

[image: image]

Ultimate React Design
Patterns for High
Performance

[image:]

Build Clean, Scalable and Enterprise-Ready
React Applications with Advanced Patterns
and Performance Techniques

[image:]

Nabendu Biswas

[image:]

www.orangeava.com

Copyright © 2025 Orange Education Pvt Ltd, AVA®

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First Published: October 2025

Published by: Orange Education Pvt Ltd, AVA®

Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,

N1 7AA, United Kingdom

ISBN (PBK): 978-93-49888-14-2

ISBN (E-BOOK): 978-93-49888-92-0

Scan the QR code to explore our entire catalogue

[image:]

www.orangeava.com

Dedicated To

My Wife, Shikha

And

My Son, Hriday

About the Author

Nabendu Biswas is a seasoned Full Stack JavaScript Developer and Senior Software Engineer with over 21 years of IT experience across global investment banks, product companies, and startups. Over the last decade, he has developed expertise in the React ecosystem, delivering scalable, high-performance web applications across domains such as finance, retail, AI, and education technology.

Nabendu’s career includes senior roles such as Architect, Team Lead, and Associate Architect, where he successfully led UI teams, drove micro-frontend architectures, and guided complex enterprise-scale applications. His most recent assignments include working as a Senior Full Stack Developer on critical projects for Iris idea, where he modernized large-scale React and Node.js codebases, optimized performance, and eliminated security vulnerabilities.

He is also a published author of 8 books on JavaScript, React, and frontend development, including the popular title Full-Stack Web Development with MERN. Through these works, he has helped thousands of developers transition from beginner to advanced levels.

Beyond authoring books, Nabendu has also worked as a corporate trainer and mentor, training more than 1000 students and 50+ corporate teams in JavaScript, React, and MERN stack. His engaging teaching style extends to his YouTube channel and tech blog, where he shares knowledge about React, modern web technologies, and career growth in software development.

A passionate innovator, Nabendu has also explored Generative AI, creating chatbots and 3D avatars with lip-sync capabilities, using React Fiber and LLaMA. His curiosity and constant drive for learning keep him at the cutting edge of frontend technologies, including TypeScript, GraphQL, serverless architecture (AWS/Azure), and performance optimization.

When he is not coding or writing, Nabendu enjoys spending time with his family, his two dogs, and reading about AI/ML, space, and emerging technologies.

About the Technical Reviewers

Gaurav Patel is a Senior Software Engineer with over eight years of experience developing and maintaining projects of varying complexity to enhance efficiency and capabilities. He has strong expertise in web technologies and frameworks, including JavaScript, AngularJS (2–6), ReactJS, Redux, jQuery, NodeJS, ExpressJS, and Spring Boot. Gaurav has extensive experience in building Ajax-driven web applications, implementing Web Services, and creating responsive UIs. His technical proficiency also spans MySQL, NoSQL, HTML5, CSS3, Docker, Kubernetes, GitLab, .NET, Python, AWS, and CI/CD pipelines. Known for his quick learning and effective communication skills, Gaurav thrives in environments that encourage continuous learning and growth.

Sunil S is a seasoned Frontend Developer with nine years of experience designing and building user-centric, high-performance web applications. Currently, a Senior Frontend Developer at Reltio, he specializes in ReactJS, NextJS, Material UI, TypeScript, and JavaScript. Sunil also has backend experience with NodeJS and Express, enabling him to deliver seamless end-to-end solutions. His professional interests include micro-frontend architecture, modular and scalable application design, and performance optimization. Recognized for his problem-solving ability and collaborative approach, Sunil emphasizes writing clean, maintainable codes, and applies strong testing practices using Jest, React Testing Library, and Playwright.

Anjani Kumar Varma is an Associate at Cognizant Technology Solutions with four years of experience developing scalable, React-based applications for a leading retail client. Skilled in React, Redux, Jest, React Testing Library, and Module Federation, he focuses on performance optimization through lazy loading, tree shaking, and memory leak prevention. As part of Cognizant’s core governance team, Anjani has implemented initiatives such as pre-commit hooks for optional chaining, automated removal of console logs in production, and improved Webpack configurations. He actively conducts knowledge-sharing sessions on unit testing, and has implemented Adobe tagging as well as Quantum Metrics, enabling advanced analytics and behavioral insights. Anjani has also contributed to resolving memory leaks, addressing security vulnerabilities, and enhancing performance through the transition to CommonJS packages. His work has directly improved application reliability and user experience for millions of retail customers.

Acknowledgements

There are a few people I want to thank for the continued and ongoing support during the writing of this book. First and foremost, I would like to thank my wife for continuously encouraging me to write the book. I could have never completed this project without her support.

I am also grateful to the courses, and the companies that supported me throughout the learning process of web development. I thank them for all the hidden inspiration and support they provided.

My gratitude also goes to the editorial team at Orange Education Pvt Ltd for their unwavering support and patience, and for granting me ample time to successfully complete and publish this book.

Preface

This book, Ultimate React Design Patterns for High Performance, is written for React developers who already know the fundamentals, and want to level up to become senior frontend developers. In today’s software industry, writing functional React applications is not enough — to succeed in large-scale, enterprise environments, you need to understand design patterns, architecture, and performance optimization.

The goal of this book is to bridge that gap. It will guide you step by step from intermediate knowledge of React toward mastering advanced design patterns, scalable architectures, and performance techniques that set apart a professional React engineer.

The book is organized into multiple chapters, each addressing a specific advanced concept in React:

	
Chapters 1–3 introduce design patterns, layout components, and container components to help you structure clean and reusable UI code.

	
Chapters 4–6 cover controlled/uncontrolled components, Higher-Order Components (HOCs), custom hooks, and functional programming patterns — essential techniques for building robust, reusable, and scalable components.

	
Chapters 7–8 dive into advanced concepts and hooks, including portals, error boundaries, and clean coding practices that enable scalable project architecture.

	
Chapters 9–12 deal with API integration, React Query, state management patterns, and performance optimization, ensuring that your apps remain responsive under real-world load.

	
Chapters 13–17 focus on Design Systems building UI components in Figma, encapsulating styles, spacing patterns, complex styles, and finishing with a full design system project.

	
Chapters 18–21 conclude with Advanced TypeScript techniques, teaching you to strongly type hooks, reducers, generics, and component patterns — a must-have skill in enterprise projects.

Thus, by the end of this book, you will not only be confident in applying React design patterns and performance optimizations, but also in architecting scalable and clean codebases that can withstand enterprise demands. This is the skillset expected from a senior frontend developer, and this book is designed to get you there!

I hope this book inspires you to build better, cleaner, and more scalable React applications.

Get a Free eBook

We hope you are enjoying your recently purchased book! Your feedback is incredibly valuable to us, and to all other readers looking for great books.

If you found this book helpful or enjoyable, we would truly appreciate it, if you could take a moment to leave a short review with a 5 star rating on Amazon. It helps us grow, and lets other readers discover our books.

As a thank you, we would love to send you a free digital copy of this book, and a 30% discount code on your next cart value on our official websites:

www.orangeava.com

www.orangeava.in (For Indian Subcontinent)

[image:] Here's how:

Leave a review for the book on Amazon.

Take a screenshot of your review, and send an email to info@orangeava.com (it can be just the confirmation screen).

Once, we receive your screenshot, we will send you the digital file, within 24 hours.

Thank you so much for your support - it means a lot to us!

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-education/Ultimate-React-Design-Patterns-for-High-Performance

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/0d0d2f

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA® Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction to Design Patterns

Introduction

This chapter gives a brief introduction to design patterns, and covers the requirements to start with the installation of NodeJS and NPM (Node Package Manager) on a Windows system, These software are primarily required for ReactJS coding.

Besides this, we will also learn to install Visual Studio Code, also popularly known as VS Code. This is a light-weight code editor which is helpful in coding in ReactJS. All these three requirements are completely free to install on Windows, Mac and Linux.

Structure

In this chapter, we are going to discuss the following topics:

	Introduction to Design Patterns

	Requirements

Introduction to Design Patterns

Design patterns are an advanced concept in ReactJS which means designing the code in an efficient way. These advanced concepts allow us to write an effective code, by using patterns such as controlled and uncontrolled components.

We will also learn other advanced concepts like memoization which optimizes the performance of React. The readers will be able to develop enterprise level React systems for reusability. We will use React Hooks, Context API, HOCs, Custom hooks and React functional programming to build reliable apps that scale.

By understanding these design patterns, developers can develop scalable, maintainable and optimized React applications.

Requirements

Since this book is about advanced React concepts, the Basic understanding of React and JavaScript is required. You should have Node and NPM installed on your machine because React requires both to create applications, and install dependencies. Besides this, Visual Studio code should also be installed on your machine. Next, we will learn to install these on Windows. The setup for Mac and Linux is quite similar, and can be done easily.

Node and NPM Installation Windows

First, we need to go to the official NodeJS download url which is https://nodejs.org/en/download. Afterwards. click on Download Node.js vXX.XX.X button. During the time of writing the book, it was v20.12.2.

[image:]

Figure 1.1: Node Install Link

Next, on the top side of the browser, we will see the 'msi file' being downloaded. Click on the 'Open' icon to run the file directly.

[image:]

Figure 1.2: Node Downloaded

A pop-up will come that will start the 'Node.js Setup Wizard'. Here, click on the Next button.

[image:]

Figure 1.3: Node Setup Wizard

In the next window, accept the terms by clicking on the 'checkbox', and then the 'Next' button.

[image:]

Figure 1.4: Node License Agreement

Next, it will show the default directory to install NodeJS. Here, then click on the 'Next' button.

[image:]

Figure 1.5: Node Default Path

In the next screen also, click on the 'Next' button.

[image:]

Figure 1.6: Node Features

Now, the wizard will install all the necessary tools. Here, select the 'checkbox' and then click on the 'Next' button.

[image:]

Figure 1.7: Node Necessary Tools

Finally, we will get the 'Install' button. Click it, and install NodeJS.

[image:]

Figure 1.8: Node Install

It will take around 1 minute to install 'NodeJS', and the progress bar will show the status.

[image:]

Figure 1.9: Node Install Progress

Once the installation is complete, click on the 'Finish' button.

[image:]

Figure 1.10: Node Install Finish

Now, the setup for additional tools will start. It will open the command line, where we need to click on any button.

[image:]

Figure 1.11: Node Additional Tools

Now, open any terminal and run the command node '-v'. It will give the 'Node' version installed which is 20.12.2 in our case.

[image:]

Figure 1.12: Node Version

Now, in the terminal, run the command npm -v. It will give the NPM version installed which is 9.5.0 in our case. NPM stands for Node Package Manager that is automatically installed with Node installation:

[image:]

Figure 1.13: NPM Version

VS Code Installation Windows

To download Visual Studio Code or VS Code, first go to https://code.visualstudio.com/, and click on the download button. This site automatically detects your operating system.

[image:]

Figure 1.14: VS Code

Download the Link

Afterwards, on the top side of the browser, we will see the VS Code file being downloaded. Click on the Open icon to run the file directly.

[image:]

Figure 1.15: VS Code Downloaded

A pop-up will open showing the License Agreement. Then, accept the agreement, and click on the Next button.

[image:]

Figure 1.16: VS Code License Agreement

The next window will show the path on which VS Code will be downloaded. Here, just click on the Next button.

[image:]

Figure 1.17: VS Code Install Location

In the next pop-up, just click on the Next button.

[image:]

Figure 1.18: VS Code Shortcut

In the next pop-up, select all of the check boxes for a better experience. Then click on the Next button.

[image:]

Figure 1.19: VS Code Options

Finally, click on the Install button.

[image:]

Figure 1.20: VS Code Install

It will take around two (2) minutes to install the VS Code.

[image:]

Figure 1.21: VS Code Install Progress

Once the installation is complete, click on the Finish button. Keep the default checked option of Launching VS Code.

[image:]

Figure 1.22: VS Code Install Complete

Next, the VS code will open, and we will see the version information.

[image:]

Figure 1.23: VS Code

Conclusion

In this chapter, we learned about design patterns. Lastly, we have learned to install NodeJS and VS Code on windows systems which is the basic requirement to start with the book.

In the next chapter, we will learn about the first design patterns of Layout and Container components.

Points to Remember

	The concept of Design Patterns which is an effective way to write production ready and highly optimized React Code.

	Installation of NodeJS, NPM and VS Code that are must to start coding in ReactJS. All these three can be easily installed, and completely free to use.

CHAPTER 2

Layout Components

Introduction

In this chapter, we will start with Design Patterns. We will first learn in detail about design patterns. Afterwards, we shall learn about the three types of Layout Components. The first Layout Component will be Screen Splitter which is known as Split Screen Pattern also. In this, we pass the components as props, generally more than one. The second Layout Component is the Lists, in which we deal with the List in the most professional way. Lastly, we will learn about Modals, where we are going to create the most effective modal, without using any external library.

Structure

In this chapter, we will discuss the following topics:

	Design Patterns Details

	Layout Components

	Screen Splitter

	Lists

	Modals

Design Patterns Details

In this book, we will be exploring various React Design patterns that address the common challenges encountered during application development, using React. Let us first know what design patterns are, and their impact.

Design patterns can be defined as effective solutions to common application development challenges. Not all solutions are effective. Some approaches lead to decreased performance, and reduce maintainability, commonly referred to as Anti-patterns.

Design patterns, on the other hand are the most optimal and effective solutions to those challenges. The design patterns which we will be learning in this book differs from the Object Oriented Programming. This is because React has moved away from Class-based Components to Functional Components.

These patterns address challenges encountered in React development. We will check how to create reusable layouts for organising components, including Split Screens and Modals. We will also learn to reuse complex logic among components, instead of duplicating codes.

We will also learn to share codes for tasks such as fetching data from API. Another thing that we will learn is working with forms in React. We will also incorporate concepts of functional programming in our React application. We will learn how live and recursive functional programming concepts can be integrated into React.

Layout Components

In this chapter, we will first look into the important concept of Layout components. These are specialised components that focus on organising all the components, within a web page. In this chapter, we will explore these three layout components.

	
Split Screens: Multiple components are arranged in different sections of the page.

	
Lists: Displaying data in List format.

	
Modals: Contents displayed on top of the actual page.

We will understand the fundamental concepts behind layout components, and ways to create them effectively. For example, when we develop a component for the side navigation bar such as below, we generally include the HTML structures and styles within the component itself.

We have created a simple React app where the App.js is calling a Navbar component, and passing a style and children prop.

import './App.css';

import Navbar from "./components/Navbar";

function App() {

const navbarStyle = {

backgroundColor: 'blue',

color: 'white',

padding: '10px'

}

return (

<Navbar style={navbarStyle}>

<h1>This is a Navbar</h1>

</Navbar>

);

}

export default App;

[image:]

Figure 2.1: Starting with App.js

In the Navbar.js file, we are taking those two props, and displaying them:

const Navbar = ({ style, children }) => {

return (

<nav style={style}>

{children}

</nav>

)

}

export default Navbar

[image:]

Figure 2.2: Navbar Component

Our app running on http://localhost:3000/ is displaying the Navbar properly.

[image:]

Figure 2.3: Localhost Showing Navbar

With the Layout component, we adopt a different approach. We separate the actual layout styles into dedicated components, and only insert the specific component. Our App.js now contains two components: LayoutComponent and SideNavBar.

import './App.css';

import LayoutComponent from "./components/LayoutComponent";

import SideNavBar from "./components/SideNavBar";

function App() {

const navbarStyle = {

backgroundColor: 'blue',

color: 'white',

padding: '10px'

}

return (

<LayoutComponent style={navbarStyle}>

<SideNavBar />

</LayoutComponent>

);

}

export default App;

[image:]

Figure 2.4: Restructuring App.js with Layout Design Pattern

The LayoutComponent file is similar to the Navbar.js file we created earlier. It contains the props of style and children, and shows the following code.

const LayoutComponent = ({ style, children }) => {

return (

<nav style={style}>

{children}

</nav>

)

}

export default LayoutComponent

[image:]

Figure 2.5: The LayoutComponent

The SideNavBar.js component will contain our h1 code.

const SideNavBar = () => {

return (

<h1>This is a Navbar</h1>

)

}

export default SideNavBar

[image:]

Figure 2.6: The SideNavBar.js File

Our app running on http://localhost:3000/ is displaying the Navbar, as in the earlier case.

[image:]

Figure 2.7: Localhost with Layout Component

This separation allows us to decouple the component logic from its specified placement on the page, giving us greater flexibility for future use.

Screen Splitter

Now, we will start with the first Layout Component which is known as Split Screen Pattern. We have first added the famous CSS-in-JS library of styled-components that will help us style our React code.

Next, we shall create a new file, SplitScreen.js inside the components folder. Here, we have first imported the styled from styled-components. Next, we have made a Container and Panel style for flex effect. Our SplitScreen component is taking two props - Left and Right.

import styled from "styled-components"

const Container = styled.div`

display: flex;

`

const Panel = styled.div`

flex: 1;

`

const SplitScreen = ({ Left, Right }) => {

return (

<div>SplitScreen</div>

)

}

export default SplitScreen

[image:]

Figure 2.8: Creating SplitScreen.js and Installing Styled-Components

We have updated the return statement in the SplitScreen.js file. Here, we have added the Container styled component first, and inside it two Panel components: The Left and the Right components, which we are being received as props.

<Container>

<Panel>

<Left />

</Panel>

<Panel>

<Right />

</Panel>

</Container>

[image:]

Figure 2.9: Adding Styled-Components in SplitScreen.js

Next, we will update the App.js file, to call the SplitScreen component. We are passing two props, left and right here. Both of these are calling components that we have created here only.

The LeftComp has an h2 with a background of yellow, and the RightComp has an h2 with a background of orange.

import SplitScreen from "./components/SplitScreen";

const LeftComp = () => <h2 style={{ background: 'yellow' }}>Left Component</h2>

const RightComp = () => <h2 style={{ background: 'orange' }}>Right Component</h2>

function App() {

return (

<SplitScreen Left={LeftComp} Right={RightComp} />

);

}

export default App;

[image:]

Figure 2.10: Calling SplitScreen from App.js

Back to our app running on http://localhost:3000/, we will see the Left Component and the Right Component with correct background colour. Each is taking half of the screen width due to flex: 1.

[image:]

Figure 2.11: SplitScreen on Localhost

Screen Splitter Enhancements

We will make slight modifications in the Split Screen Pattern to make it more usable. Here, we will update our components so that the Left Component occupies less size than the Right Component.

So, in the SplitScreen.js file, we are getting two new props of leftWidth and rightWidth which have default parameters also of 1.

Afterwards, we will add a prop of flex in the Panel styled component. This is a feature of the styled components where we can pass props like this. We have updated the flex on the Panel styled component to take the prop of flex.

[image:]

Figure 2.12: Adding Data in SplitScreen.js

Now, in the App.js file, we will pass the props of leftWidth and rightWidth. Notice that the rightWidth is 3.

[image:]

Figure 2.13: Sending New Props from App.js

Back to our app running on http://localhost:3000/, we will see that the Left Component is one-third of the Right Component. This is due to flex: 3 on the right component, and flex:1 on the left component.

[image:]

Figure 2.14: Updated Screen in Localhost

Lists

Next, we shall look into the List and the List items as a Layout component. We will look into the most professional React component design pattern for dealing with these kinds of components.

We have first created a new data folder inside the src folder. Inside it, we have created two files - authors.js and books.js.

The authors.js contains an author’s array of objects. For each author, we have the name, age, country, and books.

export const authors = [

{

name: "Nabendu Biswas",

age: 42,

country: "India",

books: ["TypeScript Basics", "Practical GraphQL"]

},

{

name: "Ami Ganatra",

age: 36,

country: "India",

books: ["Ramayana Unravelled", "Mahabharata Unravelled"]

OEBPS/images/Figure-1.17.jpg
EPr——r—] = x
ratn

Whare 810uid Vieual 0o Cace be metaled?. od

<

P

T T T ———

o,k . v skt Sl .

(-

- =]

OEBPS/images/Figure-1.19.jpg
S ———— 5 x
o
i n8000on s 360 0 peforact »i

4 o ok 5 i VS o, 0

L
[FI———
8 10 s)

OEBPS/images/Figure-2.2.jpg
Q Fle Edt Selecton View Go vt € 3 B ot demo.

ol

B M B sy X

6 componens > B Navoars >

st Navbar = ((style, children }) o> {
® e
ray stylesGstyiers
hitarem)

)

export. deauic Navear

OEBPS/images/Figure-1.18.jpg

OEBPS/images/Figure-1.20.jpg
pE—

) Sewp - Mirosft Vs St Code Uier) - x

Ready tomstat
Se 1 o eyl el o Coe o e compts.

it 1 ot e he o, kB s i e s e

Csrinaben A2p08LocaPrograms Maroseh VS Code

st o

N
A0 "0pen wih Cooe” 5t 0 Vindows Eqioe e crtst ey
i Spen v coo et indors S ceco omh s
e o s s o g s s
ity

OEBPS/images/Figure-1.2.jpg
¥ @ Nacea—Onurhaseht X 3 Dowacarsh gkt X 4

e o B e sno
B R

P P — A]

Download Node.js®

Oowelosd Node s the wy you v,

lstihe 1220 wsonofNodejsfor % Weows - runing 166

[roRS——
e e g o i erion

e e g sl s vesin
Loty e SUSUNS.
PR

laeniy Blhes e da S copesionanon O @ X & © .

OEBPS/images/Figure-1.22.jpg

OEBPS/images/cqr.jpg

OEBPS/images/Figure-1.21.jpg
4 Setup - Wicrsot Vi S e Vs - x

E T — <

a5 o s VS Co o

OEBPS/images/Figure-1.1.jpg
Download Node.js®

Dounload Node/s the way you wan.

[T T ————.

Qe wax & A O

e aems et oo rong

[
R g i e

e g ot for s version

Lembomto vty sgned SUSINS.

Creckut sl ke s oo

nlemiiiihy maii faaeitikan Saty

ioOpigh Nemision:

0@ X ¢ ©

OEBPS/images/Figure-1.3.jpg

OEBPS/images/Figure-1.10.jpg
o s it s

OEBPS/images/Figure-1.23.jpg
X e G Seeton Vew Go R & e) DoO® - ©

March 2024 (version 1.88)

gt

Ut 881 T it s s

& Y& 06

i 1 th i 208k o el St Coe T st s o gyl s f by s e

ot o s g b o it e e
o Compte s iy e i e g
it peomercts - e o ith o . it o it VS G e

s oy ety et o et s

S et - ik Bt s s .

- Cucly e 1 etk
Ottt s Tk Dy, e th s

S NI —

yon it et

B T S e [S e e
R —————

Accessibiity

P ®

& 0

OEBPS/images/Figure-1.11.jpg
R\ M\ e

OEBPS/images/Figure-1.12.jpg
Toals far Made.3s Native Rodules Instatlation Script

This seript wilL install Python and the Visual Studio Suild Toels, recessary
o compile Node. 52 mative aodules. Note that Chacolatey and required Nindows
Updates Ll also be instatied

This Wil requise about 3 GIB of free disk space, plus any space necessary to
inatall Windons updates. This wiLl take o while fo run

Plesse close all open progams for the duration of the installation. If the
Snstallation fails, ploats ensure Windows is. Fully upsates, reboot your
Computer and ry £ run this again. This cript can be found in the

{0015 Ranially Are Mwsilable St hetpet//githes coninodess nade ypRon mindoms

OEBPS/images/Figure-1.4.jpg

OEBPS/images/Figure-1.13.jpg

OEBPS/images/Figure-1.14.jpg
3 Visual Studio Code

Code editing.
Redefined

OEBPS/images/Figure-1.15.jpg
B -0

LI R T —

e Thanks for downloading VS Code for Windows!

Dovnload ot starting Ty thisdec donioad k.

- Getting Started

Visual Studio Code in Action

OEBPS/images/Figure-1.16.jpg
P a———r——) - x

et i ot st e s '

Ry ————.

s cers ppis t the Ve S Code roduc S Codefor |
Vil Studo Code s avaloble o st com/Micsoftvco
\unde the IT lcnse ogeement ot

st . Additonal

lcereifomationcon b found i o FAG ot
MICROSOFT SOFTWARE LICENSE TERMS
w MICROSOFT VISUAL STUDIO CODE

OEBPS/images/Figure-2.14.jpg
C & O b

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewers

		Acknowledgements

		Preface

		Get a Free eBook

		Errata

		Table of Contents

		1. Introduction to Design Patterns

		Introduction

		Structure

		Introduction to Design Patterns

		Requirements

		Node and NPM Installation Windows

		VS Code Installation Windows

		Download the Link

		Conclusion

		Points to Remember

		2. Layout Components

		Introduction

		Structure

		Design Patterns Details

		Layout Components

		Screen Splitter

		Screen Splitter Enhancements

		Lists

		Modals

		Conclusion

		Points to Remember

		3. Container Components

		Introduction

		Structure

		Container Components Overview

		Server Setup

		Loader Component

		User Data Loader

		Resource Data Loader

		DataSource Component

		Render Props Pattern

		Conclusion

		Points to Remember

		4. Controlled and Uncontrolled Components

		Introduction

		Structure

		Uncontrolled Components

		Controlled Components

		Controlled Modals

		Uncontrolled Flows

		Collecting Data

		Controlled Flows

		Conclusion

		Points to Remember

		5. Higher Order Components and Custom Hooks

		Introduction

		Structure

		Introduction to HOC

		Checking Props with HOCs

		Data Loading with HOC

		Updating Data and Building Forms

		Enhancing HOC Pattern

		Introduction to Hooks

		Fetching a User with Custom Hooks

		Fetching a Resource with Custom Hooks

		Conclusion

		Points to Remember

		6. Functional Programming and More Patterns

		Introduction

		Structure

		Introduction to Functional Programming

		Recursive Components

		Compositions

		Partial Components

		Compound Components

		Observer Pattern

		Conclusion

		Points to Remember

		7. Advanced Concepts and Hooks

		Introduction

		Structure

		React Portals

		Error Boundaries

		Keys

		useLayoutEffect and useId

		useDeferredValue

		useTransition

		Conclusion

		Points to Remember

		8. Clean Code Tips and Scalable Architecture

		Introduction

		Structure

		Using Element Prop

		Optimizing Context API

		General Architecture

		Route Components

		Encapsulating Components

		Conclusion

		Points to Remember

		9. API Layer

		Introduction

		Structure

		Building API Layer and API States

		Enhancing the API States

		Avoiding Flickering Loaders

		Abstracting API States

		Adding Request Abort Logic

		Conclusion

		Points to Remember

		10. API Layer with React Query

		Introduction

		Structure

		Server Setup

		Fetching Data with React-Query

		Updating Data with React-Query

		Pagination with React-Query

		Infinite Scroll with React-Query

		Conclusion

		Points to Remember

		11. State Management Patterns

		Introduction

		Structure

		Immutable Updates with uselmmer

		Cleaner, Reducer with uselmmerReducer

		Conclusion

		Points to Remember

		12. Performance Optimization

		Introduction

		Structure

		Code-Splitting and Lazy-Loading

		useCallback and useMemo Hooks

		State Collocation and Lifting up Components

		Throttling

		Debouncing

		Conclusion

		Points to Remember

		13. Design System with Core Concepts and Building Components in Figma

		Introduction

		Structure

		Understanding Design System

		Down Sides of Design Systems and Team Structure

		Audience of Design Systems and Example

		Key Concepts and Practical Checklist

		Mistakes to Avoid

		Hands-on Color Palette in Figma

		Hands-on Designing a Modal

		Conclusion

		Points to Remember

		14. Design System with Developing Components and Encapsulating Styles

		Introduction

		Structure

		Extensible Foundations

		Creating Button Component

		Building a Modal

		Style Compositions

		Encapsulating Styles

		Conclusion

		Points to Remember

		15. Design System with Patterns for Spacing

		Introduction

		Structure

		Overview

		Layers Pattern

		Split Pattern

		Column Pattern

		Grid Pattern

		Inline Bundle Pattern

		Conclusion

		Points to Remember

		16. Design System with Patterns for Complex Styles

		Introduction

		Structure

		Overview

		Pad Pattern

		Center Pattern

		Media-Wrapper Pattern

		Cover Pattern

		Conclusion

		Points to Remember

		17. Design System (Final Project)

		Introduction

		Structure

		Overview

		Navbar with Menu and Header

		Sidebar Menu

		Building Form

		Finishing Buttons

		Conclusion

		Points to Remember

		18. Advanced TypeScript Using Typing Hooks

		Introduction

		Structure

		Overview

		Typing useState

		State Without Initial State

		Passing States and Events

		Typing useRef

		Typing Custom Hooks

		Typing Complex States

		Tuples with Custom Hooks

		Conclusion

		Points to Remember

		19. Advanced TypeScript Using Typing Reducers and Context API

		Introduction

		Structure

		Overview

		Typing Reducers

		Passing Dispatch as a Prop

		Action and Reducer Types

		Context API with Types

		Conclusion

		Points to Remember

		20. Advanced TypeScript with Typing Generics

		Introduction

		Structure

		Overview

		Context with Generics

		Building a Type Helper

		Another Type Helper

		Hook with Generics

		Inferring Generics Types

		Generics Components

		Conclusion

		Points to Remember

		21. Advanced TypeScript (Component Patterns)

		Introduction

		Structure

		Overview

		Higher Order Components

		Render Props

		Custom Hooks

		Limiting Prop Composition

		Requiring Prop Composition

		Conclusion

		Points to Remember

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to Design Patterns

OEBPS/images/Figure-2.13.jpg
<
©

ko WX B Spiscsens U
s> B s> @ hop

B ot domo

e —e

g’)oRignt comonent /12>

[iermiaen= rigremiomn-0]

0 i o iTceen tom s sissrears
H PR
Io e e et
P
I i S —
S
“
® L i

OEBPS/images/Figure-2.12.jpg
X Fle Edit Seecton View Go

L
> componets > B Spiscronss > 0 ane.
3 Saport styled from “styled-components™

sptscens0 X

asaptay: flox; |

e
5 comt spicsren = (C e, nio TR, TGRERA] > €

12 v [Bretuen
B Ccontainers

A v

PE YV E OO

o Yo e

F gt 1>
n [
%o

2 expert derane sissereen

®
&

o ©oA0 WO R R e

OEBPS/images/Figure-1.6.jpg

OEBPS/images/Figure-2.11.jpg
C O O bubeion

Left Component

eI 0% &S

OEBPS/images/Figure-1.5.jpg

OEBPS/images/Figure-2.10.jpg
X Fle Bt Sdecion View Go e [B oot demo.

i WX B Spsces 0

o>
Snsart. Splitscreen from = /comgorants/Sp1isscranns

const LeftComp = () = <h2 style=({ background ‘yellou” }]Lert Conponent/h2>
Const Rigntcoms = () ©> <12 stylesi(backgrownds “oronge”) Right Component /12>

funceion 690 ([
retunn
Cspiitscraen Lot (Lefecoms) Rights(Rignicons) />

1)

32 egert defasie i

>8R VE OO

OEBPS/images/Figure-1.8.jpg

OEBPS/images/Figure-1.7.jpg

OEBPS/images/Figure-1.9.jpg

OEBPS/images/tick.jpg

OEBPS/images/qr1.jpg

OEBPS/images/qr.jpg

OEBPS/images/cover.jpg
ANVA

Design Patterns
for High Performance

Build Clean, Scalable and
Enterprise-Ready React Applications
with Advanced Patterns and
Performance Techniques

Nabendu Biswas

OEBPS/images/Figure-2.1.jpg
2 Fle Edt Selection View Go

©

> EVE O

woroc [B O
> 0 e modier
> o e
Cmuc
components
L
3 sopess
LI "
& roptests
3 ndencss
B ot
* logong
I cporiaiss
B ewpresss
© o
® pacagelockon
® pacagefson
© Resovena

& B oyt demo.

Baops WX B by

s> B Appis > @ Agn.

import. " ipp e
inport Navbar fron */compenants avbar:

function #0p0)

_—
() v

i

]

export detauie app;

OEBPS/images/logo.jpg

OEBPS/images/line.jpg

OEBPS/images/Figure-2.8.jpg
Pt dem. oeme - & x

X Fle Et Seecion View Go

D B sy x
s> componars > B Slteens> @it 5

o -
B 2 s
b © oamen
@ e e
S 1: E CGspissereanc/ss
o ——— Bt DA

e
Attt Ay /et - T SR Chapter-2/Code/ Layout -Gem (master)
s

®
B resiicies @ mirne, ¢
—

T T T T Bl e L e

OEBPS/images/Figure-2.7.jpg
Ao o L
O 6 O leaemnxn L S 0 0% &

OEBPS/images/Figure-2.6.jpg
X Flo Gt Seecton View Go e

P oyt dom oom® - ©

omorsn Bl M B Upecomponents U St U X suwm
vuvoronio [ELD © s> componens > B St >) Sdoinar &

> 8 node mades 1 const siganavoar = () > (

> 1 e 2 | retuen

el Cs T G s e

vmonpores o J

B youcomponents U ¢
1 N U7 epert defauie sisenavar
B senntais U
3 sopess
B fopis "
& roptests
3 indencss
1 indes
* logosng
1 eporvieiass
1 seupressis
© g
 pactagedockjson
 paciagejion
© rovens

)

APV 0O

OEBPS/images/Figure-2.5.jpg
Qe Edt Selecton View Go G B tayout demo.

— ST [
Beacaiy e R
oo B0 e v
e o
= . e
o ety
e
s o
s
2 .
R,
Fuin
iy
resd
S
O
S
S
R
Foves

-

g defaule Layautcompanent

> H VE VO

0e oo

OEBPS/images/Figure-2.4.jpg
X Fle Edt Selection View Go « > B tayout demo.

© me RIETIEEY & oecoreery | My
Ty o> B o> D0
S osie o
(i e L
% Vo Col T
[N 5 function App() {
N B Loyoicomponentis U 5| const navbarstyle = {
= B Navbarjs v 3 ‘backgroundce ‘blue’,
o | m— S
B Shme Hil =4
B aopis |
@ G iz s
B indeccns 13 <LayoutComponent styles{navbarstyle}>
A | e ,,l (e
* logosvg. 15 </LayoutComponent >
Moo -
ey oy
© ggre B]
O [
@ iarion

© resoend

OEBPS/images/Figure-2.3.jpg
C O O wabonrn R N U)

OEBPS/images/Figure-2.9.jpg
X e Edit Selecion View Go (e B oy domo.

B Spisasens 0 x
1 componens > B Spltasenjs > Sltaeen
+inport styled from styles-componants”

S comst container = styled.div
o | el 1o
7 const Panel = styled.tiv

5 const splitscreen = (C Left, might 1) > {
1 [retun

PRRVE LD

w e et

i wigre />
B <lcontuiners

n [0

-

2 enport e spttssereen

naoms

sam

