
[image: image]

PRACTICAL ANSIBLE
AUTOMATION HANDBOOK

An ultimate guide to innovate, accelerate, and
maximize efficiency of IT infrastructure on
Windows and Linux

by

LUCA BERTON

[image:]

www.orangeava.com

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information.

First published: July 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-93-88590-89-1

www.orangeava.com

Dedicated to

My son Filippo - the joy of my life

About the Author

Luca Berton is an Ansible Automation Expert who has been working with JP Morgan Chase & Co. He previously worked with the Red Hat Ansible Engineer Team for three years. He is the author of the best-selling books “Ansible for VMware by Examples” and “Ansible for Kubernetes by Examples”. Luca is also the creator of the Ansible Pilot project.

With over 15 years of experience as a System Administrator, he possesses extensive expertise in Infrastructure Hardening and Automation. He is an avid supporter of the Open Source community and shares his knowledge at various public events. A geek by nature, Luca’s inclination is towards Linux, particularly Fedora.

Technical Reviewer

Yogesh Raheja is a Founder and CEO of Thinknyx Technologies. He is a certified DevOps, Cloud and Container expert with a decade of IT experience. He has expertise in technologies such as Public/Private Cloud, Containers, Automation tools, Continuous Integration/Deployment/Delivery tools, Monitoring & Logging tools etc. He loves to share his technical expertise with audience worldwide at various forums, conferences, webinars, blogs, and LinkedIn. He has written multiple books – “Effective DevOps with AWS”, “Automation with Puppet 5” and “Automation with Ansible” and has published his online courses on various platforms. He has also reviewed multiple books for Packt which include Implementing Splunk 7, Third Edition and Splunk Operational Intelligence Cookbook, Third Edition and many more.

Linkedin: www.linkedin.com/in/yogesh-raheja

Preface

Welcome to “Practical Ansible Automation Handbook,” a comprehensive guide that will take you on a journey through the world of automation using Ansible. In today’s fast-paced digital landscape, where efficiency and scalability are paramount, Ansible has emerged as a leading automation tool that empowers organizations to streamline their operations and achieve remarkable results.

This book is designed to equip beginners and developers alike with the knowledge and skills needed to harness the full potential of Ansible. Whether you are a system administrator, network engineer, developer, or manager, this book will provide you with the necessary tools and techniques to automate routine tasks, enhance configuration management, and orchestrate complex deployments.

As an Ansible automation expert with years of experience, I have meticulously crafted this book to provide you with a practical, step-by-step approach to mastering Ansible. Each chapter is enriched with real-world examples and hands-on exercises, covering everything from the fundamentals of Ansible’s architecture and installation to advanced topics such as leveraging the Ansible Automation Platform and Morpheus.

Throughout the book, you will discover how Ansible can transform your infrastructure operations, enabling you to achieve Infrastructure as Code and unlock the benefits of multi-cloud environments. You will learn how to develop playbooks, manage variables, handle conditional statements, and utilize Ansible modules effectively.

Moreover, this book goes beyond just Ansible by delving into the integration of Morpheus. It explores topics such as configuration management, graphical user interfaces, role-based access control, and more. You will not only gain insights into troubleshooting common issues but also acquire best practices to optimize your Ansible workflows.

By the end of this book, you will have developed a solid understanding of Ansible and the confidence to automate tasks, accelerate deployments, and improve overall efficiency in your IT operations. Whether you are a beginner seeking a comprehensive introduction or an experienced user looking to expand your knowledge, this book serves as your ultimate guide to mastering Ansible automation.

I invite you to embark on this exciting journey with me as we delve into the world of Ansible and discover how it can revolutionize your automation practices. Let’s automate everything and unlock the true power of Ansible.

Happy automating!

Chapter 1

Getting Started. In this chapter, we will lay the foundation by introducing Ansible and guiding you through the installation process on Linux, macOS, and Windows. You will gain an understanding of Ansible’s architecture and learn how to execute basic ad-hoc commands to manage remote hosts effectively.

Chapter 2

Ansible Language Core. In this chapter, we will delve into the core language of Ansible. You will learn how to work with Ansible inventory, create powerful playbooks, utilize variables, leverage facts, and harness the flexibility of conditional statements and loops.

Chapter 3

Ansible Language Extended. Building upon the core language, this chapter explores advanced concepts such as Ansible Vault for securely storing sensitive data, utilizing handlers to trigger actions, harnessing the power of roles and collections for code reusability, and employing filters, templates, and plugins to enhance your automation capabilities.

Chapter 4

Ansible for Linux. This chapter will focus on configuring Linux target hosts and performing everyday system administration tasks. You will learn how to ensure host availability, edit files, create text files, and execute rolling updates, among other essential Linux-specific automation tasks.

Chapter 5

Ansible for Windows. In this chapter, we shift our focus to Windows target hosts. You will discover how to configure Windows hosts, test their availability, manipulate files, create text files, and perform rolling updates, enabling seamless automation in a Windows environment.

Chapter 6

Ansible Troubleshooting. Troubleshooting is an integral part of any automation journey. In this chapter, we will equip you with the knowledge to diagnose and resolve common issues you may encounter while working with Ansible. From connection failures and syntax errors to missing module parameters, you will learn effective troubleshooting techniques.

Chapter 7

Ansible Enterprise. This chapter explores Ansible for Enterprise features and its integration with Ansible Automation Platforms and Morpheus. It covers a range of topics, including GitOps, Configuration Management (CM), Graphical User Interfaces (GUIs), and Role-based Access Control (RBAC).

Chapter 8

Ansible Advanced. In this final chapter, we will explore Ansible’s advanced features and third-party integration within Cloud Providers and Kubernetes. We will showcase real-world Ansible use cases and orchestration scenarios.

Downloading the code
bundles and colored images

Please follow the link to download the
Code Bundles of the book:

https://github.com/OrangeAVA/Practical-Ansible-Automation-Handbook

The code bundles and images of the book are also hosted on
https://rebrand.ly/313ff8

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

Are you interested in Authoring with us?

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Getting Started

Introduction

Ansible is a key technology to standardize and homogenize different toolchains and obtain excellent results in deliverability and customer satisfaction in our organization. A simple language to learn, a standard code block makes the learning process smooth as we proceed in our journey.

Structure

In this chapter, we shall cover the following topics:

	Modern datacenter

	Introduction to Ansible

	Ansible architecture

	Ansible installation

	Ansible ad-hoc commands

Modern Datacenter

Every company nowadays relies on an efficient and modern Information Technology department. It is important to maintain the highest quality to meet business demand and be competitive in the global market is extremely important.

A modern data center is a centralized location where an organization’s IT infrastructure is housed and managed.

This can include servers, storage systems, networking equipment, and other hardware and software components that support the organization’s computing needs.

One of the key characteristics of a modern data center is that it is designed to be scalable, flexible, and highly available. This means that it can easily be expanded or adapted as the organization’s computing needs change and that it is able to continue operating even if one or more components fail.

A modern data center may also be designed to be energy efficient, using advanced cooling and power management systems to reduce energy consumption. It may also include features such as redundant power and networking infrastructure to ensure high levels of uptime and reliability.

In addition to traditional hardware and software components, a modern data center may include cloud-based services, such as infrastructure as a service (IaaS) and platform as a service (PaaS). These services allow organizations to access computing resources on demand without purchasing and maintaining their own hardware.

In our IT infrastructure, we have as many applications as possible running to meet the needs of the business stakeholders.

Application deployment refers to the process of delivering and installing a software application to a production environment where it can be accessed and used by end users. This process typically involves building the application, testing it to ensure it is functioning properly, and then releasing it to a live environment where it can be accessed by users over the internet or a local network.

There are many ways to deploy an application, depending on the type of application and the target environment. Some common methods include:

	
Manual deployment: This involves installing an application on each device or server by executing manual steps. This can be time-consuming and error-prone but is often used for small applications or for applications that are not expected to be used by many users.

	
Scripted deployment: This involves using scripts or automated tools to install the application on multiple devices or servers simultaneously. This can be faster and more reliable than manual deployment but requires more upfront work to set up scripts and automation tools. This technique of using script-based approach for automation is called “Imperative Approach”.

	
Container-based deployment: This involves packaging the application and its dependencies into a container, which can then be deployed to any device or server that is capable of running the container. Containers allow applications to be deployed quickly and consistently, making it easier to scale them up or down as needed.

	
Cloud deployment: This involves hosting the application on a cloud platform such as Amazon Web Services (AWS) or Microsoft Azure. Cloud platforms provide a variety of tools and services to make it easy to deploy, scale, and manage applications in a live environment.

Overall, the goal of application deployment is to make it easy to get the application up and running in a production environment so that end users can access and use it as needed. We can also automate the deployment process using Ansible in our deployment toolchain, combining with Jenkins for example. Learn more about CI/CD pipeline in Chapter 6: Ansible Troubleshooting, section Troubleshooting tools.

A container is a lightweight, stand-alone, and executable package that includes everything an application needs to run, including the application code, libraries, dependencies, and runtime. Containers allow applications to be easily packaged and deployed on any platform, including on-premises servers, cloud infrastructure, and hybrid environments.

One of the key benefits of containers is that they allow applications to be isolated from their surroundings and run consistently across different environments. This makes it easier to develop, test, and deploy applications and helps ensure that applications run correctly when deployed in production.

Containers are typically run on top of the container runtime, such as Docker, Podman and Cri-O (used also by Kubernetes), which is responsible for managing and scheduling the containers. The container runtime provides a consistent interface for interacting with the containers, regardless of the underlying operating system or infrastructure.

Containers have become increasingly popular in recent years as a way to deploy and manage applications in a cloud-native manner, and they are widely used in DevOps and microservices architectures.

Modern IT infrastructure offers self-healing, intelligent scheduling, service discovery, horizontal scaling, automated rollouts and rollbacks, load balancing, Secrets, Config Maps and automation using Configuration Management. When the number of machines is too much, we need a reliable Patch management system to maintain the systems up-to-date and apply faster patches and security updates.

Introduction to Ansible

Ansible is an open-source software platform for automating and managing IT infrastructure, including deploying applications and configuring systems. It allows us to write playbooks, which are sets of tasks written in YAML (a human-readable language) that describe how to perform Automation steps (tasks) on one or more remote servers.

[image:]

Figure 1.1: The Ansible logo

Ansible uses a client-server architecture, with a central control server (the “Ansible Control Node”) and managed nodes (the servers that we want to automate tasks on). The control machine connects to the managed nodes over SSH (a secure network protocol) and runs the playbooks on them.

[image:]

One of the key benefits of Ansible is that it uses a simple, easy-to-learn syntax and does not require any special programming skills. This makes it an appealing choice for IT professionals who need to automate various regular repetitive work tasks but may not have much programming experience. Ansible is a declarative language, whereas the scripts are usually written as procedural. The advantage is that it is focused on the final status of the system rather than on the step to achieve the status.

Ansible can be used to automate a wide range of tasks, including the deployment of applications, the configuration of systems, the provisioning of cloud infrastructure, and the management of security and compliance. It is commonly used in DevOps (a software development methodology that emphasizes collaboration between development and operations teams) to automate the build, test, and deployment of applications.

Ansible connects to target machines using the following protocols:

	OpenSSH for Unix-like operating systems: Linux, macOS, and so on.

	WinRM for Windows operating systems.

The following figure represents the Ansible architecture:

[image:]

Figure 1.2: The Ansible architecture

Ansible in the diagram is a central controller node and Linux, Windows and macOS in the diagram are managed nodes where the automation will be performed.

Linux and macOS Target

Ansible connects to any POSIX, Unix-like operating system in managed hosts using the OpenSSH protocol. The long list includes any Linux distributions, Unix, macOS, and any flavor of BSD, and so on. OpenSSH is a free, open-source implementation of the Secure Shell (SSH) protocol. It is a network protocol that provides secure communication between computers, allowing us to remotely log in to another computer, execute commands, and transfer files securely over a network.

The SSH protocol uses encryption to secure the connection between the client (our computer) and the server (the remote computer). It authenticates the client and server using public key cryptography and establishes a secure channel over which data can be transmitted.

OpenSSH is widely used to access remote servers and systems, and it is the default SSH implementation on most Linux and Unix-based systems. It is also available as third-party software on other operating systems, such as Windows and macOS.

OpenSSH provides various tools and utilities for managing SSH connections, such as ssh for establishing an SSH connection, SCP for securely transferring files between computers, and SFTP for transferring files over an SSH connection. It also includes a secure copy (SCP) utility for transferring files between computers and a secure file transfer protocol (SFTP) for transferring files over an SSH connection.

Windows Target

Ansible connects to Windows-managed hosts using Windows Remote Management (WinRM). This Microsoft technology allows us to execute commands remotely on a Windows machine. This is based on the WS-Management protocol, which is a standard protocol for the remote management of devices and systems. At the moment of writing this book, Ansible supports the most commonly used Windows client and servers: Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server 2019, Windows Server 2022, Windows 7, Windows 8.1, Windows 10, and Windows 11.

WinRM allows us to run scripts remotely, perform system administration tasks, and manage Windows servers remotely. It can be used to remotely manage a single machine or a group of machines in a network.

To use WinRM, we need to enable it on the remote machine and then use a tool such as Windows PowerShell or a third-party tool like Ansible to connect to the remote machine and execute commands.

Overall, WinRM is a useful tool for remotely managing and automating tasks on Windows machines. It can save time and effort by allowing us to manage multiple machines from a single location. It can be especially useful in large organizations where there may be hundreds or thousands of servers to manage.

Ansible nowadays expanded the connection capabilities to storage and network devices, container technologies, virtualization (VMware), orchestration technologies (Kubernetes), and cloud providers.

[image:]

Ansible Community

The Ansible community (refer to Figure 1.3) refers to individuals and organizations using, developing, and contributing to the Ansible automation tool. Ansible is an open-source automation tool that helps users manage their IT infrastructure and application deployments by automating configuration management, application deployment, and orchestration tasks.

[image:]

Figure 1.3: The Ansible Community channels

The Ansible community is made up of users, contributors, and developers who share their knowledge, experience, and code through various channels. These channels include online forums, mailing lists, social media groups, and meetups. The community also provides documentation, tutorials, and training materials to help users learn and get started with Ansible.

One of the key features of the Ansible community is its collaborative nature. Users and developers work together to improve the tool by contributing code, reporting bugs, and providing feedback. The community also creates and maintains thousands of Ansible modules, playbooks, roles, and collections that users can use to automate various tasks.

The Ansible community is supported by Red Hat, the company behind Ansible, and other organizations and individuals committed to open-source software and automation. The community is constantly growing and evolving, with new contributors and users joining every day.

Just have an idea of the magnitude of the Ansible Community at the moment of writing this book:

	Nearly half a million people monthly visit the documentation website (ref: docs.ansible.com),

	800+ monthly comments on reddit.com/r/ansible

	300+ monthly questions tagged ansible on StackOverflow

	200+ monthly of posts to the ansible-project mailing list

	800+ active GitHub contributors

	400+ active Ansible contributors to Ansible collections

	Strong daily presence of IRC and Matrix communication systems

Ansible Architecture

Ansible is a configuration management and automation tool that allows us to manage and control a large number of systems in an automated and standardized way. It can be used to configure operating systems, deploy applications, and perform other tasks on remote servers.

The architecture of Ansible consists of a few key components:

	
Control machine: This is the machine where we run the Ansible commands and playbooks. It can be any machine with Ansible installed, such as our local desktop or laptop. This machine is a heart of Ansible ecosystem.

	
Managed nodes: These are the machines managed by Ansible Control Machine to perform automation.

	
Inventory: The inventory is a list of the systems that Ansible will manage. It can be a static file or a dynamic inventory that is generated at runtime.

	
Modules: Modules are the building blocks of Ansible. They are small programs that perform a specific task, such as installing a package or starting a service.

	
Playbooks: Playbooks are written in YAML and contain a series of tasks to be executed. They can be used to automate complex processes and are a key component of Ansible’s automation capabilities.

	
Plugins: Plugins are small programs that extend Ansible’s core functionality. They can be used to modify the behavior of Ansible modules or to add new features.

Overall, Ansible connects to the systems in our inventory and runs the tasks specified in our playbooks. It uses a simple, human-readable syntax and can be easily extended with custom modules and plugins.

Let’s break down one by one these components. An Ansible Controller is simply any computer with Ansible installed on it.

For information about the installation, please refer to the following section below Ansible Installation. Once Ansible is successfully installed, we can check the running version with the command:

$ ansible --version

Please note that the Ansible platform includes the Ansible engine, the command-line utilities (for example: ansible, ansible-playbook, ansible-galaxy, ansible-inventory, and so on) and the Ansible Collections (ansible.builtin).

The list of target hosts is stored in the Inventory text file. The default location for this file is /etc/ansible/hosts, but we can override for each execution, specifying the -i parameter in every Ansible command. The Ansible Inventory support files in INI, JSON, and YAML format. We can also have multiple files and combine them together in execution time. A very powerful feature is the dynamic inventory, the ability to execute a script to return an inventory. This is very useful in a fast-paced environment, for example, virtual machines or cloud computing providers, where the enumeration of running services is critical and fast-changing.

An Ansible Module performs every Ansible action of a managed host. There are so many Ansible modules that are easy to perform any action without reinventing the wheel.

When we would like to concatenate multiple tasks, save data in a data structure, or execute a loop or conditional, we need the Ansible Playbook. It is a YAML format document defining what and when to execute our automation steps. It is very powerful especially combined with reusable code packed as a Role or Collection. We can write our own reusable code or use it from vendors or third-party libraries.

Ansible has a great plugin structure that allows us to extend the core functionality. It is possible to create plugins for a lot of tasks. There are different types of plugins based on the type of integration that we would like to achieve.

We can distribute our code and plugins to our IT department or the Internet. There is a great selection of Roles and Collections on the Ansible Galaxy website at https://galaxy.ansible.com.

Ansible Installation

To install Ansible on our local machine (assuming we are running a Unix-like operating system such as Linux or macOS), we need to have Python 3.6 or later already installed. The machine with Ansible installed is called Ansible Controller.

First of all, we can check if Ansible is already installed using the following command:

$ ansible --version

It verifies if Ansible has already been successfully installed and should display the version of Ansible in our system:

ansible [core 2.15.0]

For example, in my system, the latest installed version is Ansible core 2.15.0. Where 2 is called major, 15 minor, and 0 patch versions.

When the result is:

command not found: ansible

The output command not found; it means that it is not installed in our system.

Installing Ansible is the first step to executing our automation. There are several ways to achieve this result. It supports all modern operating systems, so we usually only need to type install ansible in our operating system. In the following section, we can see the installation step by step in the most popular operating systems.

Ansible Core vs. Ansible Community Packages

Since 2021, the Ansible project has distributed two different packages of the Ansible software, from version 2.10 onward. The Ansible Core package and the Ansible Community package are distributed. Ansible Core is a command-line tool primarily for developers and users who want to install only the bare minimum content they need. It contains a minimal number of modules and plugins and allows other Collections to be installed. Similar to Ansible 2.9, though without any content that has since moved into a Collection. Ansible Core is distributed as an ansible-core package that is the main building block and architecture for Ansible and includes:

	CLI tools such as ansible-playbook and ansible-doc, and others for driving and interacting with automation.

	The Ansible language uses YAML to create a set of rules for developing Ansible Playbooks and includes functions such as conditionals, blocks, includes loops, and other Ansible imperatives.

	An architectural framework that allows extensions through Ansible collections. The ansible-core team releases a new major release approximately twice a year.

Another way of installing Ansible is using the Ansible Community package. Each major release of the Ansible community package accepts the latest released version of each included Collection and the latest released version of ansible-core. Major releases of the Ansible community package can contain breaking changes in the modules and other plugins within the included Collections and/or in core features.

The ansible package depends on the ansible-core package. Ansible 3.0.0 and the following contain more Collections thanks to the wider Ansible community reviewing Collections against the community checklist. The Ansible community team typically releases two major versions of the community package per year on a flexible release cycle that trails the release of ansible-core.

Some operating system package managers prefer to distribute only the ansible-core package, and some distribute both packages (ansible-core and ansible). Please check what is available with our favorite distribution.

At the moment of writing the book, the latest release of the ansible-core package is 2.14.3 on 27th February 2023, and for ansible, the package is 7.3.0, released on 28th February 2023.

Linux

Linux is the first citizen operating system for Ansible. All the distributions have an Ansible package in their repository. Whenever we would like to install the latest version of Ansible, we could use the PIP command line utility instead (see the related section).

In most Linux distributions, the user experience of configuring an Ansible controller is to open the terminal and install the package by the distribution package manager.

A good recommendation is always to update the package manager’s package list.

We can use the apt package manager in a Debian or Ubuntu-compatible operating system to install Ansible via the DEB package system. (Refer to Figure 1.4).

We can perform the following steps:

	Update the package cache by running the following command:
$ sudo apt update

	 Install the necessary dependencies by running the following command:
$ sudo apt install ansible

[image:]

Figure 1.4: Result of execution of Ansible installation in Ubuntu 22.10

In the same way, we could install the additional command line ansible-lint Ansible utility as shown in the following figure.

[image:]

Figure 1.5: Result of execution of ansible-lint installation in Ubuntu 22.10

We can use the YUM/DNF package manager in Fedora, Red Hat Enterprise Linux, Oracle Linux, Rocky Linux, Alma Linux, Amazon Linux, CentOS and other distributions that use the RPM package system to install Ansible.

Please note that CentOS 7 and 8 are the final releases of CentOS Linux. The end-of-life (EOL) dates for CentOS 7 are June 30, 2024, and 8 December 31, 2021.

We can perform the following steps:

	Update the DNF package cache by running the following command:
$ sudo dnf update

	 Install the necessary dependencies by running the following command:
$ sudo dnf install ansible

[image:]

Figure 1.6: Result of execution of Ansible installation in Fedora 37

PIP

Ansible is written in the Python language, and it’s possible to install it using Python-native tools and repositories. This is also an option if we want to consume the latest released version of Ansible. Sometimes Linux distributions need some time to incorporate the latest Ansible releases according to the distribution release cycle.

Install Ansible using the PIP tool and the Python package manager by running the following command. It interacts with the Python Package Index (PyPI) internet archive (ref: https://pypi.org/).

In a Debian or Ubuntu operating system, we can perform the following steps:

	Update the package cache by running the following command:
$ sudo apt update

	Install the necessary dependencies by running the following command:
$ sudo apt install python3-pip

	Install the Ansible package:
$ pip3 install ansible

	Verify that Ansible has been successfully installed by running the following command:
$ ansible –version

The last command displays the version of Ansible that we have installed (Refer to Figure 1.7).

Please note that in some distributions, the pip command could be used by typing the pip3 command, which means the PIP tool is specifically for Python version 3. In some cases, we can also be more specific, for example, pip3.9 for Python version 3 using Python 3.9. This use case is typical for the Red Hat Enterprise Linux (RHEL) distributions:

[image:]

Figure 1.7: Result of execution of Ansible installation via PIP

Once Ansible is installed, we can use it to manage our infrastructure and automate tasks on multiple servers or devices. We will need to create an Ansible inventory file, specifying the servers or devices we want to manage, and write Ansible playbooks, which are written in the YAML language and define the tasks we want to automate.

macOS

The macOS operating system is UNIX System-V compliant, so fully compatible with Ansible.

In order to install on macOS (either Intel or Apple Silicon processor), it’s handy to use the Homebrew Package Manager (Refer to Figure 1.8). The Homebrew is a super convenient way to install and maintain additional up-to-date software on macOS.

The Homebrew is a Ruby-based software that we could install with a simple command in our macOS terminal (for more reference, https://brew.sh/):

$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Open the Terminal and update the package manager’s package list by running the following command:

$ brew install ansible

[image:]

Figure 1.8: Result of execution of Ansible installation on macOS via HomeBrew

In the same way, we could install the additional command line ansible-lint Ansible utility as shown in the following figure:

[image:]

Figure 1.9: Result of execution of ansible-lint installation on macOS via HomeBrew

Windows

The Windows operating system is not officially supported as an Ansible Control node by Ansible Engineer Team. Whereas the Windows operating system is officially supported as a target node. The main problem is that Windows is not a POSIX-compliant operating system, and many Ansible modules have been deeply coded in that way.

There are two possible workarounds, none of which is officially supported.

	Cygwin

	Windows Subsystem for Linux (WSL)

Cygwin is additional software that adds a Unix-like environment and command-line interface for Microsoft Windows. Even if it sounds good on paper, sometimes the execution simply breaks.

Windows Subsystem for Linux is the modern feature of Windows to run a Linux environment in a separate sandbox environment. It works better because it runs a native Linux operating system inside our Windows system. The supported Linux distributions are Ubuntu, OpenSUSE, Kali, Debian, Arch Linux, and so on. It requires Windows 10 version 2004 and higher (Build 19041 and higher) or Windows 11. We can install the WSL using the following command in a PowerShell with the option “Run as administrator”:

wsl --install

After a successful installation of WSL, we can proceed with the standard Linux installation. The result is shown in Figure 1.10:

[image:]

Figure 1.10: Ansible installation on Windows 11 WSL

Ansible Ad-hoc Commands

Ansible ad-hoc command is a quick and simple way to perform a one-time task on a group of hosts. It allows us to execute a single command or a short script on one or multiple hosts using the ansible command-line tool.

Ad-hoc commands are useful for performing quick tasks such as checking the uptime of servers, installing packages, or restarting services. They are also helpful for testing or troubleshooting a specific configuration or setting on a host or a group of hosts.

The syntax for the Ansible ad-hoc command is as follows:

ansible <hosts> -i <inventory-file> -m <module> -a <arguments>

Where:

	
<hosts>: The target hosts on which we want to run the command. We can specify a single host or a group of hosts using a pattern.

	
<inventory-file>: The location of the inventory file that contains the list of hosts.

	
<module>: The Ansible module to run on the hosts. Modules are pre-written scripts that perform specific tasks, such as managing packages, copying files, or running shell commands.

	
<arguments>: The arguments passed to the module to perform the desired task.

One of the first Ansible modules that we might encounter is the ping module. The ping module is part of the ansible.builtin Ansible collection.

The purpose of the ping module is to check whether a host is available to execute any automation. It is completely different from the network ping command. In the Ansible ping module, we are going to verify the connection to the target host (usually via OpenSSH connection) and execute some simple Python code that returns a ping: pong message. We can customize the return message, but it is not important. The core part is the ability to check the availability of executing code in our target host. We should use the win_ping module for the Windows target instead.

Another useful Ansible module is the command module. Also, the command module is part of the ansible.builtin Ansible collection. We can combine the “command” module with any Linux command. The only limitation is that the command module doesn’t allow the usage of the shell extension, like the * (star), | (pipe), > (redirect) operators. If we need any of this Unix twinkle redirect to the shell module instead, that is also more dangerous.

For example, to check the uptime Linux command of a group of hosts, we can run the following ad-hoc command:

$ ansible webservers -i inventory.ini -m command -a "uptime"

This command will run the uptime command on all hosts in the webservers group defined in the inventory.ini file. A group of hosts is helpful when we want more than one target for our automation. We simply define a group of hosts and use it in our automation.

There are many Ansible modules included in the default installation of Ansible. The list is very long and gets longer and longer every day. In the next chapter, we are going to explore the most useful.

$ ansible webservers -i inventory.ini -m ping

The Ansible ping module is one of the most well-known because it tests the target host’s availability. It has nothing related to the network ping command. It connects to the target host via the SSH connection with the username and password specified in the inventory files (or using the SSH Key authentication) and executes some commands using the native Python interpreter. This is the reason why the target host needs only a modern operating system and Python installed.

When we would like to execute multiple steps, there is another key component in Ansible automation: the Ansible Playbook (see next chapter).

Ansible is used to apply DevOps principles to worldwide organizations using human readable YAML files called Ansible Playbook.

We are going to explore the Ansible programming language in the upcoming chapter deeply. The Ansible Playbook enables us to use data structure, and the typical programming language constructs to execute code only when needed.

Conclusion

Ansible is a modern infrastructure automation tool that enables us to standardize the script and reduce human errors. It only requires a connection to the target host without any agent installed. Automating our day-to-day tasks is beneficial for every IT department nowadays.

Ansible can interact with a plethora of different operating systems, services, applications, and cloud providers. It is a Swiss knife to always have in our pocket. In the next chapter, we are going to learn more about the Ansible language. We started deep on our toes in the Ansible architecture and executed some simple Ad-Hoc commands. In the next chapter, we are going to expand on how to execute multiple tasks one after another and take advantage of the full Ansible language and data structures.

Points to Remember

	The Ansible Control machine executes the automation against the target host.

	Ansible uses modules to execute a common operation to target hosts.

	Ansible automates Unix-like operating systems (Linux, macOS, and so on) and Windows.

	Ansible Ad Hoc executes one module or commands against to target host(s).

Multiple Choice Questions

	What is not a characteristic of a modern data center?

	Scalability

	None of these

	Flexibility

	High availability

	
What protocol is used by Ansible to communicate with Linux target hosts?

	OpenSSH for Unix-like operating systems: Linux, macOS, etc.

	WinRM for Windows operating systems

	We can use “ansible_connection=local” for current hosts

	None of these

	 Is it possible to use Windows as an Ansible Controller?

	True

	False

	 What is the expected output of the “ping” Ad-Hoc command?

	“ping: ping”

	“no route to host”

	“ping: 1”

	“ping: pong”

Answers

	B

	A

	B

	D

Questions

	What is Ansible Inventory?

	How to connect to the Ansible Community?

	Explain the purpose of the Ad-Hoc command.

Key Terms

	
Control machine: This is the machine where we run the Ansible commands and playbooks. It can be any machine with Ansible installed, such as our local desktop or laptop.

	
Inventory: The inventory is a list of the systems that Ansible will manage. It can be a static file or a dynamic inventory that is generated at runtime.

	
Modules: Modules are the building blocks of Ansible. They are small programs that perform a specific task, such as installing a package or starting a service.

	
Playbooks: Playbooks are written in YAML and contain a series of tasks to be executed. They can be used to automate complex processes and are a key component of Ansible’s automation capabilities.

	
Plugins: Plugins are small programs that extend Ansible’s core functionality. They can be used to modify the behavior of Ansible modules or to add new features.

CHAPTER 2

Ansible Language Core

Introduction

Ansible language has an easy learning curve and helps us streamline multiple tasks to target hosts. We can code the Ansible language in a so-called Ansible Playbook. This file could also contain data structures, loops, and conditional to execute tasks only when some conditions are present. In this chapter, we are going to learn the basic principles of Ansible language and how to write our first successful Ansible Playbook.

Structure

In this chapter, we shall cover the following topics:

	Ansible inventory

	Ansible playbook

	Ansible variables

	Ansible facts

	Ansible magic variables

	Ansible conditional

	Ansible loop

Ansible Inventory

Ansible itself runs only on the control machine, so we don’t need to install Ansible on target machines. Ansible works by placing temporary Python scripts in POSIX target machines based on the modules we specify. Some of these modules have prerequisites, so we may need to install specific Python packages on POSIX target machines. For the Windows target, the connection is performed using the WinRM protocol using some PowerShell scripts in a mechanism similar to the Python scripts for POSIX target machines.

Inventory

An Ansible inventory is the list of hosts where to target our automation. The list of hosts managed by Ansible is called inventory. It is fundamentally the list of nodes or hosts in our infrastructure, commonly known as Inventory. We could organize our Inventory with groups or patterns to select the hosts or groups where we would like to target our Ansible automation. We can use group name instead to target the execution.

INI inventory

The INI inventory is the simplest inventory type. We could list all our hosts or IP addresses. The default location is /etc/ansible/hosts, but we could use our customized with the -i parameter. The most straightforward Ansible inventory format is INI. The INI format has been around in the IT industry for years and is very popular for configuration files. It is simply a text file that could have some name=value fields inside. The name is the name of the property, and the value is the property’s value. Moreover, it’s possible to define sections inside, specifying the section name between brackets: [section].

Let us see a simple example using the simple_inventory.ini file as follows:

server01.example.com

[web]

server02.example.com

server03.example.com

As shown in Figure 2.1, the Ansible inventory file lists three hosts under the example.com domain.

[image:]

Figure 2.1: The simple_inventory scenario

Specifically, the server01.example.com host is ungrouped. The server02.example.com and server03.example.com hosts are grouped as web.

YAML inventory

The YAML format is a simple human-readable format that is often used for Ansible inventories. Please be very careful about the indentation of the code. The YAML format could be used instead of the INI format to code an Ansible inventory. The complete list of host names or IP addresses must be under the all node. Each host must be under the hosts field. We can specify the groups like the INI format in the YAML format under the children keywords. The simple INI inventory of the previous section could be expressed in the code as follows:

all:

hosts:

server01.example.com:

children:

web:

hosts:

server02.example.com:

server03.example.com:

As shown in Figure 2.1, the server01.example.com is ungrouped, but the server02.example.com and server03.example.com hosts are grouped as web.

The Ansible-inventory tool

The ansible-inventory command-line tool is included in every Ansible installation and shows the current Ansible inventory information. It’s advantageous to verify the current status of our Ansible inventory. It accepts Ansible inventory files in INI, YAML, and JSON formats. It can display the complete list of parameters using the --help. The most popular option is the parameter --list that displays the list of the host and the --graph parameter that displays the same list of hosts in a tree view.

The “all” keyword

The particular keyword all includes all the hosts of the Inventory used in any group. The only exception is localhost, which we need to specify. The all keyword is important and will be required in our Ansible usage. If we don’t specify any specific host where to target our automation, Ansible targets the automation against all.

List view

The list view of the ansible-inventory command is useful for displaying on-screen a JSON of the current inventory used by Ansible. The more our inventory becomes complex, the longer the list is. Let’s suppose we have a simple inventory.ini INI inventory file with one host server.example.com as shown in Figure 2.2:

[image:]

Figure 2.2: The inventory scenario

server.example.com

We can have the list view output specifying the following command:

ansible-inventory -i inventory.ini --list

Where:

	
ansible-inventory is the command to work with Ansible inventory

	
-i inventory parameter specifies the source inventory file in the current directory

	
--list parameter requests the output in list view format

The result of the execution of the ansible-inventory --list command is as follows:

{

"_meta": {

"hostvars": {}

},

"all": {

"children": [

"ungrouped"

]

},

"ungrouped": {

"hosts": [

"server.example.com"

]

}

}

Graph list view

The graph view of the ansible-inventory command is useful for displaying on-screen a tree view of the current inventory used by Ansible.

Let’s suppose we have a simple INI inventory file (more details in the following simple INI inventory section) like the following as shown in Figure 2.2:

server.example.com

We can have the list view output specifying the following command:

ansible-inventory -i inventory.ini --graph

Where:

	
ansible-inventory is the command to work with Ansible inventory

	
-i inventory parameter specifies the source inventory file in the current directory

	
--graph parameter requests the output in graph view format

The result of execution of the ansible-inventory --graph command is as follows:

@all:

|--@ungrouped:

| |--server.example.com

Ranges of hosts

Group members could also be defined using ranges by numbers or letters. In the field by numbers, we could specify a stride as the increment between a sequence of numbers. The range_inventory.ini file looks like the following:

[web]

server[01:10].example.com

In this INI example range_inventory.ini, the web group contains all hosts from server01.example.com to server10.example.com. We can extend the range as much as needed, specifying the start and end elements of the servers.

We can test the Ansible inventory using the list view parameter of the ansible-inventory command:

ansible-inventory -i range_inventory.ini --list

The command produces the following output:

{

"_meta": {

"hostvars": {}

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		Technical Reviewer

		Preface

		Errata

		Table of Contents

		1. Getting Started
		Introduction

		Structure

		Modern Datacenter

		Introduction to Ansible

		Linux and macOS Target

		Windows Target

		Ansible Community

		Ansible Architecture

		Ansible Installation

		Ansible Core vs. Ansible Community Packages

		Linux

		PIP

		macOS

		Windows

		Ansible Ad-hoc Commands

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		2. Ansible Language Core
		Introduction

		Structure

		Ansible Inventory
		Inventory

		INI inventory

		YAML inventory

		The Ansible-inventory tool

		The “all” keyword

		List view

		Graph list view

		Ranges of hosts

		Host in Multiple Groups

		Host and group variables

		Local inventory

		Multiple inventories

		Dynamic inventory

		Windows inventory

		Ansible Playbook
		YAML Syntax

		First playbook

		Check

		Debug

		Multiple play

		Includes

		Ansible Variables
		Unpermitted variable names

		User-defined variables

		Multiline

		Extra variables

		Host and group variables
		Host variable in the INI inventory

		Host variables

		Host variable in the file system

		Group variables

		Group variable in the file system

		Array variables

		Registered variables

		Writing a variable to a file

		Ansible Facts
		Ansible ad-hoc

		Facts in playbook

		Single fact

		Temporary facts

		Custom facts

		Ansible Magic Variables
		Common magic variables

		Ansible version

		Ansible Conditional
		Basic conditionals with “when”

		Conditionals based on Ansible facts

		Ansible Loop
		Loop statements
		The loop statement

		Conclusion

		Points to Remember

		Multiple Choice Questions
		Answers

		Questions

		Key Terms

		3. Ansible Language Extended
		Introduction

		Structure

		Ansible Vault
		Creating an encrypted file

		Encrypting using a password file

		Viewing an encrypted file

		Editing an encrypted file

		Encrypting a file

		Decrypting a file

		Changing the password

		Include vault in playbook

		Inline vault in playbook

		Troubleshooting

		Ansible Handler
		Multiple handlers

		Code Reuse
		Include and import

		Role and collection

		Ansible Role
		Directories tree

		Usage in playbook

		Order of execution

		Ansible galaxy for roles

		Manual installation

		Automated installation

		Configuration

		Ansible Collection
		Ansible galaxy for collections

		The community.general collection

		Installing Ansible collection
		Manual installation

		Automated installation

		Python dependencies

		List collections

		Configuration

		Ansible Filter

		Ansible Template
		Control statement

		Loop statement

		Nested control statement

		Template filters

		Template extension

		Ansible Plugin
		Lookup plugin

		Copy multiple files to remote hosts

		Conclusion

		Points to Remember

		Multiple Choice Questions
		Answers

		Questions

		Key Terms

		4. Ansible For Linux
		Introduction

		Structure

		Configuring Linux Target
		OpenSSH configuration

		Host variables

		Group variables

		Inheriting variable values

		Password authentication

		SSH key authentication

		Testing Host Availability
		Ansible ping module

		Data parameter ping

		Data parameter custom

		Data parameter crash

		Printing Text During Execution
		Ansible debug module

		The verbosity parameter

		Show Ansible version

		Configuration Management
		Single line edit
		Ansible lineinfile module

		Edit OpenSSH configuration

		Create text file

		File System
		Check file exists

		Creating an empty file

		Creating a directory

		Soft and hard link

		Deleting a file

		Copying local files to remote hosts

		Copying remote files to local

		File download

		Backup with rsync

		Checkout a GIT repository

		Installing Packages and Rolling Update
		Ansible package module

		Ansible yum module

		Ansible apt module

		Ansible zypper module

		Linux System Roles

		User Management
		Linux aging policy

		Group management

		Executing Commands
		Ansible command module

		Ansible shell module

		Uptime playbook

		Listing files

		Wrong module

		Conclusion

		Points to Remember

		Multiple Choice Questions
		Answers

		Questions

		Key Terms

		5. Ansible for Windows
		Introduction

		Structure

		Configuring Windows Target

		Creating the Ansible User
		Verifying PowerShell, .NET and setting up WinRM

		PowerShell

		.NET

		Installing WinRM

		Windows collections

		Manual

		Automated

		Inventory

		Testing the host availability

		Configuration Management
		Editing single-line test

		Creating text file

		Checkout a GIT Repository

		File System
		Check file exists

		Creating an empty file

		Creating a directory

		Deleting a file

		Copying local files to remote hosts

		Copying remote files to local

		Downloading a file

		Backup with robocopy

		Installing Packages

		Rolling Update

		User Management
		Group management

		Windows Registry
		Checking registry

		Adding Windows registry

		Removing Windows registry

		Executing commands

		Netstat playbook

		Get-Date playbook

		Wrong module

		Conclusion

		Points to Remember

		Multiple Choice Questions
		Answers

		Questions

		Key Terms

		6. Ansible Troubleshooting
		Introduction

		Structure

		Ansible Troubleshooting

		Ansible Debugging

		Ansible Syntax

		Troubleshooting Tools
		Errors playbook

		Fixed playbook

		Visual Studio code

		Ansible custom plugins

		CI/CD pipeline

		Ansible Connection
		The error

		Example

		Password authentication

		Ansible Vault
		Create

		Encrypt

		View

		Playbook

		Inline Vault

		Ansible Modules
		Missing module parameter

		Ansible service

		Ansible template

		Ansible command

		Ansible Role
		Molecule

		Ansible Collection
		Missing collection

		Missing Python library

		Ansible for Linux

		Ansible for Windows
		Ansible facts

		Module failure

		Windows subsystem for Linux

		Ansible Windows command

		Conclusion

		Points to Remember

		Multiple Choice Questions
		Answers

		Questions

		Key Terms

		7. Ansible Enterprise
		Introduction

		Structure

		Ansible use cases

		GitOps

		Ansible Automation Platform
		Ansible Automation Hub

		Ansible execution environment

		Ansible Automation Mesh

		Role-based access control (RBAC)

		Morpheus

		Configuration Management (CM)

		Graphical User Interface
		Ansible Semaphore

		ARA records

		Installation

		Customization

		Steampunk Spotter

		Conclusion

		Points to Remember

		Multiple Choice Questions
		Answers

		Questions

		Key Terms

		8. Ansible Advanced
		Introduction

		Structure

		Third-party integrations, fragility, and agility
		Callback plugin

		Dynamic inventories

		VMware

		Citrix

		Amazon Web Services

		Dynamic inventory

		Idempotence

		Amazon EC2

		Google Cloud Platform and Azure

		API integration

		GET method

		JSON and YAML

		Bearer token

		POST and PUT methods

		PATCH and DELETE methods

		Zuul

		Ansible Orchestration
		Fork versus serial

		Kubernetes

		Namespace

		Pod

		Ansible Configuration Settings
		Custom verbosity

		Custom role path

		Custom collection path

		Custom username

		Custom temporary directory

		Enable Ansible pipelining

		SSH and Paramiko

		Host key check

		Fact caching

		Fork

		Ansible managed

		Latest Trends
		Event-driven Ansible

		Ansible Lightspeed

		Conclusion

		Points to Remember

		Multiple Choice Questions
		Answers

		Questions

		Key Terms

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Getting Started

