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    Neural Networks, Fuzzy Logic and Evolutionary Computing are members of Soft Computing class of techniques. The techniques are capable of identifying and handling inexact solutions for complex tasks and can deal with the real life uncertainties within the computational framework. Soft Computing has significantly matured over the years and we can find significant applications of soft computing in industry and research environment. Neural Networks is the most mature of other techniques in the Soft Computing. The networks have also benefitted from integrated Fuzzy Logic based systems to model complex engineering systems with the human expert knowledge and through robust system modelling.




    Evolutionary Computing helps to optimise the design a Neural Network. Each members of the Soft Computing has several algorithms and concepts that need better understanding for application development.




    This book on ‘artificial neural networks – principle and practice’ provides necessary foundation to understand the basics of Neural Networks and how to develop real life applications. From basic definitions to relevant theorems the book presents an algorithm approach to describe the foundations.




    The book also emphasises systematic approach to Intelligent System analysis and design. In order to build a Neural Network or Artificial Neural Network application, one needs to apply knowledge of probability based methods as well as fuzzy sets for more uncertain aspects of the problem. The book then explains the motivation from our neural system to develop the Neural Networks.




    Description of other network-based approaches using nodes and edges also strengthens the understanding about the Neural Networks. A major strength of the book is the fundamentals of quantum logic for emerging Neural Network development. This is major area for future development. A discussion on Neural Network hardware would have strengthened the book.




    The second part of the book presents detailed discussion on learning algorithms, current and emerging Neural Network structures and application development. The chapters also present metrics to evaluate effectiveness of the network. Selection and integration of multiple Neural Networks to solve a real life and complex problem is a major aspect of the book. As mentioned before there are several algorithms and approaches to solve a problem, the systematic approach presented in the book is of major interest. Application of the network to solve a complex modelling task usually requires significant volume of data. A further discussion on the modelling approaches with less data would be very helpful.




    The emphasis on probability based neural network and its application is significant because of its popularity. But the real strength of this part of the book is in describing the Quantum Neural Networks and the Deep Belief Network (DBN).




    Finally the book also outlines the research and development in Neural Networks. Future Neural Networks are learning from specialised parts of our neural system and trying to scale up to solve even more complex engineering applications.




    

      Rajkumar Roy
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      An intelligent system is that which exhibit characteristics of learning, adaptation, and problem-solving, among others. The group of intelligent system, conceived and designed by human, is loosely termed Artificial Neural Network (ANN) System. Such ANN system is the theme of the book. The book also describe nets (also called network or graphs), evolutionary methods, clustering algorithm, and others nets, most of which are complementary to ANN system.




      The term “practice” in the title refers to design, analysis, performances assessment, and testing. The design and analysis may be facilitated by the explanations, equations, diagrams, and algorithms given. Performance assessments occur in any section that bear the name and apply to any ANN system because they are standard independent methods and most ANN system has an associated error feedback. Testing is exemplified by case studies and is given toward the end of most chapters.




      An interest in artificial neural sciences is a sufficient requirement to understand the content of the book, though knowledge of signal processing, mathematics, and electrical/electronic communication is an advantage. The book specifically takes a developmental perspective, making it more beneficial for professionals. The book adopts a spiral method of description whereby various topics are revisited several times; each visit introduces fresh material at increasing level of sophistication. Each visit to a specific ANN type may also introduce new ANN system(s) and/or new algorithm(s) as the case may be.




      The book is divided into two parts (I and II). Part I contain five chapters. Chapter 1 introduce the biological neurons and basic artificial neurons. From these, chapter 2 derive better neurons and introduce statistical methods. Chapter 3 describe a framework of dynamic fuzzy-neuron, and explain the fundamental principle governing the design and analysis of ANN system. To distinguish other algorithms (e.g. clustering algorithm) from learning algorithms, chapter 4 describe fundamentals of genetic algorithm, clustering algorithms, and those other algorithms complementary to ANN systems. Neural network is in chapter 3 introduced by graph. Chapter 5 concludes part 1 by introducing quantum neural network, quantum maths and logic. The chapter also describe Hodgkin-Huxley neuron, and memristance.




      Similarly, part II consists of six chapters. In Chapter 6, artificial neuromorphic network, and Widrow-Hoff learning are visited; so is fuzzy ANN system. While chapter 7 describes the usual weighted, weightless ANN systems. It also introduces Bayesian ANNs, and discusses general performance assessment methods. On the other hand, chapter 8 considers various selection and combination strategy for ANN systems. Chapter 9 is dedicated to Bayesian networks. There are some promising ANN systems being considered in the research arena, and also now in chapter 10, these ANN may revolutionize ANN throughput in future. In chapter 11 implementation issues regarding Monte Carlo algorithm is visited, and also implementation issues regarding neuromorphic networks is revisited.




      The book attempts to impart considerable knowledge of know-how of ANN to the reader in order to facilitate a novel development and research. Albeit also improve an ad-hoc ANN. This may encourage and help a developer to meet any industrial increasing demand for novel ANNs’ implementation and application.
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      Abstract




      The aim of this chapter is to explain what a natural biological neuron is, and what an artificial neuron is. To this end, the first section introduces the biological neuron, explains its structure and its information transmission methods. The second section explains how an artificial neuron may be obtained from a corresponding biological neuron. The resources for the artificial neuron may be purely electrical in nature and the behaviour of the resulting electric circuit is expected to be similar to that of information transmission of a biological neuron.
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      A Biological Neuron




      Neurons form the fundamental components of the central nervous system (CNS) and the ganglia of the Peripheral nervous system (PNS). Neurons are also found in other locations which may accord them a corresponding name e.g. sensory neurons, motor neurons, and interneurons.




      As shown in Fig. (1), a normal neuron has a soma (cell body), dendrites, and an axon. The term neurite refers to an axon, any dendrite, or other protrusions from the soma of the neuron without paying attention to their differences. Axon emerges from the soma at a base called the axon hillock and usually extends a longer distance than any dendrite of the neuron. Neurons do not undergo cell division but are generated by stem cells. Biology and Bio-scientific researchers have confirmed that the main features that distinguish a neuron are: (1) electrical excitability, and (2) the presence of synapses which are complicated junctions that permit signals to travel to other cells.




      
[image: ]


Fig. (1))


      A natural biological neuron.



      Dendrites normally branched profusely from both the soma and the axon. Every neuron has only one axon which maintains the same approximate diameter throughout its length. The myelin sheath provides a protective coating around the axon. The myelin sheath allows the action potential to propagate faster than it would have been if compared with another axon of equal diameter. Neurons performs various specialized functions depending on their location and event received, Events are received by communication which is effected in two ways. One is by the release/absorption of neurotransmitter from the surrounding; this is a partly chemical process called neurotransmission. The second is the synaptic transmission. These modes of communication and the associated energy required for the communication is common to all natural biological neurons.




      

        Synaptic Transmission




        Synaptic signal is either excitatory or inhibitory. If the net signal excitation exceeds certain threshold and is sufficiently large, it generates a brief electrical pulse called action potential which originates at the soma. The action potential propagates down the axon as follows.




        There are pores not covered by myelin sheath (see Fig. 2) through which ion exchanges occur between the axon and the extrinsic fluid; these pores are known as nodes of Ranvier. The ion exchanges are responsible for the production of action potential. The action potential at one node is most often sufficient to initiate another action potential at a nearby node. A signal thus travels discretely rather than continuously along an axon. This mode of transmission along the axon is termed saltatory conduction.
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Fig. (2))


        A section of axon showing saltatory conduction.

      


    




    

      Transmission across synapses




      A presynaptic action potential propels the calcium Ca2+ ions through the voltage-gated calcium channel.




      As depicted in Fig. (3), a Presynaptic Releasable Vesicle Pool (PRVP) constitutes the active synaptic region of the dendritic terminal ends. The concentration of the Ca2+ causes the PRVP vesicles to fuse with the membrane and release the neurotransmitters into the synaptic region. The neurotransmitters move by diffusion and binds with postsynaptic current (PSC). The electrical current IN (t) that is released from a unit amount of neurotransmitter at t ≥ ts is given by:
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Fig. (3))


      Synaptic transmission by discharge of neurotransmitter.
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            	(1)

          


        

      




      Where




      V(t) = postsynaptic membrane potential;




      E(t) = reversal potential of ion channel;




      and the activities of the neurotransmitters and other effects may be the conductance change gN (t).




      Because the conductance of the synapse that connects one neuron to another neuron is very important, several experiments were performed by several eminent researchers [1-4]. Some results of the conductivity at synaptic junctions are:
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            	(2)
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            	(3)

          


        

      




      Equations (2) and (3) are obtained by modelling experimental data of natural biological neuron e.g. the axon and soma of a giant squid. The movement of Calcium Ca2+ ion and other ligands in the soma or axon of the giant squid may be confirmed by injection of fluorescent dyes into the substrate before or during the experiment which is often performed at low temperature.




      The main fundamental structure and function of a single natural neuron has been described, so also its connections to other neighbouring neurons. They are common to all biological neurons. There are also very many neurons in the CNS.




      It is noteworthy that equations (2) and (3) are also solutions of a second-order damped wave oscillator given by:
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      An Artificial Neuron




      In this section, we would like to design an artificial neuron from a natural biological neuron of section 1. Basic resources such as resistance, capacitance, voltage sources, and basic electric circuit analysis are employed in this design. Inside the soma and axon are called the intracellular medium. The intracellular medium is higher in sodium (Na+) and potassium (K+) ion concentration as compared to extracellular fluid. Other ions present include, but not limited to, chlorine (Cl-), Phosphate (Ph0-4), Magnesium (Mg2+). Delimiting the neuron from the surrounding is the cell membrane which consist mainly lipids. The cell membrane may be impermeable to water and ions but permeate ion only at the ion channels and pumps. Because each channel is selectively permeable, when positive ions are concentrated on one side of a membrane as a result, it induces a corresponding negative charge on the opposite side which is the behaviour of a capacitor. For this reason, the neuron cell membrane shall be represented by capacitance. Charged particles in the intracellular fluid do not accelerate despite the field potential, but moves with certain average velocity. This is due to frequent collision with other element which obstructs their movement. Also at the ion pumps, energy is supplied by the hydrolysis of Adenosine triphosphate (ATP), in a process called Electrogenesis, to Adenosine diphosphate (ADP). The sodium-potassium exchanger is an example of ionic pumps that pushes K+ into the intracellular fluid against its concentration gradient.




      Because energy is supplied and resistances are present in the intracellular fluid, the electrical representation of the intracellular fluid is shown in Fig. (4). This is similar for other active pump and ion channels. A schematic representation of one section of a neuron is shown in Fig. (5).
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Fig. (4))


      Resistance and voltage source as electric model of ionic pump and active conduction.
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Fig. (5))


      A simple electric model of a neurite.



      By Kirchhoff’s current law [5] the algebraic sum of current at a junction is given by:
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            	(5)

          


        

      
Where
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            	(6)

          


        

      
And
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            	(7)

          


        

      




      Substituting equations (7) and (6) into (5) and re-arranging gives
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            	(10)

          


        

      




      The equation (10) is a first-order Ordinary Differential Equation (ODE) of the membrane potential V. This equation is valid for an isolated section of part of a neuron. Following the standard method of solution to first-order ODE, the solution to equation (10) may be represented as:
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            	(11)

          


        

      




      This is a rise and fall exponential solution. The initial increase of V(t) from resting potential is known as depolarization. The product RmCm is called the time constant of the membrane. When t→∞ the steady state value of V (t) is given by:
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            	(12)

          


        

      




      When the membrane re-charges its capacitance to regain the resting potential, it is termed repolarization. By injecting current or voltage from an external source, it is always possible to drive the membrane below the resting potential; this phenomenon is known as hyperpolarization. Fig. (6) shows an extension of Fig. (5) to make a complete neuron in an extracellular fluid with both continuity and boundary conditions included.
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Fig. (6))


      A complete electric model, with boundary condition, of a section of a neuron.



      These cases will now be considered. The axial resistance of cross-section of an axon is proportional to its length l and inversely proportional to cylindrical crosssectional area [image: ] . Specific axial resistivity (in Ωcm) is denoted by Ra so that axial resistance R is calculated as follows.




      Recall that resistivity pis defined by [image: ]
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            	(16)

          


        

      




      Also, the membrane current Ia now flows both to the left and to the right; the sum is given by:
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            	(17)

          


        

      




      We have now included voltages from other membrane sections and indexed them by j as show in equation (17). Modifying equations (8) by substituting equation (17) into it we have;
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            	(18)

          


        

      




      The surface area “a” of a cylindrical axon is πdl. Dividing (18) by πdl gives;
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            	(19)

          


        

      




      Equation (19) is a second-order difference equation making it suitable for numerical integration. To derive a continuous version of equation (19) replace the length l by x δ x and evaluate it in the limit δx→0.
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            	(20)
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            	(21)

          


        

      




      


      Substitute (21) into (20)
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            	(22)

          


        

      




      The equation (22) gives a more accurate description of an artificial neuron than equation (10). This is the first example of an artificial neuron obtained by modelling natural neuron directly. This method whereby an attempt is made to produce a morphological, and structural equivalent of a neuron, and watch for the same behavioural pattern, is termed neuromorphic. When Equation (22) is constructed as a neuromorphic neuron, it may be verified if it possesses equivalent information-transmission characteristics by checking against that of biological neuron data. Additional design issue may be the choice of capacitances, variable resistance ranges, and initial calibration. Equation (22) is usually refers to as the cable [6] equation and also bear much semblance to wave equation.
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      Abstract




      The aim and objectives of this chapter is to present other types of artificial neuromorphic neurons with capability of reset and recovery. For this reason, the first section starts with the integrate-and-fire neuron, which has the propensity for reset. The second section introduces probability theory owing to the fact that many processes in the brain and central nervous system obey probability laws. The third section introduces another artificial neuromorphic neuron which employs a Poisson process and is closer in behaviour to a biological neuron.
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    The first chapter has introduced one biological neuron and one artificial neuron. One advantage of developing ANN from principle is that reproduction is assured with minimal loss of resources and a target performance may often be achieved. Since the book is more about artificial neural network systems, chapter 1 contains the last item on biological neuron. Most development throughout the book however depends, directly or indirectly, on the biological neuron so that it may be regarded as an introduction to the rest of the book.




    

      INTEGRATE-AND-FIRE NEURON




      There is another version of artificial neuron model known as integrate-and-fire model; this is a version of figure 5 chapter 1 neuron with an inclusion of spike generation and reset. It states that when the membrane potential [1, 2] reaches or exceeds a threshold potential θ, firing an action potential [3] and discharging occurs. After that, it reset and (re-)build its potential again. The charging proceeds as follows.
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            	(1)

          


        

      




      Multiplying (1) by Rm;
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            	(2)

          


        

      




      Equation (2) is a first-order ODE, whose solution is given by:
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      One may be interested at what frequency f (I) does the neuron fire. The neuron fire whenever the voltage V equals θ the threshold voltage or exceed it. Setting Em = 0 and V = θ in equation (3);
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            	(5)

          


        

      




      where I is the injected current.




      In order to apply this artificial neuron to model a stereo-typical situation found in CNS of some animals, a distribution known as Poisson distribution shall be introduced. A relevant introductory probability theory is presented now.


    




    

      PROBABILITY




      

        Definition 1.1: Probability is a set function p that assigns to each datum xi in the sample space X a number p(xi) called the probability of the datum xi, such that the following properties hold:




        1) p(xi) ≥ 0




        2) p(X) = 1




        3) If x1, x2, x3, ...are data and xi ∩ xj = Ø, i ≠ j, then




        p(x1[image: ] x2[image: ]...[image: ] xk) = p(x 1 ) + p(x 2 ) + ... + p( xk ), for each positive integer k, and p(x1[image: ] x2[image: ] x3[image: ]...)= p(x1) + p(x2) + p(x3+ ...), for an infinite, but countable number of data. For any datum xi,;
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              	(6)

            


          

        




        If xi and yi are any two independent databases with no data in common, then:
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              	(7)

            


          

        




        Otherwise;
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              	(8)

            


          

        




        In this case p( xi∩yi ) is defined as;
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              	(9)

            


          

        




        p(xi | yi ) is called conditionalprobability. p(xi | yi ) reads “the probability that xi occurs given that yi occurs”. The p(xi ) and p(yi ) are examples of prior probability, while the conditional probability is an example of a posterior probability.




        Bayes Theorem: Let x1,x2,x3, …xm be a partition of the database X such that xi[image: ]X and xi ∩ xj = Ø,i ≠ j , by mixing database xi with yi, databases xi and yi are said to intersect. The intersection of xi and yi ( yi[image: ]Y ) may be written as:
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        Given that:
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              	(11)

            


          

        




        And by the defining equation (9)
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        If p( xi ) ≥ 0, then
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              	(13)

            


          

        




        Recall that yi ⊆ Y; and xi ⊆ X; therefore,
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              	(14)
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              	(15)

            


          

        




        Equation (15) is referred to as Bayes Theorem.




        Probability Density Function (p.d.f.): If xi is allowed to take any value ranging from 0 to 1 inclusive, it is said to be a random variable. If it is discovered that xi follows certain pattern when assuming any value whatsoever, then this “certain pattern” is a distribution. Since the pattern is certain, it is representable by a function which is called a probability density function (p.d.f.) f(xi) As f(xi) moves (i.e.; assume values) in space, it trace out what is called a distribution. Let f(xi) be the p.d.f. of a the random variable xi, and let R be the space of X. since f(xi)=p(X= xi)xi[image: ]R, f(xi) must be positive for xi[image: ]R.




        Definition 1.2: The p.d.f f(xi) of a random variable X is a function that satisfy the following properties:




        

          	f(xi) > 0; xi Є R




          	[image: ]




          	The probability P (xi Є R ) of data xi Є R is given by: [image: ]



        




        In (b) and (c) above, whether to use summation or integral is often experiment dependent. Thus probability can often be written as a distribution, that is, as an integral or sum of f(xi). In nature, f(xi) takes various forms. We are also interested in the space R for which f(xi) is a density function. Recall that xi (xi[image: ] X ) is a random variable subset of X on space R. Luckily, there is a systematic way of analysing f(xi). The systematic way is by multiplying f( xi ) by an exponential function and summing or integrating – the result of which is called the moment- generating function M(t).




        Definition 1.3: Let X be a random variable with p.d.f f(xi). If there is a positive number h such that either:
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              	(16)
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              	(17)

            


          

        




        exists and is finite for –h<t<h, then the function of t defined by M(t) = E(etX ) is called the moment-generating function of X.




        The choice of whether to use equation (16) or (17) is often experiment dependent. Theoretically, it is possible to find the moment-generating function M(t) of any function whose integral (or sum) is finite. If the result obtained is observed in nature, we are lucky. The procedure commonly followed is to map the (any) function to a p.d.f. f(xi) whose integral (or sum) equals 1. Once the M(t) is obtained as shown in definition 1.3, it becomes a simple matter to explain the properties of the distribution as follows:




        

          	
The mean of f( xi ): The mean of f( xi ) , denoted by μ , is obtained from M(t) by differentiating M(t) to give M’(t) and evaluating M’(t) at t = 0. That is:


          


          M'(t)|t=0 = M'(0)= µ


          


          This equation is true only if X is sufficiently large as explained previously. The µ also equals the expected value of xi, E(etxi ) in the limit i →∞ . But note that a single value of xi may never equal the mean µ exactly.




          	
Variance: The variance, denoted by Var(x) or σ2 , is the square of the standard deviation, σ . The variance σ2 , is obtained from the moment-generating function M(t) by first calculating both the first- and the second-order derivative of M(t).


        
Then:
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              	(18)

            


          

        




        Where M”(0) = second-order derivative of M(t) at t = 0.




        Both the mean µ and variance σ2 of a distribution are very important properties of a space described by its density function. Notable examples of some p.d.f. f( xi ) that satisfy definition 1.2 will now be given to illustrate the properties of a distribution obtainable from f(xi)via M(t).




        Example 3: Uniform distribution: Let X be a uniform distribution on [a, b], then the moment generating function M(t) is given by
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        A special case of (21) is when a = 0 and b = 1, it is called pseudo-randomnumber generator.




        Example 4: binomial distribution: Let X have a binomial distribution b(n,p) with p.d.f.
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        The moment-generating function is given by:
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        where a = 1-p and b = pet
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        When n = 1 in equation (23), X have a distribution called Bernoulli distribution and
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              	(26)

            


          

        




        is the moment-generating function M(t) for Bernoulli distribution.




        Example 5: Poisson distribution: Let the number of changes occurring in a given continuous interval be countable. We would have an (approximate) Poisson process with intensity λ > 0 if the following conditions are satisfied:




        

          	The number of changes in non-overlapping intervals is independent.




          	The probability that exactly one change occurs in any λ h interval.




          	The probability that two or more changes occurs in an interval h is essentially zero.


        




        If the interval is divided into n sub-interval, then h = 1/n and p(X) = λh = λ 1/n by condition (b). This is the approximate probability that exactly one change occurs in an interval 1/n. if [image: ] is the probability of occurrence of a change, then [image: ] is the probability of non-occurrence of change.




        Replacing p by λ/n in a binomial distribution [image: ] we have:
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              	(31a)
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              	(31b)

            


          

        




        Let X have a poisson distribution with p.d.f. [image: ]; then
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        From series definition of an exponential function;
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        STEIN MODEL OF NEURON




        An integrate-and-fire neuron is connected to many other neurons. Assuming some are inhibitory while others are excitatory and the integrate-and-fire neuron receives short pulses from these neurons following a Poisson process.




        Suppose the excitatory synaptic strength [4] is denoted by wE and inhibitory synaptic strength by wI . We wish to know the voltage variation with respect to time of an integrated-and-fire neuron that accept spike generated by a Poisson distribution at a rate vE (excitatory) and vI (inhibitory) when the membrane potential V is applied. The stein neuron model is given by equation (36):
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        Making a change of variable Y(t)= et/τV(t) , equation (36) becomes;




        

          

            

              	[image: ]



              	(37)

            


          

        




        Integrating equation (37),
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        The expected value of Y(t) is denoted by ⧼Y(t)⧽ and is given by equation (39).
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        Its steady-state-mean depolarisation is the mean
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              	(40)

            


          

        




        Similarly, the variance of Y(t) is given by
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        Equations (39) and (41) in terms of voltage V(t) required are
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              	[image: ]



              	(44)

            


          

        




        The stein model is an artificial neuromorphic neuron which is closer in behavior to a corresponding biological neuron than the normal integrate-and-fire neuron.
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