
[image: image]

Ultimate Selenium
WebDriver for Test
Automation

[image:]

Build and Implement Automated Web Testing
Frameworks Using Java, Selenium WebDriver
and Selenium Grid for E-Commerce,
Healthcare, EdTech, Banking, and SAAS

[image:]

Robin Gupta

[image:]

www.orangeava.com

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: March 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-96994-76-1

www.orangeava.com

Dedicated To

My two families:

Parents (Late Mrs. VijayLaxmi Gupta, Mr. Rakesh Kumar Gupta), Wife (Sneha Singh), Daughter (Natasha Gupta), and my siblings’ families

Selenium open-source community

Foreword

In some ways, you can view writing code as an act of collaborative art. Just as no two people would say the same thing if asked to describe a sunrise, those same people will write code in different ways, even if the goal is same for both of them. The process of taking a description of what we want to do and converting it into code is a creative one. Although we might write code on our own as a hobby, in professional settings we work in teams, with each person on the team working on the part of the tapestry of the application that suits their strengths. Not only is the process artistic, but also collaborative.

The expression “if the only tool you have is a hammer, everything looks like a nail” is frequently used in software development circles. That’s because, just as with any artistic endeavor, to develop stable software proficiently, one needs to learn about the tools that can be used, and the techniques that can be applied. It’s not enough to know how to use a tool, we need to know when to use it. So, not only is software development a collaborative artistic endeavor, but also one where we need to know tools and techniques in order to work effectively.

But there’s a problem. How do we learn a new tool or technique? How do we begin to understand how and where to use it? After all, we’ve been writing software for a long time, so there must be a large body of tools and techniques to draw from.

Let’s take the field of writing web apps. Tim Berners-Lee published the first website while working at CERN in December 1990. Originally, web pages were static and simple. When Netscape introduced Javascript to the world, these simple, static pages became a little more interesting. When Microsoft introduced XmlHTTPRequest, it became possible for pages to request information from web servers without needing to reload. In 1999, Darci DiNucci introduced the world to the phrase “Web 2.0”, but it didn’t become a widespread phrase until the early 2000s.

The early 2000s was when we saw an explosion of creativity on the Web. Sites suddenly went from being relatively static to being incredibly dynamic. The technologies powering Web 2.0 enabled sites like Google Maps to exist. And that explosion of creativity continues to this day, with websites becoming ever more complex, dynamic, and capable.

As the Web has grown, so has the tooling.

In 2004, Jason Huggins started the Selenium project. In 2011, we released Selenium 2, and Selenium 3 followed in 2016. Most recently, Selenium 4 was released in 2021, a full ten years after the world was introduced to the WebDriver APIs. Over those many years, the tool has grown and adapted to the changing world around it, and the community has gathered a wealth of knowledge and experience, not only about Selenium, but also how to use it, and get the most out of it.

This brings me to the book.

You hold in your hands a book that is ostensibly about Selenium. Except it’s about far more than that. You see, in this book, Robin takes us on a journey from neophyte to master tester, introducing us not only to the tool that is Selenium, but also to the context in which it can be used. This book provides a distillation of many of the current “best practices” that many teams have adopted when using Selenium, particularly the Java bindings. Those are practices that have evolved over many years, and have been shown to be effective time and again.

Just as a paintbrush is most useful when there is a canvas and paint, so Selenium is most useful when used with test frameworks, design patterns, and logging. And just as there are many ways in which a paintbrush can apply paint to the canvas, so Selenium has many interesting capabilities and APIs. In this metaphor, Robin is the art teacher, wherein he starts gently, introducing us to Selenium through its IDE, and then builds upon that, chapter after chapter. Each step of the way, he provides supporting information and concepts.

So, even if this book is about Selenium Test Automation, when you’ve finished reading it, you’ll be familiar with different kinds of tests, testing in general, design patterns, and other tools and frameworks which can be used with Selenium.

When you’ve finished reading it, you’ll be better able to participate in the wildly entertaining collaborative art project we call software development, and that’s a wonderful thing.

Simon Mavi Stewart

Creator of WebDriver

Selenium Project Lead 2009-2021

Coeditor of the WebDriver and WebDriver Bidi W3C specifications

London, January 2024

About the Author

Robin is a versatile engineering leader with over 15 years of experience in software delivery across startups, scale-ups, and enterprises. With a metrics-driven approach, he has elevated the engineering maturity of Dev/QA/DevOps teams for diverse domains such as BFSI, EdTech, Retail, and Developer Experience. Experienced in multiple tech stacks, Robin's hands-on leadership style yields positive results. Beyond work, he mentors at ADPList and Plato, contributes to open-source projects like Selenium, created TestZeus (the only open-source test automation framework for Salesforce), and has authored courses. He is also recognized as a speaker at international events such as Dreamforce (by Salesforce) and Selenium Conference. Balancing responsibilities as a dad at home and M.O.M (Manager of Managers) at the office, Robin excels in both personal and professional realms.

For more details, visit www.robin-gupta.com

About the Technical Reviewer

Shreya Singh Patel has been on an automation adventure for nearly a decade, building rock-solid testing frameworks with Selenium and Java like a tech architect conjuring bug-resistant fortresses. But her repertoire doesn't end there! She works on API automation, mobile automation, database, and load testing. Every mastered technology adds another vibrant thread to her ever-expanding skillset.

She has been working in the IT industry for over 7 years on various automation projects, also witnessing the rise in demand for automation in each industry, not just IT.

But she is not just about conquering bugs, she's about lighting the way for others. Witnessing the "Aha!" moments when her mentored manual testers transform into automation heroes fuels her passion more than any squashed superbug. She currently mentors colleagues, guiding them through code and frameworks until they write their own automation victories.

She actively volunteers as Internship Operation Head for both summer and winter internships at Internity Foundation, a startup. Her passion for mentorship shines through as she guides interns, sharing her knowledge and empowering them to build their own careers in the exciting world of automation.

That's why this book review opportunity feels like destiny. It's a chance for her to share her hard-won knowledge, acting as a friendly translator through the sometimes-confusing world of Selenium for eager beginners. Imagine her as a bridge, connecting complex code to wide-eyed minds, and empowering them to embark on their own testing adventures.

Acknowledgements

First and foremost, I want to express my gratitude to the team at Orange AVA. Without their help and support, this book would not have been possible. I also want to thank Shreya Singh Patel, who performed the technical review and, paradoxically, acted as the tester of a book on the topic of test automation.

Andrew Knight (passionately called The Automation Panda) and Ivan Harris (CPTO at Provar) have patiently answered my questions about writing a book - thank you, folks. Special recognition goes to Tristan Lombard (a.k.a Stage Mom) for keeping me on track during the writing process and guiding me to do the right things, not the easy things.

This book has hidden treasures across the chapters in the form of quotes from industry leaders and open-source contributors. I want to thank these luminaries for giving away these pearls of wisdom.

A big thanks to Simon Stewart (creator of WebDriver) for writing the foreword to this book and lighting the path for many engineers like me.

2023 was a rough year for me, so I want to express my gratitude to my wife for supporting me at every stage of this writing journey.

Preface

Once upon a time, in a land not so far away, I was chatting with my friend about a certification exam for a test automation tool that I had taken. He was telling me about this new thing called Selenium. I was entirely skeptical of this new open-source technology, believing it was a fad bound to fade away. Lo and behold, Selenium has not only turned me around but also raised the bar for browser automation. Since its inception in 2004, Selenium has stood tall for an eternity in the technology domain, where trends rise and fall every six months.

Selenium is a powerful tool that allows you to automate web browser interactions, essentially teaching your computer to act like a robot. It is like having your own personal minion to carry out your tasks, including software testing, allowing you to focus on the more creative and strategic aspects of software delivery.

Whether you are a seasoned tester or just dipping your toes into the world of browser automation, buckle up and get ready for an adventure. In this book, we will explore the ins and outs of test automation using Selenium. This book is organized into 11 chapters, as outlined below:

Chapter 1 acts as an onboarding ramp to the Selenium ecosystem by covering the introduction to Selenium and detailed hands-on sections with Selenium IDE. This way readers can accelerate their learning journey while staying in the low-code mode.

Chapter 2 delves into the basics of Software Quality, Test Automation strategy, and Reporting. Before we dive deep into the ocean of Selenium test automation, it is imperative that we take a holy dip into the world of software testing and quality. This ensures that we do not waste our time automating the wrong tests and can really deliver on the promise of testing via automation.

Chapter 3 covers one of the most important topics in test automation – Locator strategies. Additionally, readers learn interactions with various web elements (such as clicking links and buttons), form submissions, and file uploads.

Chapter 4 explores advanced techniques for using Selenium WebDriver. With our newfound grip on Selenium WebDriver basics, readers also learn about various methods to tackle synchronization and wait strategies. This chapter sheds light on Shadow DOM, automation for Animations, and design patterns such as Page Objects and Screenplay patterns.

Chapter 5 acts as the backbone for our learning experience, as we build out a full-fledged Test Automation framework. Here, readers also learn about a very important testing framework – TestNG, for adding tests in an extensible way to the test automation framework.

Chapter 6 explores Distributed Test Automation, emphasizing the importance of scaling tests via Selenium Grid across machines and browsers.

Chapter 7 provides readers insight into the field of test automation for Software as A Service (SAAS) applications. Readers also learn about automating non-functional tests like Security and Performance, using our beloved tool Selenium.

Chapter 8 raises the bar of Selenium test automation with Behavior Driven Development (BDD). Wouldn’t it be great if non-technical users could read and execute our Selenium tests? In the quest to answer this question, readers learn about Cucumber and add Gherkin-syntax tests to their arsenal.

Chapter 9 covers the new features in Selenium 4 and is a true milestone in the journey of Selenium. Readers get exposure to the full array of upgrades in Selenium, ranging from updates in the architecture characterized by the Bi-Directional (BiDi) protocol to cutting-edge features like network interception and relative locators.

Chapter 10 provides the readers with strategic topics such as the Return on Investment (ROI) of test automation and ways to tackle maintenance for automation codebase. The chapter also covers tactical skills like extending browser automation with Excel interactions. Readers conclude the chapter with key topics such as designing Data-driven and Keyword-driven frameworks.

Chapter 11 provides insights into the future of test automation, covering topic such as using Artificial Intelligence (AI) for Test automation and Prompt engineering. To ensure a holistic learning experience, the chapter also covers GIT basics. Given Selenium as an open-source project, readers will also learn ways to get involved in the open-source community and utilize its benefits.

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-education/Ultimate-Selenium-WebDriver-for-Test-Automation

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/a0b09d

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction to Selenium Test Automation

Introduction

As of 2023, there are approximately 1.5 billion websites on the world wide web, with around 200 million being very active. In this vast and ever-expanding digital landscape, Selenium Test Automation has emerged as an increasingly popular and indispensable tool in the realm of web application automation. As technology continues to evolve and the demand for efficient, reliable software intensifies, Selenium shines as a crucial resource for developers and quality assurance professionals. This first chapter serves as your portal to comprehending how Selenium can transform your testing approach, enhancing speed, accuracy, and versatility.

Our journey begins with an introduction to Selenium, highlighting its significance and why it has become the go-to choice for automated testing in diverse sectors such as healthcare, education, and finance. The true elegance of Selenium resides in its capability to emulate human interactions in a native fashion.

Then we will discuss Selenium IDE in detail, a browser extension that allows users to record, edit, and replay tests without writing any code. This way we can get a flavor of Selenium, without getting into too much detail. We will examine its limitations, as well as its advantages, and compare it with Selenium WebDriver.

By the end of this chapter, you will have a foundation in Selenium Test Automation, equipped with the knowledge to start your journey. So, let’s embark on this exciting trail together and discover how Selenium can revolutionize the way you approach software test automation.

Note: The statistics at the beginning of this section are inspired from https://www.internetlivestats.com/total-number-of-websites/.

Structure

In this chapter, we will discuss the following topics:

	Introduction to Selenium

	Advantages of Selenium

	Getting started with Selenium

	Selenium IDE

Introduction to Selenium

Selenium is a browser automation tool that can help in automating various repetitive tasks such as web crawling, scraping, portal administration and most importantly software testing. The Selenium family of tools comprises three components:

	
Selenium WebDriver: Selenium WebDriver refers to both the language bindings and the implementations of the individual browser-controlling code. This is commonly referred to as just WebDriver. Selenium WebDriver uses a “WebDriver” interface to interact with web browsers using language-specific bindings (like Java, Python, and .NET). This interface defines a set of methods to navigate between pages, interact with page elements (such as clicking buttons or filling in text fields), and perform other tasks. One of the key benefits of using Selenium WebDriver is that it allows you to write tests in a way that closely resembles how a human user interacts with a website. This makes it easier to write tests that accurately simulate real-world usage scenarios. Overall, Selenium WebDriver is a powerful tool for automating web application testing that offers a wide range of capabilities and flexibility for developers and testers. We will cover WebDriver in detail in Chapter 3: Selenium WebDriver Basics.

	
Selenium IDE: Selenium IDE (Integrated Development Environment) is a browser-based tool that allows you to create, record, and playback automated tests for web applications. It is an open-source project that is available as a Firefox plugin and as a Chrome extension.
Selenium IDE provides a user-friendly interface that allows users to record interactions with a web application and convert them into automated tests. This is done by recording user interactions, such as clicks and keystrokes, and generating test scripts in a format called JSON.

Selenium IDE has several features that make it a useful tool for automated testing. For example, it allows you to add assertions to your tests to verify that specific elements on a web page are present or have certain properties. It also allows you to define variables and use flow control statements, making it possible to write complex tests.

One of the advantages of using Selenium IDE is that it allows non-technical users to create automated tests without having to write code. However, it also provides an option to export the recorded test script to different programming languages, such as Java or Python, so that technical users can customize and extend the tests as needed.

Overall, Selenium IDE is a useful tool for creating simple automated tests for web applications. While it may not have the same level of functionality and flexibility as Selenium WebDriver, it can still be a valuable tool for teams that are just starting with automated testing or for non-technical users who need to create and run tests quickly and easily.

	
Selenium GRID: Selenium Grid is a tool that allows you to run Selenium tests in parallel across multiple machines and browsers. It is a server that enables you to distribute your tests across different machines, thereby reducing the time required to run the tests and increasing the efficiency of your testing process. Selenium Grid works by creating a hub that manages the distribution of tests to multiple nodes. Each node is a machine that has a specific configuration, such as a specific operating system, browser version, or screen resolution. By adding nodes with different configurations to the grid, you can test your web application across multiple environments, ensuring that it works correctly on all of them. When a test is executed on the Selenium Grid, it is sent to the hub, which then forwards it to an available node that matches the desired configuration. The node then runs the test and sends the results back to the hub. This process can be repeated with multiple nodes, allowing you to run tests in parallel and significantly reducing the time required to complete the testing process. Selenium Grid supports various programming languages such as Java, Python, Ruby, and C#. It also supports different browsers including Google Chrome, Mozilla Firefox, Safari, and Edge. If you want to scale by distributing and running tests on several machines and manage multiple environments from a central point, making it easy to run the tests against a vast combination of browsers/OS, then you want to use Selenium Grid. We will cover GRID in detail in Chapter 6: Distributed Test Automation.

Selenium: The Origin Story

In 2004, Jason Huggins and his team were tasked with filling timesheets at their organization. This timesheet portal had a caveat, every time a new row had to be added, the web application would make a server call increasing the wait time for the user. Jason thought of automating the application with JavaScript as he observed the task to be repetitive and manually time-consuming. He wrote a small utility to accomplish the task and it gained popularity within his team as it was simple to use and easily saved the user time and effort with using the timesheet application. As this utility was gaining momentum, Jason made a joke mocking a competitor saying that you can cure mercury poisoning by taking selenium supplements. The others that received the email took the name and ran with it. And since then, the project has been called Selenium.

Selenium has been used for over 20 years and is based on industry standards, backed by Microsoft, Google, Apple, and Mozilla. This extensive experience has enabled Selenium to develop a robust and flexible tool that can handle the complexities of the modern web. This flexibility enables developers to write solid tests that can handle the advanced features of the modern web. Selenium is also open-source, which means that it is free to use and can be customized to meet the user’s specific needs. By leveraging Selenium, developers can write efficient and reliable tests that can help streamline the software development process.

- Diego Molina, Technical Lead at Selenium Project and Staff Software Engineer at Sauce Labs.

Advantages of Selenium

Selenium test automation has become an essential tool for software development companies as it offers several advantages over traditional manual testing methods. In this section, we will discuss the advantages of Selenium test automation and explore how it can improve the efficiency and effectiveness of your software testing process.

	
Faster Test Execution: One of the most significant advantages of Selenium test automation is faster test execution. Automated tests run faster than manual tests, which saves time and increases the efficiency of the testing process. With Selenium, you can execute multiple tests in parallel, reducing the time required to complete the testing process. For example, a team of manual testers may take several days to complete a series of tests, whereas the same tests can be completed in a matter of hours using Selenium.

	
Improved Test Coverage: Another advantage of Selenium test automation is improved test coverage. Automated tests can cover a wider range of scenarios and test cases than manual tests, which helps to identify more bugs and issues. Automated tests can also be run repeatedly without incurring additional costs, which means that you can test your application thoroughly without exceeding your testing budget. This ensures that your application is thoroughly tested before it is released to the market.

	
Increased accuracy: Manual testing is prone to errors, but automated testing using Selenium is highly accurate. Automated tests are programmed to execute the same way every time, ensuring that the same steps are followed and the same data is entered. This means that the results of automated tests are highly reliable and can be used to identify issues with a high degree of confidence.

	
Cost savings: Selenium test automation can also save money by reducing the need for manual testers. Automated tests can be run at any time, which means that testing can be performed outside of normal working hours. This can lead to significant cost savings, as manual testers would otherwise need to be paid overtime or additional wages. Automated tests can also be run repeatedly without incurring additional costs, which means that you can test your application thoroughly without exceeding your testing budget.

	
Flexibility: Selenium test automation is highly flexible and can be customized to meet the specific needs of your software development process. Selenium supports a wide range of programming languages and tools, which means that it can be integrated into your existing software development process seamlessly. It can also be used to test a wide range of web applications, from simple websites to complex enterprise applications.

To illustrate the advantages of Selenium test automation, let’s consider a hypothetical scenario. Imagine that you are developing an e-commerce website that needs to be tested thoroughly before it is released to the market. You have two options: manual testing or Selenium test automation.

Manual testing would require a team of testers to manually perform tests on the website. This would be time-consuming and expensive, as the team would need to be paid for their time. Additionally, manual testing is prone to errors, which means that the results may not be reliable.

In contrast, Selenium test automation would allow you to execute tests quickly and accurately. You could create automated tests that cover a wide range of scenarios and test cases, ensuring that the website is thoroughly tested before it is released to the market. Automated tests can be executed repeatedly, ensuring that any issues are identified and fixed before the website is released.

To further illustrate the advantages of Selenium test automation, let us consider a comparison table between manual testing and Selenium test automation:

	
	
Repetitive manual checks

	
Selenium Test Automation

	
Test Speed

	
Slow

	
Fast

	
Test Coverage

	
Limited

	
Comprehensive

	
Accuracy

	
Prone to errors

	
Highly accurate

	
Cost

	
Expensive

	
Cost-effective

	
Flexibility

	
Limited

	
Highly flexible

Table 1.1: (Comparison of repetitive manual checks and automated selenium tests)

Evidently, Selenium test automation offers several advantages over manual testing, including faster test execution, and efficient and effective test coverage with a pragmatic Return on investment.

Let us explore some more advantages of Selenium test automation in different domains as follows:

	
Consistency and Reliability: One of the major advantages of Selenium test automation is consistency and reliability. In healthcare, for example, testing medical software is critical as a minor mistake can have serious implications. Automated tests provide a consistent and reliable way to test medical software. Automated tests can be written to simulate a wide range of user interactions, ensuring that all possible scenarios are tested.

	
Compliance with Regulations: Healthcare, Edtech, and BFSI (Banking, Financial Services, and Insurance) domains have to comply with various regulations, and testing is an essential part of this process. Selenium test automation can help ensure compliance by providing consistent and reliable tests. In the BFSI domain, for example, it is essential to test software that deals with financial transactions. Automated tests can simulate different financial transactions, such as online money transfers, credit card payments, and stock trading, to ensure that the software complies with industry regulations.

	
Faster Testing: Selenium test automation can help speed up the testing process in all three domains. In Edtech, for example, automated tests can help test learning management systems, which are used to deliver online courses. Automated tests can simulate different student interactions, such as taking quizzes and submitting assignments. By automating these tests, the testing process can be completed faster and more efficiently.

	
Increased Test Coverage: Selenium test automation can help increase test coverage in healthcare, Edtech, and BFSI domains. In healthcare, for example, automated tests can simulate different medical scenarios, such as patient data entry and medical record keeping. By automating these tests, testers can ensure that all possible scenarios are tested, improving the overall test coverage.

	
Cost Savings: Selenium test automation can help save costs in all three domains. In BFSI, for example, automating tests for financial transactions can help reduce costs associated with manual testing. Automated tests can be executed repeatedly without incurring additional costs, ensuring that the testing process does not exceed the testing budget. Similarly, in Edtech, automating tests can help reduce the need for a large testing team, resulting in significant cost savings.

	
Improved Test Accuracy: Selenium test automation can help improve test accuracy in all three domains. In Edtech, for example, automated tests can help ensure that online courses function correctly, and students are assessed accurately. Automated tests can be written to simulate different student interactions, such as taking quizzes and submitting assignments, ensuring that the course content is functioning correctly.

In conclusion, Selenium test automation provides numerous advantages in healthcare, Edtech, and BFSI domains. It helps ensure consistency and reliability, compliance with regulations, faster testing, increased test coverage, cost savings, and improved test accuracy. By automating tests, testers can ensure that all possible scenarios are tested, resulting in software that is reliable, efficient, and meets industry standards.

Getting started with Selenium

Getting started with Selenium could be easy or very easy depending on who you ask. For our case, we will ease into the topic with some hands-on experience with Selenium IDE and then switch things up in Chapter 3: Selenium WebDriver Basics.

As mentioned earlier, Selenium is an umbrella project with three components:

	Selenium WebDriver

	Selenium GRID

	Selenium IDE

We will look at getting started with a low code approach to Selenium and test automation with the usage of Selenium IDE so that you can easily create and run tests. After that, we will discuss the basics of Selenium WebDriver and how to use it to interact with web elements. You will learn how to locate elements using various methods such as ID, name, class, and XPath. We will also cover how to handle different types of web elements like text boxes, dropdowns, checkboxes, and radio buttons. Additionally, we will dive into advanced topics like how to work with frames, alerts, and windows. Finally, we will look at best practices for Selenium automation testing. This will allow us to write effective and maintainable tests that can be integrated into continuous integration pipelines.

Selenium IDE

Selenium IDE is a browser extension that allows you to record, edit, and replay tests without writing any code. It is a great tool for beginners who want to get started with Selenium quickly. To get started, you need to install Selenium IDE in your browser.

Note: From this point onwards, we will run various hands-on exercises and code examples. Kindly execute each and every one of these, as automation and programming can be only learnt by doing it, in a hands-on manner.

Once you have installed it, you can open it and start recording your tests. Isn’t that simple enough, so let’s go!

Prerequisites

Before you start, you will need the following:

	A computer running Windows, macOS, or Linux

	Google Chrome browser installed on your computer

The first step to start using Selenium IDE is to install the extension in the Chrome browser. To do this, follow these steps:

	Open Chrome browser and go to the Chrome Web Store. The URL should be: https://chrome.google.com/webstore/category/extensions
Note: Download Chrome extensions from reliable sources only. Selenium IDE chrome extension should be from seleniumhq.org.

	Search for Selenium IDE in the search bar and press Enter.

[image:]

Figure 1.1: Selenium IDE plugin page on Chrome store

	Click on the Add to Chrome button and confirm the installation by clicking Add Extension.

[image:]

Figure 1.2: Popup to confirm the plugin installation

	Wait for the extension to download and install.

	You should now see the Selenium IDE icon in your Chrome toolbar.
Note: If you encounter any issues during the installation process, try restarting your browser or clearing your cache.

Test Automation using IDE

Now that we have set up Selenium IDE, let us automate a simple use case:

	Navigate to https://www.google.com and wait for the Newsletter popup.

	Enter First Name as your name.

	Enter Last Name as your last name.

	Enter Email address as your email address.

	Click on the Submit button.

In order to achieve automation for the above, let us follow the below steps:

	Click on the Selenium IDE plugin icon.

[image:]

Figure 1.3: Display of Selenium IDE as part of the Chrome extension panel

	Click on Record a new test in a new project in the resulting popup.

[image:]

Figure 1.4: Selenium IDE Welcome screen

	Enter the project name as Chapter_1 in the resulting screen and press OK.

[image:]

Figure 1.5: New project creation screen

	After entering the Project name, we need to set the base URL for the application under test. From our sample test case above, it should be https://orangeava.com/ in the next text box. Once you have entered the base URL, click on the START RECORDING button.

[image:]

Figure 1.6: Base URL Setup screen

	Clicking on the START RECORDING button, will open a new browser window and load the web page for Orange AVA publishers. Kindly notice the Selenium IDE is recording… overlay at the bottom, as it signifies that all user actions on this browser screen are being recorded by Selenium IDE. Fill up First Name, Last Name, Email fields and click on the Submit button.

[image:]

Figure 1.7: Recording form entry steps on Orange AVA home page

	Navigate to Selenium IDE application window and click on Stop Recording button at the top-right location.

[image:]

Figure 1.8: Selenium IDE application window to stop recording

	Enter the Test name as Form Entry Test and click OK.

[image:]

Figure 1.9: New test naming screen

	On the Selenium IDE application click on the Run current test button from the top menu bar.

[image:]

Figure 1.10: Test execution using Run current test button

Once you click the Run current test button, Selenium IDE will open the Chrome browser and replay all the steps recorded above.

Congrats! You have just automated and executed your first test case.

Note: If your test execution fails, do not be disheartened, as we will review the common pitfalls of web testing, debugging methods and limitations shortly.

IDE Walkthrough

Let us explore a few options and details on the Selenium IDE application.

The application window can be divided into three logical sections:

	
Test management: The left-hand section can be utilized to create test suites for organizing tests, creating more tests or executing individual or cluster of test cases.

[image:]

Figure 1.11: Test management options in Selenium IDE

	
Test Execution: Users can execute the test steps with a variety of options here, including execution speed, pausing on exceptions, and changing commands or values as follows:

[image:]

Figure 1.12: Test execution options in Selenium IDE

	
Logs and references: Selenium IDE provides users with detailed execution logs for their steps, including the command executed, timestamp and any errors encountered. Users can also navigate to Reference tab and find a detailed explanation of the selected command.

[image:]

Figure 1.13: Selenium IDE Logs section

[image:]

Figure 1.14: Selenium IDE Reference section

Debugging options

Selenium IDE comes with an array of debugging options that help you to identify and fix defects. Built-in debugging features like breakpoints and step-by-step execution help users to identify issues and enhance the efficiency of the testing process. Let us explore some of these options:

	Breakpoints allow you to stop your test script at a specific line of code. This is useful if you have a long test script that is failing, especially if the failure occurs near the end of the script. When a breakpoint is hit, the test script will stop running and you will be able to inspect the state of your application. You can then use the Step option to step through the code line by line, which can help you to pinpoint the source of the error. Breakpoints are a powerful debugging tool that can be used to find and fix errors in your test scripts. You can place a breakpoint in the Test script, by clicking on the numbers adjacent to the commands as follows:

[image:]

Figure 1.15: Selenium IDE Reference section

After placing the breakpoint, run your test and Selenium IDE will stop at the step with the breakpoint, so that user can inspect the web application’s state and make corrective measures to the test script. This is especially useful for handling timeouts, popups and frames.

	The Step over current command option allows you to run your test case one command at a time. This is very helpful for debugging, as it allows you to inspect exactly what is happening at each point in your test. This can be very useful for finding hard-to-reproduce bugs.

	Selenium IDE also has a Pause on Exception option. When this option is enabled, the debugger will pause before a red message appears in the console or log. This allows you to inspect what is happening after something goes wrong.

In addition to the above, Selenium IDE also comes packed with some other debugging options which can be explored by clicking the three-dot icon to the right of any command as follows:

[image:]

Figure 1.16: Additional debugging and command level options

	
Play to this point: This option starts the execution of the test case in a new browser and then pauses the execution, at the command, where this option is invoked. This option can be thought of as a combination of placing a breakpoint and then starting the execution of the test case.

	
Record from here: Assume that you would like to edit a long test case at the 11th step, due to a change in the flow, so rather than recording the whole flow again, you can activate the Record from here option, so that Selenium IDE can execute the test case till the 10th step in our example and then you can continue recording the updated flow.

	
Play from here: This option starts the execution in a new browser window, intending to execute the test case from the command, where the option is invoked.

Command Palette

Selenium IDE comes packed with 90+ commands like Click, Set, Select, and Send Keys to simulate common user actions on a web application. These commands can be utilized from the command drop down or by typing in the drop down as follows:

[image:]

Figure 1.17: Command selection in Selenium IDE

Users can enable/disable the command by clicking on the // option next to the command drop down. Also, Add new window configuration can be utilized to simulate interactions with a new window if the command triggers opening a new browser window.

Target and Web elements

The Target option helps us choose the web elements on the web applications.

A web element is any visible or invisible part of a web page that can be interacted with by a user. This includes things like text boxes, buttons, links, images, and dropdown menus. When writing Selenium IDE tests, you will often need to interact with web elements. For example, you might need to enter text into a text box, click on a button, or select an item from a dropdown menu. To do this, you will need to use the Target to identify the web element and then perform the desired action.

There are several ways to identify web elements. You can use the element’s ID, name, class, or other attributes. You can also use XPath or CSS selectors to identify web elements.

Once you have identified the web element, you can perform a variety of actions on it. You can send keys to it, click on it, or select it. You can also get the value of the element, or check whether it is enabled or disabled.

Web elements are an essential part of Selenium testing. By understanding how to identify and interact with web elements, you can write more effective and reliable tests.

Here are some examples of web elements:

	Text boxes allow users to enter text.

	Buttons perform an action when clicked.

	Links take users to a new page when clicked.

	Images display pictures.

	Dropdown menus allow users to select from a list of options.

When a user records a Selenium IDE test, it automatically captures the identifier for the web element, or the user has the following options to switch or update the identifiers:

	Clicking on the Target dropdown, provides us with a list of web element identifiers that can be used to interact with the target web element as follows:

[image:]

Figure 1.18: Target selection in Selenium IDE

Generally, id locators provide the most robust target selection strategies and are not prone to duplicates or changes. We will explore the target locator strategies such as CSS and Xpath in more detail in Chapter 3: Selenium WebDriver Basics.

Users can click on Select target in page to open the web application and select the web element for interaction. Last, but not the least, users can also click on Find target in page to find and highlight the web element on a web page, for closer inspection and debugging purposes.

Note: While recording a test script using Selenium IDE, users can right click on a web element and navigate to Selenium IDE sub menu item to open contextual actions such as Assert, Store, Verify and Wait For.

Additional Options

Selenium IDE has two additional controls for fine tuning test design and execution.

	
Description field: This field can be used to display a human readable format in the command list as follows:

[image:]

Figure 1.19: Setting the description for a command in Selenium IDE

	
Value field: This field is used to enter the values into a target web element such as First Name, Last Name or Email. Users can manually enter the values or programmatically set the values using the store command. For example, if you use variables for the type command, take the following steps:

	Create a store command to store a variable in Selenium IDE.

	Right-click the row where the type command is and select Insert new command.

	Click the new row that is inserted and select store from the command list.

	Set the Value field with the variable name you want, such as username.

	Leave the Target field blank or with a default value.

	Click the row where the type command is again and change the Value field based on the variable name that you set in the last step.

	Enclose the variable name in curly brackets ({}) and precede it with a dollar sign. Example as in ">Figure 1.20:

[image:]

Figure 1.20: Using a variable for a value field in Selenium IDE

Conditional Logic

During the process of Selenium test automation, it is common to encounter scenarios where a set of commands must be executed only when certain conditions are met. For example, a user may need to consent to the use of cookies before proceeding with a test, or a newsletter subscription may need to be confirmed.

Selenium IDE supports conditional logic (or control flow) through conditional branching, which allows for changes in test behavior. It also supports looping through tests, where a set of commands can be executed repeatedly based on predefined criteria.

Some of the popular control flow commands that help with conditional branching and looping in Selenium IDE are:

	
if: This command allows you to specify a block of code that will be executed only if the specified condition is true.

	
else if: This command allows you to specify a block of code that will be executed only if the specified condition is true and the previous condition was false.

	
else: This command allows you to specify a block of code that will be executed only if all the previous conditions were false.

	
end: This command terminates the conditional command block. Without it the command block is incomplete and you will receive a helpful error message letting you know when trying to run your test.

	
times: This command allows you to execute a block of code a specified number of times.

	
do: This command allows you to execute a block of code repeatedly until a specified condition is met.

	
repeat if: This command allows you to execute a block of code repeatedly until a specified condition is met, and then evaluate the condition again. The commands after the “do” will be executed first and then the expression in the “repeat if” will be evaluated. If the expression returns true then the test will jump back to the “do” command and repeat the sequence

	
while: This command allows you to execute a block of code repeatedly while a specified condition is met.

	
forEach: This command allows you to iterate over a collection (e.g., a JS array) and reference each item in that collection while we do it.

By using these control flow commands, you can add more flexibility and complexity to your Selenium test automation scripts. This can help you to write more robust and reliable tests that can better mimic the behavior of real users.

Note: Selenium IDE enables users to re-use a test case. This can be enabled by adding a run command and the Target as the name of the test case, which needs to be reused as part of another test case. This can help in recording smaller flows such as logging into an application and reusing them as part of bigger flows.

Exporting the code

Users can export the either a test or suite of tests to WebDriver code by right-clicking on a test or a suite, selecting Export, choosing your target language, and clicking Export.

Here is a reference image for the Export option:

[image:]

Figure 1.21: Exporting code from Selenium IDE

Currently Selenium IDE supports export in the following languages/frameworks:

	C# NUnit

	C# xUnit

	Java Junit

	JavaScript Mocha

	Python pytest

	Ruby RSpec

Clicking on the Export option provides us the following configurations:

[image:]

Figure 1.22: Code export options from Selenium IDE

In ">Figure 1.22, users have the following options:

	
Include origin tracing code comments: This option will place inline code comments in the exported file with details about the test step in Selenium IDE that generated it. Here is an example:
// Test name: Form Entry Test

// Step # | name | target | value

// 1 | open | / |

driver.get(“https://orangeava.com/”);

// 2 | click | id=first_name |

driver.findElement(By.id(“first_name”)).click();

	
Include step description as a separate comment: This option will place the Description as a commented code line in the output file as follows:
// Enter the email value into the “email” field.

driver.findElement(By.id(“email”)).sendKeys(“author@orangeava.com”);

	
Export for use on Selenium Grid: This option provides the user capability to run Selenium IDE tests on a Grid URL such as http://localhost:4444/wd/hub. And places the RemoteWebDriver configuration as follows:
driver = new RemoteWebDriver(new URL(“http://localhost:4444/wd/hub”), DesiredCapabilities.chrome());

Here is a snippet of the exported code in JAVA for reference:

public class FormEntryTestTest {

private WebDriver driver;

private Map<String, Object> vars;

JavascriptExecutor js;

@Before

public void setUp() throws MalformedURLException {

driver = new RemoteWebDriver(new URL(“http://localhost:4444/wd/hub”), DesiredCapabilities.chrome());

js = (JavascriptExecutor) driver;

vars = new HashMap<String, Object>();

}

@After

public void tearDown() {

driver.quit();

}

@Test

public void formEntryTest() {

// Test name: Form Entry Test

// Step # | name | target | value

// 1 | open | / |

driver.get(“https://orangeava.com/”);

// 2 | click | id=first_name |

driver.findElement(By.id(“first_name”)).click();

// 3 | type | id=first_name | Robin

driver.findElement(By.id(“first_name”)).sendKeys(“Robin”);

// 4 | click | id=last_name |

driver.findElement(By.id(“last_name”)).click();

// 5 | type | id=last_name | Gupta

driver.findElement(By.id(“last_name”)).sendKeys(“Gupta”);

// 6 | click | id=email |

driver.findElement(By.id(“email”)).click();

// 7 | type | id=email | author@orangeava.com

// Enter the email value into the “email” field.

driver.findElement(By.id(“email”)).sendKeys(“author@orangeava.com”);

// 8 | click | css=.ecomsend__Button |

driver.findElement(By.cssSelector(“.ecomsend__Button”)).click();

}

}

Running on CLI

Selenium IDE can be utilized to run tests via the command line interface and as part of the build process. This capability can be utilized to run the tests in parallel and on Grid with minimal configuration. Here are some additional benefits of using Selenium IDE with the command line runner and Grid:

	
Increased test speed: Running tests in parallel and on Grid can significantly improve the speed of your test suite.

	
Improved test coverage: By running tests on a variety of browsers and devices, you can improve the coverage of your test suite.

	
Reduced maintenance overhead: The command line runner and Grid can help to reduce the maintenance overhead of your test suite.

In order to run Selenium IDE tests, we need to have a few pre-requisites installed as follows:

	
node: The Node.js programming language (version 8 or above)

	
npm: The NodeJS package manager which typically gets installed with “node”

	
selenium-side-runner: The Selenium IDE command line runner. Once you have “node” installed, you can install the “selenium-side-runner” with the following command on a terminal window:
npm install -g selenium-side-runner

	
Browser Driver: Selenium communicates with each browser through a small binary application called a browser driver. Each browser has its own browser driver, which you can either download and add to your system path manually, or, you can use a package manager to install the latest version of the browser driver (recommended). A browser driver is a software program that allows Selenium to control a specific web browser. The browser driver communicates with the browser through a remote protocol, such as HTTP or HTTPS. This allows Selenium to send commands to the browser and receive information from the browser, such as the current page URL, the text of a web element, and the status of a web element.

Selenium supports a wide range of browser drivers, including drivers for Chrome, Firefox, Edge, Safari, and Internet Explorer. You can download the latest version of each browser driver from the Selenium website.

If you are using a package manager, such as npm or pip, you can use the package manager to install the latest version of the browser driver for your browser.

	For Chrome, you can download Chromedriver using the below command on terminal:
npm install -g chromedriver

	For Microsoft Edge on a Windows PC, you can download the EdgeDriver using the following command on terminal:
npm install -g edgedriver

	For Firefox, you can download the geckoDriver using the below command on terminal:
npm install -g geckodriver

Once you have setup the pre-requisites detailed in the above section, Selenium IDE tests can be run by calling the “selenium-side-runner” from the command line and targeting the .side project exported from Selenium IDE application. This can be accompalished by running the command as follows:

selenium-side-runner /path/to/your-project.side

This would run your tests by opening a Chrome browser and provides the output as follows:

[image:]

Figure 1.23: Command line execution results from Selenium IDE Runner

Configuring a browser: In order to change the browser to Chrome, Edge or Firefox, you can utilize the following command line options:

selenium-side-runner -c “browserName=chrome”

selenium-side-runner -c “browserName=edge”

selenium-side-runner -c “browserName=firefox”

Configuring a base URL: With the ability to specify a different base URL you can easily point your tests at different environments (e.g., local dev, test, staging, production). Here are some examples of how you might use different base URLs in your test cases:

	
Local development: You might use a local development server to develop and test your web application. In this case, you would specify the URL of your local development server as the base URL for your test cases.

	
Testing: You might use a testing server to test your web application before it is released to staging environment. In this case, you would specify the URL of your testing server as the base URL for your test cases.

	
Staging: You might use a staging server to test your web application before it is released to production. In this case, you would specify the URL of your staging server as the base URL for your test cases.

	
Production: You might use a production server to release your web application to the public. In this case, you would specify the URL of your production server as the base URL for your test cases.

The base URL can be changed via the command line runner as follows:

selenium-side-runner --base-url https://localhost

Writing test results to a file:

Selenium IDE users can execute the tests using command line interface, and write the detailed test results into a text compatible format. The following options can be used to output the test results:

	
--output-directory : This flag represents the target location where the results should be stored. This could be an absolute or a relative path.

	
--output-format : This flag represents the format of the output file. It can be:

	
jest: For JSON output. This is also the default format. This option can be activated with the following usage:
selenium-side-runner --output-directory=resultsfolder

	
junit: For XML output. This option can be activated with the following usage:
selenium-side-runner --output-directory=results --output-format=junit

Key limitations and way forward

Selenium IDE, undoubtedly is a popular automation tool used to test web applications. However, it has its share of limitations that we will be discussing in detail in the subsequent sections.

One significant limitation of Selenium IDE is its inability to handle dynamic web elements. This is because it heavily relies on the recording and playback feature, which is unable to handle changes in a webpage’s dynamic elements. As a result, test scripts may fail when web elements change, causing false positives or negatives.

Another limitation is the lack of programming support, which is a vital disadvantage for professional testers. The tool is meant for creating tests without the need for programming skills, but it becomes challenging to extend the script’s functionality when required.

Selenium IDE may struggle with handling complex test scenarios that involve data-driven testing, parameterization, or interacting with databases or APIs.

When it comes to using Selenium IDE effectively, there are a few key strategies to keep in mind. First and foremost, always follow recording and playback best practices. This involves ensuring that tests are repeatable, and that you are capturing all the necessary steps. Additionally, be sure to understand element locators - this is crucial for making sure your tests are accurate and reliable.

Using assertions and verifications is another important part of effective Selenium IDE usage. These tools allow you to check that your tests are producing the expected results, and can help you quickly identify when things go wrong. Finally, it is important to create efficient test case workflows. This means organizing and prioritizing your tests, and making sure that everything is running as smoothly as possible.

In conclusion, while Selenium IDE is a powerful tool for automated testing, it does have some limitations. By using a programming language with Selenium WebDriver, a testing framework, and a debugger, you can overcome these limitations and create more powerful and maintainable tests.

Each iteration of Selenium IDE should hew closer to truly mirroring what a user is testing with their CI system. Version 2 was Firefox only and used emulated JS and some shady bridge internal patching. Version 3 supported Chrome and Firefox and used a web extension manifest 2 spec, and still used emulated JS. This was better because it supported local playback in more drivers, but both suffered from using JS for local playback, and webdriver for remote. Version 4 uses webdriver playback locally, and Electron as a binary, which means it comes with a driver built in. This is close to perfect, but there are still a few more flaws due to electron-chromedriver missing a few important APIs (setWindowSize and no support for window.prompt). By switching to bidi, we’ll trade the Electron specific messaging APIs for Bidi based protocols, and that means we can run any driver with support for Bidi in local playback and recording, giving us support of all driver primitives and window builtins. That’s the first goal, as that means the shared runtime of local playback can exactly mirror the shared runtime of CI playback, which is extremely important for these tools. After that, the goal will be to add hooks to let the IDE consume its own export formats via exit codes, persisted sessions, and local executions. The existing shared runtime is massively better than the emulated JS of before, but until we make export formats first priority in the IDE, we’re basically disincentivizing the ecosystem. We want our runtime to be no more supported than java bindings, or a puppeteer format even if someone wanted to write that. Ultimately, the IDE exists as a tool for building e2e tests that will be played remotely later, and every step we take towards allowing the tool to ingest and support elements of that, whether it be the drivers and capabilities or the testing frameworks themselves, will be what decides its relevance into the future.

- Todd Tarsi, Open-source contributor, and maintainer on the Selenium IDE project.

Conclusion

As we wrap up this chapter on Selenium Test Automation, we’ve taken a deep dive into what makes Selenium such a useful tool for testing websites. It’s like a Swiss Army knife for developers and testers, packed with different features like Selenium WebDriver, Selenium IDE, and Selenium Grid. Each of these has its own special role, from the WebDriver that drives your browser, to the IDE which lets you record and playback tests easily. We have seen how Selenium is not just powerful but also flexible, working across different browsers and supporting several programming languages.

We also explored how Selenium fits into real-life scenarios. It’s not just about theory; Selenium is out there in the trenches, making a difference in industries like healthcare, education, and finance. We can use Selenium IDE to quickly validate automation scenarios and get a grip on web application automation.

In the next chapter on test automation, we delve into the essential aspects of software testing and its automation process. Beginning with an introduction to software testing, we explore the fundamentals and importance of ensuring software quality. The chapter then transitions into test automation, discussing its advantages and the tools used to streamline the testing process. We also cover test planning, which involves defining objectives, scope, and strategies for effective testing. Next, we examine test design, focusing on creating comprehensive test cases and scenarios that align with the software requirements. The chapter proceeds to discuss test execution and logging, highlighting the importance of tracking test results and identifying issues. Finally, we address test reporting, emphasizing the need to communicate test findings and insights to stakeholders for informed decision-making and continuous improvement.

Exercise

Hello champion, congrats on finishing Chapter 1, as we are just getting started. Let us tackle a hands-on exercise to deepen the understanding.

You need to automate the following scenario using Selenium IDE:

	Navigate to https://orangeava.com/

	Skip the pop up for sign up on home page by clicking the X button.

	Click on the first book under New Release section.

	Validate that the AVA logo at the top of the page has the correct URL for home page as https://orangeava.com/

	After the execution, results should be stored in a JSON file via the execution from CLI.

OEBPS/images/logo.jpg

OEBPS/images/line.jpg

OEBPS/images/Figure-1.18.jpg

OEBPS/images/qr1.jpg

OEBPS/images/qr.jpg

OEBPS/images/Figure-1.2.jpg

OEBPS/images/Figure-1.19.jpg

OEBPS/images/Figure-1.21.jpg

OEBPS/images/Figure-1.20.jpg

OEBPS/images/Figure-1.23.jpg

OEBPS/images/Figure-1.1.jpg

OEBPS/images/Figure-1.22.jpg

OEBPS/images/Figure-1.10.jpg

OEBPS/images/Figure-1.4.jpg

OEBPS/images/Figure-1.11.jpg

OEBPS/images/Figure-1.3.jpg

OEBPS/images/FIgure-1.12.jpg

OEBPS/images/Figure-1.13.jpg

OEBPS/images/Figure-1.5.jpg

OEBPS/images/Figure-1.14.jpg

OEBPS/images/cover.jpg

OEBPS/images/Figure-1.15.jpg

OEBPS/images/Figure-1.16.jpg

OEBPS/images/Figure-1.17.jpg

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		Foreword

		About the Author

		About the Technical Reviewers

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Introduction to Selenium Test Automation

		Introduction

		Structure

		Introduction to Selenium

		Selenium: The Origin Story

		Advantages of Selenium

		Getting started with Selenium

		Selenium IDE

		Prerequisites

		Test Automation using IDE

		IDE Walkthrough

		Debugging options

		Command Palette

		Target and Web elements

		Additional Options

		Conditional Logic

		Exporting the code

		Running on CLI

		Key limitations and way forward

		Conclusion

		Exercise

		2. Fundamentals of Test Automation

		Introduction

		Structure

		Introduction to Quality

		Software Testing

		Supercharge your Quality Journey with Automation

		Test Automation Strategy

		Test Designing for Automation

		Test Design Methodologies

		Risk-Based testing

		Pair-wise Testing

		Test Execution and Logging

		Logging

		Importance of Logging

		Reporting and Measurements

		Test Automation Coverage

		Conclusion

		Exercise

		3. Selenium WebDriver Basics

		Introduction

		Structure

		WebDriver Architecture

		Prerequisites

		Setup and Basic Interaction

		Locators and Web Elements

		WebElement

		Different Locator Strategies

		Xpath Locators

		Attributes

		Axes

		Operators

		CSS locators

		Interactions with Web Elements

		click

		isDisplayed

		isEnabled

		getAttribute

		getText

		sendKeys

		clear

		Handling Frames and Windows

		iframes

		Window Management

		Common HTML Elements

		Table

		Select

		Drag and Drop

		Calendar

		Form Submissions and File Uploads

		Few Use Cases on Automation

		Web Scraping for Fun

		Automated Price Tracker

		Virtual Plant Nurturer

		Conclusion

		Exercise

		4. Advanced Selenium Techniques

		Introduction

		Structure

		Synchronization and Wait Strategies

		Waiting Strategies

		Implicit Waits

		Explicit Waits

		Fluent Waits

		Shadow DOM

		Animations and moving elements

		JavaScript Executor

		Page Objects

		Page Factory

		Page Object limitations

		ScreenPlay pattern

		Comparison of Screenplay and Page Object Design Patterns

		Page Object Pattern

		Screenplay Pattern

		Conclusion

		Exercise

		5. Test Automation Framework

		Introduction

		Structure

		Framework Basics

		Design Patterns

		Factory Design Pattern

		Single Responsibility Principle (SRP)

		Reflection in Java

		Maven

		POM file

		Directory Structure of a Maven Project

		Maven Commands

		TestNG

		Installation

		Annotations and their Execution Order

		Running and Debugging TestNG tests

		@Factory and @DataProvider

		testng.xml and Parallel execution

		Assertions

		assertEquals

		assertNotEquals

		assertTrue

		assertFalse

		Test Reporting

		Logging

		Installation

		Configuration

		Log Levels

		Building a Framework

		Folder structure

		Code smells

		Building blocks of framework

		WebDriver Factory Class

		PageFactory Class

		BaseTest Class

		PageBase Class

		Creating Automated Tests

		Running tests via TestNG or Maven

		Continuous Integration/Continuous Delivery

		Benefits of CI/CD

		Tools and Usage

		Conclusion

		Exercises

		6. Distributed Test Automation

		Introduction

		Structure

		Cross-browser Compatibility

		Handling Browser-Specific Behaviors

		Handling Chrome Browser Issues Using Selenium

		ChromeOptions

		ChromeDriverService

		Certificates

		Popups

		Headless Mode

		Mobile Emulation

		Localization

		Improve loading times

		Selenium Grid

		Setup and installation

		Grid architecture

		Roles of Selenium Grid

		Standalone

		Hub and Node

		Fully distributed

		Security

		Conclusion

		Exercise

		7. SAAS and Non-functional Test Automation

		Introduction

		Structure

		Basics of a SAAS Application

		Dissecting Web Application Layers

		Let’s Get Dissecting!

		Test automation for SAAS

		Test Pyramid

		The Role of Non-Functional Testing

		Limitations and Moving Forward

		Performance Analysis

		Installation

		Test Authoring and execution

		Security Testing

		OWASP and ZAP

		ZAP and Selenium

		Setup and Pre-requisites

		Conclusion

		Exercise

		8. BDD with Selenium

		Introduction

		Structure

		Behavior Driven Development

		Gherkin and Cucumber

		Gherkin

		Cucumber

		Pre-requisites and installation

		Feature file

		Hooks

		Step Definition

		Runner

		Cucumber properties file and reports

		Tips for Cucumber

		Conclusion

		Exercise

		9. New Features in Selenium 4

		Introduction

		Structure

		History of Selenium (again)

		Support for BiDi and CDP

		Chrome DevTools Protocol

		DOM mutation

		Browsing Context

		Console logs

		Network Interception

		Website Performance Metrics

		Relative locators

		Geolocation Emulation

		Crucial updates

		Conclusion

		Exercise

		10. Conclusion

		Introduction

		Structure

		Test Maintenance

		ROI for Test Automation

		Extending Selenium with Excel

		Apache POI Installation

		Reading Values from Excel

		Data-driven Frameworks

		Keyword-driven Frameworks

		Hybrid Frameworks

		Bonus Components

		Roadmap for Selenium

		Conclusion

		Exercise

		11. Way Forward

		Introduction

		Structure

		Usage of AI in Test Automation

		Prompt Engineering

		Impact of AI in the field of Test Automation

		Git Basics

		Key Concepts of Git

		Essential Git Commands and their Usage

		Git Workflow

		Open-Source Community of Selenium

		Technical Contributions

		Beyond Tech: Enriching the Community in Varied Ways

		Conclusion

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to Selenium Test Automation

OEBPS/images/Figure-1.7.jpg

OEBPS/images/Figure-1.6.jpg

OEBPS/images/Figure-1.9.jpg

OEBPS/images/Figure-1.8.jpg

