753. These values are determined from high stations and long distances; when the distance is short, and the rays graze the ground, the amount of refraction is extremely uncertain and variable. A case is noted in the Indian survey where the zenith distance of a station 10.5 miles off varied from a depression of 4′ 52″.6 at 4.30 P.M. to an elevation of 2′ 24″.0 at 10.50 P.M.

If h, h′ be the heights above the level of the sea of two stations, 90° + δ, 90° + δ′ their mutual zenith distances (δ being that observed at h), s their distance apart, the earth being regarded as a sphere of radius = a, then, with sufficient precision,




	h′ − h = s tan ( s
	1 − 2k
	− δ),   h − h′ = s tan ( s
	1 − 2k
	− δ′).



	2a
	2a





If from a station whose height is h the horizon of the sea be observed to have a zenith distance 90° + δ, then the above formula gives for h the value




	h =
	a
	 
	tan² δ
	



	2
	1 − 2k





Suppose the depression δ to be n minutes, then h = 1.054n² if the ray be for the greater part of its length crossing the sea; if otherwise, h = 1.040n². To take an example: the mean of eight observations of the zenith distance of the sea horizon at the top of Ben Nevis is 91° 4′ 48″, or δ = 64.8; the ray is pretty equally disposed over land and water, and hence h = 1.047n² = 4396 ft. The actual height of the hill by spirit-levelling is 4406 ft., so that the error of the height thus obtained is only 10 ft.

The determination of altitudes by means of spirit-levelling is undoubtedly the most exact method, particularly in its present development as precise-levelling, by which there have been determined in all civilized countries close-meshed nets of elevated points covering the entire land.




(A. R. C; F. R. H.)




1 An arrangement acting similarly had been previously introduced by Borda.

2 Geodetic Survey of South Africa, vol. iii. (1905), p. viii; Les Nouveaux Appareils pour la mesure rapide des bases géod., par J. René Benoît et Ch. Éd. Guillaume (1906).

3 See a paper “On the Course of Geodetic Lines on the Earth’s Surface” in the Phil. Mag. 1870; Helmert, Theorien der höheren Geodäsie, 1. 321.

4 Helmert, Theorien der höheren Geodäsie, 1. 232, 247.





GEOFFREY, surnamed Martel (1006-1060), count of Anjou, son of the count Fulk Nerra (q.v.) and of the countess Hildegarde or Audegarde, was born on the 14th of October 1006. During his father’s lifetime he was recognized as suzerain by Fulk l’Oison (“the Gosling”), count of Vendôme, the son of his half-sister Adela. Fulk having revolted, he confiscated the countship, which he did not restore till 1050. On the 1st of January 1032 he married Agnes, widow of William the Great, duke of Aquitaine, and taking arms against William the Fat, eldest son and successor of William the Great, defeated him and took him prisoner at Mont-Couër near Saint-Jouin-de-Marnes on the 20th of September 1033. He then tried to win recognition as dukes of Aquitaine for the sons of his wife Agnes by William the Great, who were still minors, but Fulk Nerra promptly took up arms to defend his suzerain William the Fat, from whom he held the Loudunois and  Saintonge in fief against his son. In 1036 Geoffrey Martel had to liberate William the Fat, on payment of a heavy ransom, but the latter having died in 1038, and the second son of William the Great, Odo, duke of Gascony, having fallen in his turn at the siege of Mauzé (10th of March 1039) Geoffrey made peace with his father in the autumn of 1039, and had his wife’s two sons recognized as dukes. About this time, also, he had interfered in the affairs of Maine, though without much result, for having sided against Gervais, bishop of Le Mans, who was trying to make himself guardian of the young count of Maine, Hugh, he had been beaten and forced to make terms with Gervais in 1038. In 1040 he succeeded his father in Anjou and was able to conquer Touraine (1044) and assert his authority over Maine (see Anjou). About 1050 he repudiated Agnes, his first wife, and married Grécie, the widow of Bellay, lord of Montreuil-Bellay (before August 1052), whom he subsequently left in order to marry Adela, daughter of a certain Count Odo. Later he returned to Grécie, but again left her to marry Adelaide the German. When, however, he died on the 14th of November 1060, at the monastery of St Nicholas at Angers, he left no children, and transmitted the countship to Geoffrey the Bearded, the eldest of his nephews (see ANJOU).


See Louis Halphen, Le Comté d’Anjou au XIe siècle (Paris, 1906). A summary biography is given by Célestin Port, Dictionnaire historique, géographique et biographique de Maine-et-Loire (3 vols., Paris-Angers, 1874-1878), vol. ii. pp. 252-253, and a sketch of the wars by Kate Norgate, England under the Angevin Kings (2 vols., London, 1887), vol. i. chs. iii. iv.



(L. H.*)



GEOFFREY, surnamed Plantagenet [or Plantegenet] (1113-1151), count of Anjou, was the son of Count Fulk the Young and of Eremburge (or Arembourg of La Flèche); he was born on the 24th of August 1113. He is also called “le bel” or “the handsome,” and received the surname of Plantagenet from the habit which he is said to have had of wearing in his cap a sprig of broom (genêt). In 1127 he was made a knight, and on the 2nd of June 1129 married Matilda, daughter of Henry I. of England, and widow of the emperor Henry V. Some months afterwards he succeeded to his father, who gave up the countship when he definitively went to the kingdom of Jerusalem. The years of his government were spent in subduing the Angevin barons and in conquering Normandy (see Anjou). In 1151, while returning from the siege of Montreuil-Bellay, he took cold, in consequence of bathing in the Loir at Château-du-Loir, and died on the 7th of September. He was buried in the cathedral of Le Mans. By his wife Matilda he had three sons: Henry Plantagenet, born at Le Mans on Sunday, the 5th of March 1133; Geoffrey, born at Argentan on the 1st of June 1134; and William Long-Sword, born on the 22nd of July 1136.


See Kate Norgate, England under the Angevin Kings (2 vols., London, 1887), vol. i. chs. v.-viii.; Célestin Port, Dictionnaire historique, géographique et biographique de Maine-et-Loire (3 vols., Paris-Angers, 1874-1878), vol. ii. pp. 254-256. A history of Geoffrey le Bel has yet to be written; there is a biography of him written in the 12th century by Jean, a monk of Marmoutier, Historia Gaufredi, ducis Normannorum et comitis Andegavorum, published by Marchegay et Salmon; “Chroniques des comtes d’Anjou” (Société de l’histoire de France, Paris, 1856), pp. 229-310.



(L. H.*)



GEOFFREY (1158-1186), duke of Brittany, fourth son of the English king Henry II. and his wife Eleanor of Aquitaine, was born on the 23rd of September 1158. In 1167 Henry suggested a marriage between Geoffrey and Constance (d. 1201), daughter and heiress of Conan IV., duke of Brittany (d. 1171); and Conan not only assented, perhaps under compulsion, to this proposal, but surrendered the greater part of his unruly duchy to the English king. Having received the homage of the Breton nobles, Geoffrey joined his brothers, Henry and Richard, who, in alliance with Louis VII. of France, were in revolt against their father; but he made his peace in 1174, afterwards helping to restore order in Brittany and Normandy, and aiding the new French king, Philip Augustus, to crush some rebellious vassals. In July 1181 his marriage with Constance was celebrated, and practically the whole of his subsequent life was spent in warfare with his brother Richard. In 1183 he made peace with his father, who had come to Richard’s assistance; but a fresh struggle soon broke out for the possession of Anjou, and Geoffrey was in Paris treating for aid with Philip Augustus, when he died on the 19th of August 1186. He left a daughter, Eleanor, and his wife bore a posthumous son, the unfortunate Arthur.



GEOFFREY (c. 1152-1212), archbishop of York, was a bastard son of Henry II., king of England. He was distinguished from his legitimate half-brothers by his consistent attachment and fidelity to his father. He was made bishop of Lincoln at the age of twenty-one (1173); but though he enjoyed the temporalities he was never consecrated and resigned the see in 1183. He then became his father’s chancellor, holding a large number of lucrative benefices in plurality. Richard nominated him archbishop of York in 1189, but he was not consecrated till 1191, or enthroned till 1194. Geoffrey, though of high character, was a man of uneven temper; his history in chiefly one of quarrels, with the see of Canterbury, with the chancellor William Longchamp, with his half-brothers Richard and John, and especially with his canons at York. This last dispute kept him in litigation before Richard and the pope for many years. He led the clergy in their refusal to be taxed by John and was forced to fly the kingdom in 1207. He died in Normandy on the 12th of December 1212.


See Giraldus Cambrensis, Vita Galfridi; Stubbs’s prefaces to Roger de Hoveden, vols. iii. and iv. (Rolls Series).



(H. W. C. D.)



GEOFFREY DE MONTBRAY (d. 1093), bishop of Coutances (Constantiensis), a right-hand man of William the Conqueror, was a type of the great feudal prelate, warrior and administrator at need. He knew, says Orderic, more about marshalling mailed knights than edifying psalm-singing clerks. Obtaining, as a young man, in 1048, the see of Coutances, by his brother’s influence (see Mowbray), he raised from his fellow nobles and from their Sicilian spoils funds for completing his cathedral, which was consecrated in 1056. With bishop Odo, a warrior like himself, he was on the battle-field of Hastings, exhorting the Normans to victory; and at William’s coronation it was he who called on them to acclaim their duke as king. His reward in England was a mighty fief scattered over twelve counties. He accompanied William on his visit to Normandy (1067), but, returning, led a royal force to the relief of Montacute in September 1069. In 1075 he again took the field, leading with Bishop Odo a vast host against the rebel earl of Norfolk, whose stronghold at Norwich they besieged and captured.

Meanwhile the Conqueror had invested him with important judicial functions. In 1072 he had presided over the great Kentish suit between the primate and Bishop Odo, and about the same time over those between the abbot of Ely and his despoilers, and between the bishop of Worcester and the abbot of Ely, and there is some reason to think that he acted as a Domesday commissioner (1086), and was placed about the same time in charge of Northumberland. The bishop, who attended the Conqueror’s funeral, joined in the great rising against William Rufus next year (1088), making Bristol, with which (as Domesday shows) he was closely connected and where he had built a strong castle, his base of operations. He burned Bath and ravaged Somerset, but had submitted to the king before the end of the year. He appears to have been at Dover with William in January 1090, but, withdrawing to Normandy, died at Coutances three years later. In his fidelity to Duke Robert he seems to have there held out for him against his brother Henry, when the latter obtained the Cotentin.


See E.A. Freeman, Norman Conquest and William Rufus; J.H. Round, Feudal England; and, for original authorities, the works of Orderic Vitalis and William of Poitiers, and of Florence of Worcester; the Anglo-Saxon Chronicle; William of Malmesbury’s Gesta pontificum, and Lanfranc’s works, ed. Giles; Domesday Book.



(J. H. R.)



GEOFFREY OF MONMOUTH (d. 1154), bishop of St Asaph and writer on early British history, was born about the year 1100. Of his early life little is known, except that he received a liberal education under the eye of his paternal uncle, Uchtryd, who was at that time archdeacon, and subsequently bishop, of Llandaff. In 1129 Geoffrey appears at Oxford among the witnesses of an Oseney charter. He subscribes himself Geoffrey Arturus; from this we may perhaps infer that he had already begun his experiments in the manufacture of Celtic mythology. A first edition of his Historia Britonum was in circulation by the year  1139, although the text which we possess appears to date from 1147. This famous work, which the author has the audacity to place on the same level with the histories of William of Malmesbury and Henry of Huntingdon, professes to be a translation from a Celtic source; “a very old book in the British tongue” which Walter, archdeacon of Oxford, had brought from Brittany. Walter the archdeacon is a historical personage; whether his book has any real existence may be fairly questioned. There is nothing in the matter or the style of the Historia to preclude us from supposing that Geoffrey drew partly upon confused traditions, partly on his own powers of invention, and to a very slight degree upon the accepted authorities for early British history. His chronology is fantastic and incredible; William of Newburgh justly remarks that, if we accepted the events which Geoffrey relates, we should have to suppose that they had happened in another world. William of Newburgh wrote, however, in the reign of Richard I. when the reputation of Geoffrey’s work was too well established to be shaken by such criticisms. The fearless romancer had achieved an immediate success. He was patronized by Robert, earl of Gloucester, and by two bishops of Lincoln; he obtained, about 1140, the archdeaconry of Llandaff “on account of his learning”; and in 1151 was promoted to the see of St Asaph.

Before his death the Historia Britonum had already become a model and a quarry for poets and chroniclers. The list of imitators begins with Geoffrey Gaimar, the author of the Estorie des Engles (c. 1147), and Wace, whose Roman de Brut (1155) is partly a translation and partly a free paraphrase of the Historia. In the next century the influence of Geoffrey is unmistakably attested by the Brut of Layamon, and the rhyming English chronicle of Robert of Gloucester. Among later historians who were deceived by the Historia Britonum it is only needful to mention Higdon, Hardyng, Fabyan (1512), Holinshed (1580) and John Milton. Still greater was the influence of Geoffrey upon those writers who, like Warner in Albion’s England (1586), and Drayton in Polyolbion (1613), deliberately made their accounts of English history as poetical as possible. The stories which Geoffrey preserved or invented were not infrequently a source of inspiration to literary artists. The earliest English tragedy, Gorboduc (1565), the Mirror for Magistrates (1587), and Shakespeare’s Lear, are instances in point. It was, however, the Arthurian legend which of all his fabrications attained the greatest vogue. In the work of expanding and elaborating this theme the successors of Geoffrey went as far beyond him as he had gone beyond Nennius; but he retains the credit due to the founder of a great school. Marie de France, who wrote at the court of Henry II., and Chrétien de Troyes, her French contemporary, were the earliest of the avowed romancers to take up the theme. The succeeding age saw the Arthurian story popularized, through translations of the French romances, as far afield as Germany and Scandinavia. It produced in England the Roman du Saint Graal and the Roman de Merlin, both from the pen of Robert de Borron; the Roman de Lancelot; the Roman de Tristan, which is attributed to a fictitious Lucas de Gast. In the reign of Edward IV. Sir Thomas Malory paraphrased and arranged the best episodes of these romances in English prose. His Morte d’Arthur, printed by Caxton in 1485, epitomizes the rich mythology which Geoffrey’s work had first called into life, and gave the Arthurian story a lasting place in the English imagination. The influence of the Historia Britonum may be illustrated in another way, by enumerating the more familiar of the legends to which it first gave popularity. Of the twelve books into which it is divided only three (Bks. IX., X., XI.) are concerned with Arthur. Earlier in the work, however, we have the adventures of Brutus; of his follower Corineus, the vanquisher of the Cornish giant Goemagol (Gogmagog); of Locrinus and his daughter Sabre (immortalized in Milton’s Comus); of Bladud the builder of Bath; of Lear and his daughters; of the three pairs of brothers, Ferrex and Porrex, Brennius and Belinus, Elidure and Peridure. The story of Vortigern and Rowena takes its final form in the Historia Britonum; and Merlin makes his first appearance in the prelude to the Arthur legend. Besides the Historia Britonum Geoffrey is also credited with a Life of Merlin composed in Latin verse. The authorship of this work has, however, been disputed, on the ground that the style is distinctly superior to that of the Historia. A minor composition, the Prophecies of Merlin, was written before 1136, and afterwards incorporated with the Historia, of which it forms the seventh book.


For a discussion of the manuscripts of Geoffrey’s work, see Sir T.D. Hardy’s Descriptive Catalogue (Rolls Series), i. pp. 341 ff. The Historia Britonum has been critically edited by San Marte (Halle, 1854). There is an English translation by J.A. Giles (London, 1842). The Vita Merlini has been edited by F. Michel and T. Wright (Paris, 1837). See also the Dublin Univ. Magazine for April 1876, for an article by T. Gilray on the literary influence of Geoffrey; G. Heeger’s Trojanersage der Britten (1889); and La Borderie’s Études historiques bretonnes (1883).



(H. W. C. D.)



GEOFFREY OF PARIS (d. c. 1320), French chronicler, was probably the author of the Chronique métrique de Philippe le Bel, or Chronique rimée de Geoffroi de Paris. This work, which deals with the history of France from 1300 to 1316, contains 7918 verses, and is valuable as that of a writer who had a personal knowledge of many of the events which he relates. Various short historical poems have also been attributed to Geoffrey, but there is no certain information about either his life or his writings.


The Chronique was published by J.A. Buchon in his Collection des chroniques, tome ix. (Paris, 1827), and it has also been printed in tome xxii. of the Recueil des historiens des Gaules et de la France (Paris, 1865). See G. Paris, Histoire de la littérature française au moyen âge (Paris, 1890); and A. Molinier, Les Sources de l’histoire de France, tome iii. (Paris, 1903).





GEOFFREY THE BAKER (d. c. 1360), English chronicler, is also called Walter of Swinbroke, and was probably a secular clerk at Swinbrook in Oxfordshire. He wrote a Chronicon Angliae temporibus Edwardi II. et Edwardi III., which deals with the history of England from 1303 to 1356. From the beginning until about 1324 this work is based upon Adam Murimuth’s Continuatio chronicarum, but after this date it is valuable and interesting, containing information not found elsewhere, and closing with a good account of the battle of Poitiers. The author obtained his knowledge about the last days of Edward II. from William Bisschop, a companion of the king’s murderers, Thomas Gurney and John Maltravers. Geoffrey also wrote a Chroniculum from the creation of the world until 1336, the value of which is very slight. His writings have been edited with notes by Sir E.M. Thompson as the Chronicon Galfridi le Baker de Swynebroke (Oxford, 1889). Some doubt exists concerning Geoffrey’s share in the compilation of the Vita et mors Edwardi II., usually attributed to Sir Thomas de la More, or Moor, and printed by Camden in his Anglica scripta. It has been maintained by Camden and others that More wrote an account of Edward’s reign in French, and that this was translated into Latin by Geoffrey and used by him in compiling his Chronicon. Recent scholarship, however, asserts that More was no writer, and that the Vita et mors is an extract from Geoffrey’s Chronicon, and was attributed to More, who was the author’s patron. In the main this conclusion substantiates the verdict of Stubbs, who has published the Vita et mors in his Chronicles of the reigns of Edward I. and Edward II. (London, 1883). The manuscripts of Geoffrey’s works are in the Bodleian library at Oxford.



GEOFFRIN, MARIE THÉRÈSE RODET (1699-1777), a Frenchwoman who played an interesting part in French literary and artistic life, was born in Paris in 1699. She married, on the 19th of July 1713, Pierre François Geoffrin, a rich manufacturer and lieutenant-colonel of the National Guard, who died in 1750. It was not till Mme Geoffrin was nearly fifty years of age that we begin to hear of her as a power in Parisian society. She had learned much from Mme de Tencin, and about 1748 began to gather round her a literary and artistic circle. She had every week two dinners, on Monday for artists, and on Wednesday for her friends the Encyclopaedists and other men of letters. She received many foreigners of distinction, Hume and Horace Walpole among others. Walpole spent much time in her society before he was finally attached to Mme du Deffand, and speaks of her in his letters as a model of common sense. She was indeed somewhat of a small tyrant in her circle. She had adopted the pose of an old woman earlier than necessary, and her coquetry, if  such it can be called, took the form of being mother and mentor to her guests, many of whom were indebted to her generosity for substantial help. Although her aim appears to have been to have the Encyclopédie in conversation and action around her, she was extremely displeased with any of her friends who were so rash as to incur open disgrace. Marmontel lost her favour after the official censure of Bélisaire, and her advanced views did not prevent her from observing the forms of religion. A devoted Parisian, Mme Geoffrin rarely left the city, so that her journey to Poland in 1766 to visit the king, Stanislas Poniatowski, whom she had known in his early days in Paris, was a great event in her life. Her experiences induced a sensible gratitude that she had been born “Française” and “particulière.” In her last illness her daughter, Thérèse, marquise de la Ferté Imbault, excluded her mother’s old friends so that she might die as a good Christian, a proceeding wittily described by the old lady: “My daughter is like Godfrey de Bouillon, she wished to defend my tomb from the infidels.” Mme Geoffrin died in Paris on the 6th of October 1777.


See Correspondance inédite du roi Stanislas Auguste Poniatowski et de Madame Geoffrin, edited by the comte de Mouÿ (1875); P. de Ségur, Le Royaume de la rue Saint-Honoré, Madame Geoffrin et sa fille (1897); A. Tornezy, Un Bureau d’esprit au XVIIIe siècle: le salon de Madame Geoffrin (1895); and Janet Aldis, Madame Geoffrin, her Salon and her Times, 1750-1777 (1905).





GEOFFROY, ÉTIENNE FRANÇOIS (1672-1731), French chemist, born in Paris on the 13th of February 1672, was first an apothecary and then practised medicine. After studying at Montpellier he accompanied Marshal Tallard on his embassy to London in 1698 and thence travelled to Holland and Italy. Returning to Paris he became professor of chemistry at the Jardin du Roi and of pharmacy and medicine at the Collège de France, and dean of the faculty of medicine. He died in Paris on the 6th of January 1731. His name is best known in connexion with his tables of affinities (tables des rapports), which he presented to the French Academy in 1718 and 1720. These were lists, prepared by collating observations on the actions of substances one upon another, showing the varying degrees of affinity exhibited by analogous bodies for different reagents, and they retained their vogue for the rest of the century, until displaced by the profounder conceptions introduced by C.L. Berthollet. Another of his papers dealt with the delusions of the philosopher’s stone, but nevertheless he believed that iron could be artificially formed in the combustion of vegetable matter. His Tractatus de materia medica, published posthumously in 1741, was long celebrated.

His brother Claude Joseph, known as Geoffroy the younger (1685-1752), was also an apothecary and chemist who, having a considerable knowledge of botany, devoted himself especially to the study of the essential oils in plants.



GEOFFROY, JULIEN LOUIS (1743-1814), French critic, was born at Rennes in 1743. He studied in the school of his native town and at the Collège Louis le Grand in Paris. He took orders and fulfilled for some time the humble functions of an usher, eventually becoming professor of rhetoric at the Collège Mazarin. A bad tragedy, Caton, was accepted at the Théâtre Français, but was never acted. On the death of Élie Fréron in 1776 the other collaborators in the Année littéraire asked Geoffroy to succeed him, and he conducted the journal until in 1792 it ceased to appear. Geoffroy was a bitter critic of Voltaire and his followers, and made for himself many enemies. An enthusiastic royalist, he published with Fréron’s brother-in-law, the abbé Thomas Royou (1741-1792), a journal, L’Ami du roi (1790-1792), which possibly did more harm than good to the king’s cause by its ill-advised partisanship. During the Terror Geoffroy hid in the neighbourhood of Paris, only returning in 1799. An attempt to revive the Année littéraire failed, and Geoffroy undertook the dramatic feuilleton of the Journal des débats. His scathing criticisms had a success of notoriety, but their popularity was ephemeral, and the publication of them (5 vols., 1819-1820) as Cours de littérature dramatique proved a failure. He was also the author of a perfunctory Commentaire on the works of Racine prefixed to Lenormant’s edition (1808). He died in Paris on the 27th of February 1814.



GEOFFROY SAINT-HILAIRE, ÉTIENNE (1772-1844), French naturalist, was the son of Jean Gèrard Geoffroy, procurator and magistrate of Étampes, Seine-et-Oise, where he was born on the 15th of April 1772. Destined for the church he entered the college of Navarre, in Paris, where he studied natural philosophy under M.J. Brisson; and in 1788 he obtained one of the canonicates of the chapter of Sainte Croix at Étampes, and also a benefice. Science, however, offered him a more congenial career, and he gained from his father permission to remain in Paris, and to attend the lectures at the Collège de France and the Jardin des Plantes, on the condition that he should also read law. He accordingly took up his residence at Cardinal Lemoine’s college, and there became the pupil and soon the esteemed associate of Brisson’s friend, the abbé Haüy, the mineralogist. Having, before the close of the year 1790, taken the degree of bachelor in law, he became a student of medicine, and attended the lectures of A.F. de Fourcroy at the Jardin des Plantes, and of L.J.M. Daubenton at the Collège de France. His studies at Paris were at length suddenly interrupted, for, in August 1792, Haüy and the other professors of Lemoine’s college, as also those of the college of Navarre, were arrested by the revolutionists as priests, and confined in the prison of St Firmin. Through the influence of Daubenton and others Geoffroy on the 14th of August obtained an order for the release of Haüy in the name of the Academy; still the other professors of the two colleges, save C.F. Lhomond, who had been rescued by his pupil J.L. Tallien, remained in confinement. Geoffroy, foreseeing their certain destruction if they remained in the hands of the revolutionists, determined if possible to secure their liberty by stratagem. By bribing one of the officials at St Firmin, and disguising himself as a commissioner of prisons, he gained admission to his friends, and entreated them to effect their escape by following him. All, however, dreading lest their deliverance should render the doom of their fellow-captives the more certain, refused the offer, and one priest only, who was unknown to Geoffroy, left the prison. Already on the night of the 2nd of September the massacre of the proscribed had begun, when Geoffroy, yet intent on saving the life of his friends and teachers, repaired to St Firmin. At 4 o’clock on the morning of the 3rd of September, after eight hours’ waiting, he by means of a ladder assisted the escape of twelve ecclesiastics, not of the number of his acquaintance, and then the approach of dawn and the discharge of a gun directed at him warned him, his chief purpose unaccomplished, to return to his lodgings. Leaving Paris he retired to Étampes, where, in consequence of the anxieties of which he had lately been the prey, and the horrors which he had witnessed, he was for some time seriously ill. At the beginning of the winter of 1792 he returned to his studies in Paris, and in March of the following year Daubenton, through the interest of Bernardin de Saint Pierre, procured him the office of sub-keeper and assistant demonstrator of the cabinet of natural history, vacant by the resignation of B.G.E. Lacépède. By a law passed in June 1793, Geoffroy was appointed one of the twelve professors of the newly constituted museum of natural history, being assigned the chair of zoology. In the same year he busied himself with the formation of a menagerie at that institution.

In 1794 through the introduction of A.H. Tessier he entered into correspondence with Georges Cuvier, to whom, after the perusal of some of his manuscripts, he wrote: “Venez jouer parmi nous le rôle de Linné, d’un autre législateur de l’histoire naturelle.” Shortly after the appointment of Cuvier as assistant at the Muséum d’Histoire Naturelle, Geoffroy received him into his house. The two friends wrote together five memoirs on natural history, one of which, on the classification of mammals, puts forward the idea of the subordination of characters upon which Cuvier based his zoological system. It was in a paper entitled “Histoire des Makis, ou singes de Madagascar,” written in 1795, that Geoffroy first gave expression to his views on “the unity of organic composition,” the influence of which is perceptible in all his subsequent writings; nature, he observes, presents us with only one plan of construction, the same in principle, but varied in its accessory parts.



In 1798 Geoffroy was chosen a member of the great scientific expedition to Egypt, and on the capitulation of Alexandria in August 1801, he took part in resisting the claim made by the British general to the collections of the expedition, declaring that, were that demand persisted in, history would have to record that he also had burnt a library in Alexandria. Early in January 1802 Geoffroy returned to his accustomed labours in Paris. He was elected a member of the academy of sciences of that city in September 1807. In March of the following year the emperor, who had already recognized his national services by the award of the cross of the legion of honour, selected him to visit the museums of Portugal, for the purpose of procuring collections from them, and in the face of considerable opposition from the British he eventually was successful in retaining them as a permanent possession for his country. In 1809, the year after his return to France, he was made professor of zoology at the faculty of sciences at Paris, and from that period he devoted himself more exclusively than before to anatomical study. In 1818 he gave to the world the first part of his celebrated Philosophie anatomique, the second volume of which, published in 1822, and subsequent memoirs account for the formation of monstrosities on the principle of arrest of development, and of the attraction of similar parts. When, in 1830, Geoffroy proceeded to apply to the invertebrata his views as to the unity of animal composition, he found a vigorous opponent in Georges Cuvier, and the discussion between them, continued up to the time of the death of the latter, soon attracted the attention of the scientific throughout Europe. Geoffroy, a synthesist, contended, in accordance with his theory of unity of plan in organic composition, that all animals are formed of the same elements, in the same number, and with the same connexions: homologous parts, however they differ in form and size, must remain associated in the same invariable order. With Goethe he held that there is in nature a law of compensation or balancing of growth, so that if one organ take on an excess of development, it is at the expense of some other part; and he maintained that, since nature takes no sudden leaps, even organs which are superfluous in any given species, if they have played an important part in other species of the same family, are retained as rudiments, which testify to the permanence of the general plan of creation. It was his conviction that, owing to the conditions of life, the same forms had not been perpetuated since the origin of all things, although it was not his belief that existing species are becoming modified. Cuvier, who was an analytical observer of facts, admitted only the prevalence of “laws of co-existence” or “harmony” in animal organs, and maintained the absolute invariability of species, which he declared had been created with a regard to the circumstances in which they were placed, each organ contrived with a view to the function it had to fulfil, thus putting, in Geoffroy’s considerations, the effect for the cause.

In July 1840 Geoffroy became blind, and some months later he had a paralytic attack. From that time his strength gradually failed him. He resigned his chair at the museum in 1841, and died at Paris on the 19th of June 1844.


Geoffroy wrote: Catalogue des mammifères du Muséum National d’Histoire Naturelle (1813), not quite completed; Philosophie anatomique—t. i., Des organes respiratoires (1818), and t. ii., Des monstruosités humaines (1822); Système dentaire des mammifères et des oiseaux (1st pt., 1824); Sur le principe de l’unité de composition organique (1828); Cours de l’histoire naturelle des mammifères (1829); Principes de philosophie zoologique (1830); Études progressives d’un naturaliste (1835); Fragments biographiques (1832); Notions synthétiques, historiques et physiologiques de philosophie naturelle (1838), and other works; also part of the Description de l’Égypte par la commission des sciences (1821-1830); and, with Frédéric Cuvier (1773-1838), a younger brother of G. Cuvier, Histoire naturelle des mammifères (4 vols., 1820-1842); besides numerous papers on such subjects as the anatomy of marsupials, ruminants and electrical fishes, the vertebrate theory of the skull, the opercula of fishes, teratology, palaeontology and the influence of surrounding conditions in modifying animal forms.

See Vie, travaux, et doctrine scientifique d’Étienne Geoffroy Saint-Hilaire, par son fils M. Isidore Geoffroy Saint-Hilaire (Paris and Strasburg, 1847), to which is appended a list of Geoffroy’s works; and Joly, in Biog. universelle, t. xvi. (1856).





GEOFFROY SAINT-HILAIRE, ISIDORE (1805-1861), French zoologist, son of the preceding, was born at Paris on the 16th of December 1805. In his earlier years he showed an aptitude for mathematics, but eventually he devoted himself to the study of natural history and of medicine, and in 1824 he was appointed assistant naturalist to his father. On the occasion of his taking the degree of doctor of medicine in September 1829, he read a thesis entitled Propositions sur la monstruosité, considérée chez l’homme et les animaux; and in 1832-1837 was published his great teratological work, Histoire générale et particulière des anomalies de l’organisation chez l’homme et les animaux, 3 vols. 8vo. with 20 plates. In 1829 he delivered for his father the second part of a course of lectures on ornithology, and during the three following years he taught zoology at the Athénée, and teratology at the École pratique. He was elected a member of the academy of sciences at Paris in 1833, was in 1837 appointed to act as deputy for his father at the faculty of sciences in Paris, and in the following year was sent to Bordeaux to organize a similar faculty there. He became successively inspector of the academy of Paris (1840), professor of the museum on the retirement of his father (1841), inspector-general of the university (1844), a member of the royal council for public instruction (1845), and on the death of H.M.D. de Blainville, professor of zoology at the faculty of sciences (1850). In 1854 he founded the Acclimatization Society of Paris, of which he was president. He died at Paris on the 10th of November 1861.


Besides the above-mentioned works, he wrote: Essais de zoologie générale (1841); Vie ... d’Étienne Geoffroy Saint-Hilaire (1847); Acclimatation et domestication des animaux utiles (1849; 4th ed., 1861); Lettres sur les substances alimentaires et particulièrement sur la viande de cheval (1856); and Histoire naturelle générale des règnes organiques (3 vols., 1854-1862), which was not quite completed. He was the author also of various papers on zoology, comparative anatomy and palaeontology.





GEOGRAPHY (Gr. γῆ, earth, and γράφειν, to write), the exact and organized knowledge of the distribution of phenomena on the surface of the earth. The fundamental basis of geography is the vertical relief of the earth’s crust, which controls all mobile distributions. The grander features of the relief of the lithosphere or stony crust of the earth control the distribution of the hydrosphere or collected waters which gather into the hollows, filling them up to a height corresponding to the volume, and thus producing the important practical division of the surface into land and water. The distribution of the mass of the atmosphere over the surface of the earth is also controlled by the relief of the crust, its greater or lesser density at the surface corresponding to the lesser or greater elevation of the surface. The simplicity of the zonal distribution of solar energy on the earth’s surface, which would characterize a uniform globe, is entirely destroyed by the dissimilar action of land and water with regard to radiant heat, and by the influence of crust-forms on the direction of the resulting circulation. The influence of physical environment becomes clearer and stronger when the distribution of plant and animal life is considered, and if it is less distinct in the case of man, the reason is found in the modifications of environment consciously produced by human effort. Geography is a synthetic science, dependent for the data with which it deals on the results of specialized sciences such as astronomy, geology, oceanography, meteorology, biology and anthropology, as well as on topographical description. The physical and natural sciences are concerned in geography only so far as they deal with the forms of the earth’s surface, or as regards the distribution of phenomena. The distinctive task of geography as a science is to investigate the control exercised by the crust-forms directly or indirectly upon the various mobile distributions. This gives to it unity and definiteness, and renders superfluous the attempts that have been made from time to time to define the limits which divide geography from geology on the one hand and from history on the other. It is essential to classify the subject-matter of geography in such a manner as to give prominence not only to facts, but to their mutual relations and their natural and inevitable order.

The fundamental conception of geography is form, including  the figure of the earth and the varieties of crustal relief. Hence mathematical geography (see Map), including cartography as a practical application, comes first. It merges into physical geography, which takes account of the forms of the lithosphere (geomorphology), and also of the distribution of the hydrosphere and the rearrangements resulting from the workings of solar energy throughout the hydrosphere and atmosphere (oceanography and climatology). Next follows the distribution of plants and animals (biogeography), and finally the distribution of mankind and the various artificial boundaries and redistributions (anthropogeography). The applications of anthropogeography to human uses give rise to political and commercial geography, in the elucidation of which all the earlier departments or stages have to be considered, together with historical and other purely human conditions. The evolutionary idea has revolutionized and unified geography as it did biology, breaking down the old hard-and-fast partitions between the various departments, and substituting the study of the nature and influence of actual terrestrial environments for the earlier motive, the discovery and exploration of new lands.

History of Geographical Theory


The earliest conceptions of the earth, like those held by the primitive peoples of the present day, are difficult to discover and almost impossible fully to grasp. Early generalizations, as far as they were made from known facts, were usually expressed in symbolic language, and for our present purpose it is not profitable to speculate on the underlying truths which may sometimes be suspected in the old mythological cosmogonies.

The first definite geographical theories to affect the western world were those evolved, or at least first expressed, by the Greeks.1 The earliest theoretical problem of geography was the Early Greek ideas.

Flat earth of Homer. form of the earth. The natural supposition that the earth is a flat disk, circular or elliptical in outline, had in the time of Homer acquired a special definiteness by the introduction of the idea of the ocean river bounding the whole, an application of imperfectly understood observations. Thales of Miletus is claimed as the first exponent of the idea of a spherical earth; but, although this does not appear to be warranted, his disciple Anaximander (c. 580 B.C.) put forward the theory that the earth had the figure of a solid body hanging freely in the centre of the hollow sphere of the starry heavens. The Pythagorean school of philosophers adopted the theory of a spherical earth, but from metaphysical rather than scientific reasons; their convincing argument was that a sphere being the most perfect solid figure was the only one worthy to circumscribe the dwelling-place of man. The division of the sphere into parallel zones and some of the consequences of this generalization seem to have presented themselves to Parmenides (c. 450 B.C.); but these ideas did not influence the Ionian school of philosophers, who in their treatment of geography preferred to deal with facts demonstrable by Hecataeus.



Herodotus. travel rather than with speculations. Thus Hecataeus, claimed by H.F. Tozer2 as the father of geography on account of his Periodos, or general treatise on the earth, did not advance beyond the primitive conception of a circular disk. He systematized the form of the land within the ring of ocean—the οἰκουμένη, or habitable world—by recognizing two continents: Europe to the north, and Asia to the south of the midland sea. Herodotus, equally oblivious of the sphere, criticized and ridiculed the circular outline of the oekumene, which he knew to be longer from east to west than it was broad from north to south. He also pointed out reasons for accepting a division of the land into three continents—Europe, Asia and Africa. Beyond the limits of his personal travels Herodotus applied the characteristically Greek theory of symmetry to complete, in the unknown, outlines The idea of symmetry. of lands and rivers analogous to those which had been explored. Symmetry was in fact the first geographical theory, and the effect of Herodotus’s hypothesis that the Nile must flow from west to east before turning north in order to balance the Danube running from west to east before turning south lingered in the maps of Africa down to the time of Mungo Park.3

To Aristotle (384-322 B.C.) must be given the distinction of founding scientific geography. He demonstrated the sphericity of the earth by three arguments, two of which could be tested by observation. These were: (1) that the earth must be spherical, because Aristotle and the sphere. of the tendency of matter to fall together towards a common centre; (2) that only a sphere could always throw a circular shadow on the moon during an eclipse; and (3) that the shifting of the horizon and the appearance of new constellations, or the disappearance of familiar stars, as one travelled from north to south, could only be explained on the hypothesis that the earth was a sphere. Aristotle, too, gave greater definiteness to the idea of zones conceived by Parmenides, who had pictured a torrid zone uninhabitable by reason of heat, two frigid zones uninhabitable by reason of cold, and two intermediate temperate zones fit for human occupation. Aristotle defined the temperate zone as extending from the tropic to the arctic circle, but there is some uncertainty as to the precise meaning he gave to the term “arctic circle.” Soon after his time, however, this conception was clearly established, and with so large a generalization the mental horizon was widened to conceive of a geography which was a science. Aristotle had himself shown that in the southern temperate zone winds similar to those of the northern temperate zone should blow, but from the opposite direction.

While the theory of the sphere was being elaborated the efforts of practical geographers were steadily directed towards ascertaining the outline and configuration of the oekumene, or habitable world, the only portion of the terrestrial surface known Fitting the oekumene to the sphere. to the ancients and to the medieval peoples, and still retaining a shadow of its old monopoly of geographical attention in its modern name of the “Old World.” The fitting of the oekumene to the sphere was the second theoretical problem. The circular outline had given way in geographical opinion to the elliptical with the long axis lying east and west, and Aristotle was inclined to view it as a very long and relatively narrow band almost encircling the globe in the temperate zone. His argument as to the narrowness of the sea between West Africa and East Asia, from the occurrence of elephants at both extremities, is difficult to understand, although it shows that he looked on the distribution of animals as a problem of geography.

Pythagoras had speculated as to the existence of antipodes, but it was not until the first approximately accurate measurements of the globe and estimates of the length and breadth of the oekumene were made by Eratosthenes (c. 250 B.C.) that Problem of the Antipodes. the fact that, as then known, it occupied less than a quarter of the surface of the sphere was clearly recognized. It was natural, if not strictly logical, that the ocean river should be extended from a narrow stream to a world-embracing sea, and here again Greek theory, or rather fancy, gave its modern name to the greatest feature of the globe. The old instinctive idea of symmetry must often have suggested other oekumene balancing the known world in the other quarters of the globe. The Stoic philosophers, especially Crates of Mallus, arguing from the love of nature for life, placed an oekumene in each quarter of the sphere, the three unknown world-islands being those of the Antoeci, Perioeci and Antipodes. This was a theory not only attractive to the philosophical mind, but eminently adapted to promote exploration. It had its opponents, however, for Herodotus showed that sea-basins existed cut off from the ocean, and it is still a matter of controversy how far the pre-Ptolemaic geographers believed in a water-connexion between the Atlantic and Indian oceans. It is quite clear that Pomponius Mela (c. A.D. 40), following Strabo, held that the southern temperate zone contained a habitable land, which he designated by the name Antichthones.

Aristotle left no work on geography, so that it is impossible to know what facts he associated with the science of the earth’s surface. The word geography did not appear before Aristotle, the first use of it being in the Περὶ κόσμων, which is one Aristotle’s geographical views. of the writings doubtfully ascribed to him, and H. Berger considers that the expression was introduced by Eratosthenes.4 Aristotle was certainly conversant with many facts, such as the formation of deltas, coast-erosion, and to a certain extent the dependence of plants and animals on their physical surroundings. He formed a comprehensive theory of the variations of climate with latitude and season, and was convinced of the necessity of a circulation of water between the sea and rivers, though, like Plato, he held that this took place by water rising from the sea through crevices in the rocks, losing its dissolved salts in the process. He speculated on the differences in the character of races of mankind living in different climates, and correlated the political forms of communities with their situation on a seashore, or in the neighbourhood of natural strongholds.

Strabo (c. 50 B.C.-A.D. 24) followed Eratosthenes rather than Aristotle, but with sympathies which went out more to the human interests than the mathematical basis of geography. He Strabo. compiled a very remarkable work dealing, in large measure from personal travel, with the countries surrounding the Mediterranean. He may be said to have set the pattern which was followed in succeeding ages by the compilers of “political geographies”  dealing less with theories than with facts, and illustrating rather than formulating the principles of the science.

Claudius Ptolemaeus (c. A.D. 150) concentrated in his writings the final outcome of all Greek geographical learning, and passed it across the gulf of the middle ages by the hands of the Arabs, to form the starting-point of the science in modern times. Ptolemy. His geography was based more immediately on the work of his predecessor, Marinus of Tyre, and on that of Hipparchus, the follower and critic of Eratosthenes. It was the ambition of Ptolemy to describe and represent accurately the surface of the oekumene, for which purpose he took immense trouble to collect all existing determinations of the latitude of places, all estimates of longitude, and to make every possible rectification in the estimates of distances by land or sea. His work was mainly cartographical in its aim, and theory was as far as possible excluded. The symmetrically placed hypothetical islands in the great continuous ocean disappeared, and the oekumene acquired a new form by the representation of the Indian Ocean as a larger Mediterranean completely cut off by land from the Atlantic. The terra incognita uniting Africa and Farther Asia was an unfortunate hypothesis which helped to retard exploration. Ptolemy used the word geography to signify the description of the whole oekumene on mathematical principles, while chorography signified the fuller description of a particular region, and topography the very detailed description of a smaller locality. He introduced the simile that geography represented an artist’s sketch of a whole portrait, while chorography corresponded to the careful and detailed drawing of an eye or an ear.5

The Caliph al-Mamūn (c. A.D. 815), the son and successor of Hārūn al-Rashīd, caused an Arabic version of Ptolemy’s great astronomical work (Σύνταξις μεγίστη) to be made, which is known as the Almagest, the word being nothing more than the Gr. μεγίστη with the Arabic article al prefixed. The geography of Ptolemy was also known and is constantly referred to by Arab writers. The Arab astronomers measured a degree on the plains of Mesopotamia, thereby deducing a fair approximation to the size of the earth. The caliph’s librarian, Abu Jafar Muhammad Ben Musa, wrote a geographical work, now unfortunately lost, entitled Rasm el Arsi (“A Description of the World”), which is often referred to by subsequent writers as having been composed on the model of that of Ptolemy.

The middle ages saw geographical knowledge die out in Christendom, although it retained, through the Arabic translations of Ptolemy, a certain vitality in Islam. The verbal interpretation of Scripture led Lactantius (c. A.D. 320) and Geography in the middle ages. other ecclesiastics to denounce the spherical theory of the earth as heretical. The wretched subterfuge of Cosmas (c. A.D. 550) to explain the phenomena of the apparent movements of the sun by means of an earth modelled on the plan of the Jewish Tabernacle gave place ultimately to the wheel-maps—the T in an O—which reverted to the primitive ignorance of the times of Homer and Hecataeus.6

The journey of Marco Polo, the increasing trade to the East and the voyages of the Arabs in the Indian Ocean prepared the way for the reacceptance of Ptolemy’s ideas when the sealed books of the Greek original were translated into Latin by Angelus in 1410.

The old arguments of Aristotle and the old measurements of Ptolemy were used by Toscanelli and Columbus in urging a westward voyage to India; and mainly on this account did the Revival of geography. crossing of the Atlantic rank higher in the history of scientific geography than the laborious feeling out of the coast-line of Africa. But not until the voyage of Magellan shook the scales from the eyes of Europe did modern geography begin to advance. Discovery had outrun theory; the rush of new facts made Ptolemy practically obsolete in a generation, after having been the fount and origin of all geography for a millennium.

The earliest evidence of the reincarnation of a sound theoretical geography is to be found in the text-books by Peter Apian and Sebastian Münster. Apian in his Cosmographicus liber, published in 1524, and subsequently edited and added to Apianus. by Gemma Frisius under the title of Cosmographia, based the whole science on mathematics and measurement. He followed Ptolemy closely, enlarging on his distinction between geography and chorography, and expressing the artistic analogy in a rough diagram. This slender distinction was made much of by most subsequent writers until Nathanael Carpenter in 1625 pointed out that the difference between geography and chorography was simply one of degree, not of kind.

Sebastian Münster, on the other hand, in his Cosmographia universalis of 1544, paid no regard to the mathematical basis of geography, but, following the model of Strabo, described Münster. the world according to its different political divisions, and entered with great zest into the question of the productions of countries, and into the manners and costumes of the various peoples. Thus early commenced the separation between what were long called mathematical and political geography, the one subject appealing mainly to mathematicians, the other to historians.

Throughout the 16th and 17th centuries the rapidly accumulating store of facts as to the extent, outline and mountain and river systems of the lands of the earth were put in order by the generation of cartographers of which Mercator was the chief; but the writings of Apian and Münster held the field for a hundred years without a serious rival, unless the many annotated editions of Ptolemy might be so considered. Meanwhile the new facts were the subject of original study by philosophers and by practical men without reference to classical traditions. Bacon argued keenly on geographical matters and was a lover of maps, in which he observed and reasoned upon such resemblances as that between the outlines of South America and Africa.

Philip Cluver’s Introductio in geographiam universam tam veterem quam novam was published in 1624. Geography he defined as “the description of the whole earth, so far as it is known to us.” It is distinguished from cosmography by dealing Cluverius. with the earth alone, not with the universe, and from chorography and topography by dealing with the whole earth, not with a country or a place. The first book, of fourteen short chapters, is concerned with the general properties of the globe; the remaining six books treat in considerable detail of the countries of Europe and of the other continents. Each country is described with particular regard to its people as well as to its surface, and the prominence given to the human element is of special interest.

A little-known book which appears to have escaped the attention of most writers on the history of modern geography was published at Oxford in 1625 by Nathanael Carpenter, fellow of Carpenter. Exeter College, with the title Geographie delineated forth in Two Bookes, containing the Sphericall and Topicall parts thereof. It is discursive in its style and verbose; but, considering the period at which it appeared, it is remarkable for the strong common sense displayed by the author, his comparative freedom from prejudice, and his firm application of the methods of scientific reasoning to the interpretation of phenomena. Basing his work on the principles of Ptolemy, he brings together illustrations from the most recent travellers, and does not hesitate to take as illustrative examples the familiar city of Oxford and his native county of Devon. He divides geography into The Spherical Part, or that for the study of which mathematics alone is required, and The Topical Part, or the description of the physical relations of parts of the earth’s surface, preferring this division to that favoured by the ancient geographers—into general and special. It is distinguished from other English geographical books of the period by confining attention to the principles of geography, and not describing the countries of the world.

A much more important work in the history of geographical method is the Geographia generalis of Bernhard Varenius, a German medical doctor of Leiden, who died at the age of twenty-eight in 1650, the year of the publication of his book. Varenius. Although for a time it was lost sight of on the continent, Sir Isaac Newton thought so highly of this book that he prepared an annotated edition which was published in Cambridge in 1672, with the addition of the plates which had been planned by Varenius, but not produced by the original publishers. “The reason why this great man took so much care in correcting and publishing our author was, because he thought him necessary to be read by his audience, the young gentlemen of Cambridge, while he was delivering lectures on the same subject from the Lucasian Chair.”7 The treatise of Varenius is a model of logical arrangement and terse expression; it is a work of science and of genius; one of the few of that age which can still be studied with profit. The English translation renders the definition thus: “Geography is that part of mixed mathematics which explains the state of the earth and of its parts, depending on quantity, viz. its figure, place, magnitude and motion, with the celestial appearances, &c. By some it is taken in too limited a sense, for a bare description of the several countries; and by others too extensively, who along with such a description would have their political constitution.”

Varenius was reluctant to include the human side of geography in his system, and only allowed it as a concession to custom, and in order to attract readers by imparting interest to the sterner details of the science. His division of geography was into two parts—(i.) General or universal, dealing with the earth in general, and explaining its properties without regard to particular countries; and (ii.) Special or particular, dealing with each country in turn from the chorographical or topographical point of view. General geography was divided into—(1) the Absolute part, dealing with the form, dimensions, position and substance of the earth, the distribution of land and water, mountains, woods and deserts, hydrography (including all the waters of the earth) and the atmosphere; (2) the Relative part, including the celestial properties, i.e. latitude, climate zones, longitude, &c.; and (3) the Comparative part, which “considers the  particulars arising from comparing one part with another”; but under this head the questions discussed were longitude, the situation and distances of places, and navigation. Varenius does not treat of special geography, but gives a scheme for it under three heads—(1) Terrestrial, including position, outline, boundaries, mountains, mines, woods and deserts, waters, fertility and fruits, and living creatures; (2) Celestial, including appearance of the heavens and the climate; (3) Human, but this was added out of deference to popular usage.
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