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    In an era of rapid technological change, decentralized networks and blockchain technology are revolutionizing various industries. “Beyond Blockchain: Reviewing the Impact and Evolution of Decentralized Networks” provides deep insights into these transformative technologies and their potential to reshape our world.




    As an observer of blockchain’s evolution, I am honored to introduce this comprehensive work. This book highlights the significant impact of decentralized technologies and their promising future. It explores these systems in detail, covering applications and emerging trends that will redefine sectors from finance and healthcare to education and environmental monitoring. The authors present 13 well-curated chapters that explain foundational concepts and innovative applications. From Ethereum smart contracts transforming supply chain management to blockchain models promoting sustainable agriculture, each chapter examines real-world solutions offered by these technologies. Notably, the book explores the synergy between blockchain and other technologies like artificial intelligence (AI) and the Internet of Things (IoT). These chapters reveal how combining blockchain with AI can enhance connectivity, security, and efficiency. The discussions on quantum resilience and protective measures against advanced threats are both timely and critical. The authors’ balanced view of the opportunities and challenges of decentralized networks is commendable. They provide a realistic roadmap for future developments, acknowledging hurdles while inspiring readers with future possibilities.




    Beyond Blockchain is a vital resource for anyone interested in the transformative power of decentralized networks. Whether you are a student, researcher, industry professional, or tech enthusiast, this book offers the knowledge and insights needed to navigate and contribute to this rapidly evolving field.




    I highly recommend this essential read to anyone looking to explore the frontiers of decentralized networks and blockchain technology.




    Welcome to the future of blockchain!!




    

      Vinay Rishiwal


      Department of CSIT


      M. J. P. Rohilkhand University Campus


      University in Bareilly


      Uttar Pradesh, India
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    Beyond Blockchain: Reviewing the Impact and Evolution of Decentralized Networks (Part 2) delves deeper into the progressive developments and emerging intersections of decentralized technologies with advanced computing paradigms. Building on the foundational insights from Part 1, this section focuses on futuristic integrations, security concerns, and transformative use cases across various sectors.




    Comprising six comprehensive chapters, the book presents a nuanced exploration of cutting-edge innovations that are shaping the next era of decentralized systems. It caters to researchers, academicians, and professionals who seek to understand the evolving synergy between blockchain and other frontier technologies. Chapter 1 begins with an exploration of the convergence between Artificial Intelligence (AI) and blockchain within the Internet of Things (IoT), emphasizing enhanced connectivity, security, and autonomous interactions. Chapter 2 introduces a paradigm shift in machine learning through blockchain-driven federated learning, enabling secure, decentralized, and privacy-preserving data collaboration. Chapter 3 addresses critical security challenges by examining quantum resilience. It outlines potential quantum threats and explores strategies to fortify decentralized systems against quantum attacks. In Chapter 4, the discussion expands to broader technological advancements and the development of blockchain beyond conventional applications, showcasing its relevance in diverse industrial landscapes.




    Chapter 5 offers an analytical perspective on the transformative impact of decentralized networks, exploring their evolutionary pathways and socio-technical implications. Finally, Chapter 6 presents a comprehensive review of state-of-the-art research, emerging trends, and real-world use cases of blockchain technologies across sectors.




    This book aims to deepen the understanding of advanced decentralized technologies and inspire innovations that drive secure, intelligent, and inclusive digital ecosystems.
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      Abstract




      Blockchain-driven Federated Learning (BFL) represents an intriguing intersection of two cutting-edge technologies: blockchain and federated learning. A form of distributed machine learning technique known as Federated Learning (FL) aims to preserve the privacy of user data. FL supports privacy preservation, decentralization, and collaborative learning by the means of retaining user data on local devices, training the models without sharing raw data, minimizing the danger of leakage of user data, and avoiding the need for centralized data storage. Beyond these attractive features held by FL, arduous challenges like ensuring secure model aggregation and communication, failure of single points, vulnerability faced by centralized parameter servers, minimal client participation due to lack of motivation, and incentives lacking are encountered. To provide a solution for these obstructions, an innovative idea is to integrate FL with blockchain, which is another decentralized cutting-edge technology. This collaboration leads to a much more robust BFL. FL can be enhanced through blockchain via data provenance where blockchain records data origins as well as model updates by using consensus mechanisms. The consensus mechanisms here ensure the decentralized model integrity, and then the Smart Contracts ensure the automated reward distribution to incentivize participation. FL and blockchain technology use cases are mostly involved in sectors like healthcare, finance, transportation, smart cities, etc. independently. These two core technologies, FL and blockchain, are constructively combined to achieve inviolable higher-end applications, which promise minimized data leakage risk in collaborative data sharing.
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      INTRODUCTION




      Traditional methods of data collection and analysis often involve centralizing data, raising issues regarding privacy breaches and data security. Federated Learning (FL) emerges as a promising solution, offering a paradigm shift in how we approach machine learning models. As a subset of the machine learning field, FL works on training a local model to ensure that the data remains decentralized in the local node or server from where the data originates. Alternatively, federated learning is called collaborative learning. Moreover, it differs from traditional machine learning in terms of decentralization [1]. A local model is trained by each client in the respective local node by using one’s own generated data samples. In order to cope up with the global model, these local nodes exchange the weight and bias parameters of Deep Neural Networks periodically. From the perspectives of data privacy, data minimization, and data access rights, FL faces tremendous challenges such as single point of failure, malicious data injections, and vulnerable nodes due to unreliable communications in the network. Nevertheless, FL is made to provide data privacy by incorporating blockchain and federated learning, thus resulting in Blockchain-driven Federated Learning (BFL). Blockchain smart contracts automate the processes based on predefined rules that prevent the contract-violating malicious nodes from taking participation [1]. Meanwhile, blockchain records each transaction and Proof of Work (PoW) consensus for ensuring data integrity and preventing malicious behaviour [2].




      Integrating blockchain technology with FL introduces several benefits and addresses certain challenges inherent in decentralized learning environments.




      

        Data Integrity and Immutability




        Blockchain's decentralized and tamper-resistant ledger ensures the integrity and immutability of transactions. In FL, where model updates are transmitted and aggregated across multiple nodes, blockchain can confirm the integrity and authenticity of these updates, thus avoiding unauthorized modifications or tampering.


      




      

        Transparent and Auditable Transactions




        Blockchain provides transparency and auditability by recording all transactions in a distributed ledger. This transparency can enhance trust among participants in FL ecosystems, as they can verify the history of model updates and consensus mechanisms used for aggregation.


      




      

        Decentralized Governance




        Blockchain facilitates decentralized governance mechanisms, enabling stakeholders in FL ecosystems to participate in decision-making processes. Smart contracts, deployed on blockchain networks, can automate governance rules, such as determining eligibility criteria for participating nodes or allocating rewards based on contributions to model training.


      




      

        Secure Data Sharing and Monetization




        Blockchain enables data sharing in a secure and transparent manner among participants in FL networks. For providing privacy, smart contracts enforce data access control mechanisms by allowing the data owners to maintain control over their data while still monetizing its value through FL collaborations.


      




      

        Incentive Mechanisms




        Blockchain-based incentive mechanisms, such as tokenization and Decentralized Finance (DeFi) protocols, can incentivize participation and contribution to FL networks. Participants can earn rewards or tokens for sharing data, training models, or providing computational resources, thereby fostering a more collaborative and incentive-aligned ecosystem.


      




      

        Scalability and Interoperability




        Blockchain offers scalability and interoperability features that can facilitate FL being integrated with other decentralized networks and technologies. By leveraging blockchain's interoperability protocols, FL systems can interact with diverse blockchain platforms and ecosystems, expanding their reach and potential applications.


      




      

        Privacy-Preserving Infrastructure




        Some blockchain platforms, like privacy-focused blockchains or Zero-Knowledge Proof (ZKP) protocols, offer advanced privacy-preserving features. These features can improve the user privacy and confidentiality of FL transactions and data exchanges by ensuring the protection of crucial data throughout the training duration.


      


    




    

      FEDERATED LEARNING (FL)




      FL approach involves various heterogeneous clients such as mobile devices, IoT users, and smartphones. Hence, organizations train a machine learning model cooperatively under the control of a centralized server while having decentralized individual training data. FL incorporates the objectives of minimized data and focused collection. Being able to mitigate various privacy and security risks resulting from conventional machine learning is a significant strength of FL. The term FL was coined by McMahan et al. [2] in 2016.




      

        Current Direction




        Generally, there are multiple crucial milestones in the FL process. A global model is first initialized in a central manner. Next, local models are trained using methods such as gradient descent using data that is kept on servers or individual devices. Model changes, which are often expressed as gradients, are transmitted to the centralized server following the training carried out locally. These updates are aggregated by the central server that modifies the global model accordingly. Until convergence is attained, this iterative procedure is continued, producing a reliable global model. Without sharing raw data, a large number of computers or other devices, referred to as nodes, can take part in training the global model in this architecture. Only weights and gradients shared with the central server or aggregator during model updates are used by each node to train the model locally. Fig. (1) shows a typical architecture for the proposed FL. Here, the participants get their new model to train on their respective devices. It is seen that the proposed idea guarantees data privacy by ensuring that the users’ private information never leaves its original. The new model is allocated to each participant after the server aggregates the gradient sent to it.




        Two fundamental concepts in this process are gradients and weights [3]. Here’s a detailed explanation:




        ‘Weights’ are the parameters of a machine learning model that are adjusted during training to minimize the loss function. Each participating device or node trains the model on its local data and updates these weights accordingly.


      




      

        Initialization of Weights





        

          	Global Model Initialization: The FL process begins with the global model initialized by the centralized server or distributed setup. This model includes a set of initial weights.




          	Distribution to Nodes: These initial weights are propagated to all participating nodes such as IoT devices, smart phones, and end-user nodes.


        




        
[image: ]


Fig. (1))


        Federate learning architecture.

      




      

        Local Training Process





        

          	Data Localization: Each node contains its private dataset, which is not shared with other nodes or the central server to maintain data privacy.




          	Training with Local Data: Respective local data is used by each node to train the global model. During this training, the global model's weights are adjusted using optimization algorithms like stochastic gradient descent (SGD).




          	Loss Function: The loss function outcomes such as Cross-Entropy Loss, Categorical cross-entropy, and mean squared error measure how well the model predicts the actual outcomes. The task here is to reduce the loss function by adjusting the weights.


        


      




      

        Weight Updates





        

          	Gradient Calculation: The node computes the loss function gradient by taking reference to the weights. This calculated gradient indicates the magnitude and direction of the weight updates needed to minimize the loss.


        




        One of the common loss functions Mean Squared Error (MSE) applied to regression tasks.
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            	(1)

          


        




        Where:




        o m is the sample count.




        o [image: ] is the actual or real outcome.




        o [image: ] is the predicted outcome.




        With reference to the model's weights, the gradient of a loss function is computed by using the following general formula:
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            	(2)

          


        




        Where:





        

          	
[image: ]wL(w) denotes the gradient vector of the loss function.




          	
L(w) is the loss function weighted by w.




          	
w is the vector of model weights (w1, w2, ... wn).




          	
[image: ]denotes the loss function’s partial derivative with reference to the weight wi.


        




        Weight Adjustment: Using the computed gradients, the node updates the weights according to the gradient descent update rule:
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            	(3)

          


        




        Where w is the vector of weights, η denotes learning rate, [image: ]wL(w) signifies the loss function’s gradient with reference to the weights.


      




      

        Communication with the Central Server





        

          	Model Updates: After local training, each node sends its updated model weights or the computed gradients to the centralized server.




          	Aggregation: The received updates are aggregated (e.g., by averaging) by the centralized server to update the global model weights [3]. This aggregated global model is then redistributed to every node for the next round of local training.


        




        Aggregate gradients from all nodes:
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            	(4)

          


        




        Update the global weights:
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        Lots of researches are focused on FL but it is facing challenges and has security issues that need to be considered. FL has revolutionized the way machine learning models are trained by emphasizing data privacy and decentralization. However, the traditional FL framework still relies on a central server for model aggregation, which introduces potential vulnerabilities and inefficiencies. Integrating blockchain technology can address these issues, leading to a paradigm shift in FL.


      


    




    

      CHALLENGES OF DATA PRIVACY AND SECURITY




      Firstly, privacy protection of the unique data utilized in FL is an important concern. FL presents a challenge since it uses data that is dispersed among several clients or devices to train models, and this data may include sensitive information. In order to overcome this difficulty, methods like differential privacy and data encryption can be applied to preserve data confidentiality while enabling model training [4]. The possibility of privacy violations or data leakage as a result of side channels presents another difficulty. These side channels are utilized to deduce crucial information about the data used for training and can originate from different places inclusive of power consumption patterns and timing data. Research is required to create methods that can stop or lessen side-channel assaults in FL in order to lessen this difficulty. Interoperability between various clients or devices taking part in FL is another difficulty. The difficulty stems from the possibility that, in order to properly collaborate on model training, each client may have different hardware capabilities, protocols, or data formats. The creation of common frameworks and protocols that facilitate smooth communication across various clients or devices in FL can help solve this problem. It can be difficult to strike a balance between security and privacy in a FL system. This problem stems from the fact that FL might make it challenging to create a uniform baseline of privacy throughout the learning system, even while it permits data sovereignty and decentralisation of data protection. Strict privacy and security regulations that are uniformly applied and enforced across all participating clients or devices are essential to overcoming this difficulty. Lastly, scalability presents another difficulty for FL. This problem emerges because coordinating and combining the contributions of more clients or devices participating in FL becomes more challenging. Research is required to provide scalable and effective frameworks and algorithms that can manage complex FL scenarios in order to meet this difficulty.




      

        Concerns in Overcoming Communication Efficiency




        To jointly train a machine learning model, several clients or devices in an FL system must communicate with one another [5]. Efficiency in communication is a problem with FL systems, though. Several tactics can be used to get around this obstacle. Initially, the quantity of data that is transferred between a centralized server and clients can be minimised by employing data compression techniques. Algorithms like quantization and sparse coding, which minimise data transmission without appreciably affecting the model's performance, can be used in these compression strategies. Furthermore, effective methods for communication can be used to reduce the quantity of data transferred while updating the model [5]. For instance, the communication overhead can be greatly reduced by transmitting simply the gradients or weight differentials rather than the complete model updates. Additionally, in FL systems, the application of differential privacy approaches can improve communication efficiency.


      




      

        A Challenge in Addressing Heterogeneity of Data Distribution




        Techniques like data preparation and augmentation are utilized to balance the distribution of data across various customers in order to overcome the difficulty in addressing heterogeneity. Furthermore, discrepancies in data distribution might lead to biased classification performance, which can be mitigated through transfer learning. Transfer learning enables the model to learn from previously obtained knowledge and adjust it to the unique data distribution of each client by utilising pre-trained models on huge datasets [6]. Knowledge graphs and decision intelligence can also be useful in FL systems. These technologies provide more effective and efficient communication in FL systems by analysing current data and streamlining the data storage process. There are different ways to overcome communication efficiency in FL systems: by using data compression methods, putting in place effective communication protocols, using differential privacy methods, preprocessing and transfer learning to address heterogeneity in data distribution, and making use of knowledge graphs and decision intelligence. The heterogeneity of data distribution across the participating clients or devices is a significant hurdle to FL [7]. Convergence and model generalisation may encounter major obstacles due to the data's Non-identically and Independently Distributed (NID) characteristics. In order to address this difficulty, scientists are developing innovative approaches for combining data and learning strategies that can manage NID data. FL systems can better accept heterogeneous data distributions while still providing accurate and dependable model training across all participating clients by utilising adaptive aggregation algorithms and personalised learning approaches.


      




      

        Managing System and Hardware Constraints




        FL systems also face the difficulty of system and hardware limitations. In order to overcome these limitations, system and hardware infrastructure optimisation is crucial. This can be achieved by putting into practice effective resource allocation techniques, such as dividing up computational work among several devices and distributing the workload evenly to prevent bottlenecks. Furthermore, models' memory and processing needs can be decreased without noticeably compromising accuracy by using methods like model compression or quantization [8]. These techniques enable FL systems to effectively train high-quality centralised models using distributed data from multiple clients while overcoming communication efficiency constraints. It is essential to apply effective resource allocation strategies, such as distributing computing activities across several devices, in FL systems to optimise system and hardware limits.




        Another major problem in FL environments is the variety of hardware and system limitations. It is possible for distinct clients to have differing memory capacities, processing power, and network bandwidth restrictions [9]. In order to guarantee that these diverse resources collaborate well, it is essential to create frameworks and algorithms that are both resource-aware and adaptive. FL systems may effectively handle system and hardware constraints to enable smooth model training across all participating clients by utilising techniques like personalised aggregation algorithms, adaptive learning rates, and model distillation.


      




      

        Dealing of Non-IID Data of Federated Learning (FL) Environments




        In FL environments, the existence of non-IID data distributions among clients poses significant obstacles to convergence and model generalisation. Researchers are looking at personalised FL strategies and enhanced learning algorithms as ways to lessen this difficulty. FL systems may efficiently handle NID data and enable precise model training across a variety of client datasets by implementing strategies like transfer learning, meta-learning, and adaptive aggregation schemes [10].


      




      

        Scalability Issues




        Some of the important scalability issues are discussed below:





        

          	Increased Data Volume: Blockchain's distributed nature means, every participating node stores a copy of the chain. Frequent updates from multiple nodes (clients) in FL result in significant data overhead, thus leading to scalability issues. For example, as the number of participants grows, the blockchain's size increases exponentially to make extensive storage and computation demands.




          	Bottlenecks of Consensus Mechanism: Blockchain systems often use consensus mechanisms such as Proof of Work (PoW), and Proof of Stake (PoS), which may not scale efficiently with large FL systems. While PoW requires high computational resources and energy, PoS depends on stake distribution, which leads to centralized decision-making in systems with unequal resource allocation.




          	Network Traffic: FL involves transmitting the model updates, and the blockchain adds metadata and transactional information for each update. The compounded communication load causes overwhelming communication activities in the network.




          	Limited Block Throughput: Blockchain systems have inherent limits on the number of transactions (or updates) they can process per second. Due to this limitation, enormous client participation results in significant delays in processing and storing updates.


        


      




      

        Latency Issues




        Latency is a major cause of degradation of performance and efficiency. Some of the major challenges related to latency are discussed below:





        

          	Consensus Delays: Consensus mechanisms, especially in public blockchains, introduce latency due to the time required for transaction verification and block generation. In PoW systems like Bitcoin, block generation times range from 10 to 15 minutes, which is not suitable for the real-time update requirements of FL.




          	Communication Overheads: Distributed blockchain nodes introduce inevitable network latency. Each transaction or model update needs to be propagated through the network, thus delaying synchronization across nodes.




          	Smart Contract Execution: FL leverages smart contracts for tasks like reward distribution, and update validation. However, executing these contracts adds further computational delays, especially if the blockchain platform has limited processing capability.


        




        There are several ways to solve scalability problems related to FL implementations. The major ones are listed below:





        

          	Layer 2 Scaling Solutions: Off-chain solutions such as sidechains, and payment channels are employed to handle model updates in order to reduce the on-chain load.




          	Efficient Consensus Mechanisms: Transition from PoW to lightweight alternatives like Proof of Authority (PoA), and Delegated Proof of Stake (DPoS) are carried out with the intention of reducing the computational overhead.




          	Sharding: Sharding is an effective choice to divide the blockchain network into smaller, and more manageable sub-networks. It significantly reduces the load on individual nodes.




          	Federated Aggregation Servers: Preprocessing is another notable approach for addressing the scalability issues related to FL. Aggregation servers are introduced to preprocess updates before they are added to the blockchain. This preprocessing strategy effectively reduces the frequency and size of transactions.




          	Optimized Model Update Strategies: Compression, and sparsification of model updates are fruitful outlooks in reducing the size of transactions, which in turn largely reduces the latency and storage requirements.




          	Hybrid blockchain Models: Combining public and private blockchains is supposed to achieve better performance. For example, a private blockchain may be suitable for handling model updates faster, while a public one is deployed to ensure auditability.


        




        Another strategy is to use distributed and parallel computing techniques, which share the workload among several machines or devices to process data in parallel and cut down on processing time. The use of structured updates and sketching updates, which minimise the quantity of data sent to the server throughout the FL process, is a further strategy to maximise communication efficiency [11]. These methods enable effective training on big datasets dispersed over numerous workstations or devices by reducing the scalability issues in FL systems. Scalability problems in FL implementations can also be mitigated by employing effective resource allocation techniques, such as splitting up computational activities among several devices and maximising communication efficiency with organised and concise updates [12]. In large-scale applications with a large number of participating clients, FL still faces a significant scalability difficulty.


      




      

        Ensuring Robustness Against Adversarial Attacks




        To ensure FL is resilient to adversarial attacks, defence mechanisms must be put in place to keep the system safe from bad actors. Techniques like safe aggregation, FL using encrypted data, and differential privacy are some examples of these defence mechanisms. FL systems can improve their resistance to adversarial assaults and preserve data integrity and privacy [13] during training by implementing these defence methods. It is critical to put effective resource allocation techniques in place for FL systems, such as optimising and distributing computational activities across several devices, in order to solve communication efficiency difficulties.


      




      

        Optimization Strategies for Federated Learning (FL) Models




        Complex issues arise when optimising FL models with different client objective functions and data distributions. To achieve optimal model performance, the objective function must be carefully crafted to take into account the variety of customer preferences and data attributes. Researchers are investigating federated meta-learning techniques, personalised learning algorithms, and improved optimisation methodologies to solve this difficulty [14]. FL systems can efficiently maximise the overall performance and utility of the trained models across all participating clients by customising the optimisation process to accommodate varied client objectives and data distributions.


      




      

        Developing Standardized Evaluation Metrics for Federated Learning (FL)




        In order to evaluate the efficacy and performance of FL systems, standardised assessment measures are necessary. The creation of novel assessment frameworks is essential for gauging model performance, convergence, and generalisation across dispersed client datasets, even while the conventional evaluation metrics employed in centralised learning settings might not immediately apply to FL [15]. Researchers are investigating the creation of uniform assessment measures made especially for FL settings in an effort to overcome this difficulty. These measures cover a wide range of topics, such as resilience against adversarial attacks, data privacy protection, communication efficiency, and model convergence rates. FL systems can guarantee consistent and dependable performance assessment across a range of client scenarios by developing and implementing standardised evaluation metrics. Standardised evaluation metrics will also make it easier to compare the effectiveness of various FL strategies and algorithms, giving academics and professionals a benchmark and best practices for evaluating the reliability and caliber of trained models in FL environments. In the end, this standardisation will help FL approaches grow and be adopted in a variety of real-world applications.







OEBPS/Images/9798898810092-C1-inlineE2.jpg





OEBPS/Images/9798898810092-C1-E5.jpg
o = e 'leLglotml(W)





OEBPS/Images/9798898810092-C1-F1.jpg
FL Parameter Server
(Secured Model Aggregation]

Encrypted I Model
Gradients | ¥ Updates

Model Update Model Update Model Update

G

A== [ ool [ il





OEBPS/Images/9798898810092-C1-E2.jpg
dJL(w) JL(w)  OJL(w)
Bws: ® Dwz " Dwe

Vwl(W) =





OEBPS/Images/9798898810092-C1-E3.jpg
we w—nV,L(w)





OEBPS/Images/bentham_logo.jpg





OEBPS/Images/Cover.jpg
'BEYOND BLOCKCHAIN:
REVIEWING THE IMPACT AND
FVOLUTION OF DECENTRALIZED






OEBPS/Images/9798898810092-C1-inlineE3.jpg





OEBPS/Images/9798898810092-C1-inlineE1.jpg





OEBPS/Images/9798898810092-C1-IE1.jpg
dL(w)
B





OEBPS/Images/9798898810092-C1-E4.jpg
Vnglobal(w) =





OEBPS/Images/9798898810092-C1-E1.jpg
Lw)==>" (i —9:)?





