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Preface





This book, Ultimate React Design Patterns for High Performance, is written for React developers who already know the fundamentals, and want to level up to become senior frontend developers. In today’s software industry, writing functional React applications is not enough — to succeed in large-scale, enterprise environments, you need to understand design patterns, architecture, and performance optimization.


The goal of this book is to bridge that gap. It will guide you step by step from intermediate knowledge of React toward mastering advanced design patterns, scalable architectures, and performance techniques that set apart a professional React engineer.


The book is organized into multiple chapters, each addressing a specific advanced concept in React:




	
Chapters 1–3 introduce design patterns, layout components, and container components to help you structure clean and reusable UI code.


	
Chapters 4–6 cover controlled/uncontrolled components, Higher-Order Components (HOCs), custom hooks, and functional programming patterns — essential techniques for building robust, reusable, and scalable components.


	
Chapters 7–8 dive into advanced concepts and hooks, including portals, error boundaries, and clean coding practices that enable scalable project architecture.


	
Chapters 9–12 deal with API integration, React Query, state management patterns, and performance optimization, ensuring that your apps remain responsive under real-world load.


	
Chapters 13–17 focus on Design Systems building UI components in Figma, encapsulating styles, spacing patterns, complex styles, and finishing with a full design system project.


	
Chapters 18–21 conclude with Advanced TypeScript techniques, teaching you to strongly type hooks, reducers, generics, and component patterns — a must-have skill in enterprise projects.





Thus, by the end of this book, you will not only be confident in applying React design patterns and performance optimizations, but also in architecting scalable and clean codebases that can withstand enterprise demands. This is the skillset expected from a senior frontend developer, and this book is designed to get you there!


I hope this book inspires you to build better, cleaner, and more scalable React applications.
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CHAPTER 1


Introduction to Design Patterns



Introduction

This chapter gives a brief introduction to design patterns, and covers the requirements to start with the installation of NodeJS and NPM (Node Package Manager) on a Windows system, These software are primarily required for ReactJS coding.

Besides this, we will also learn to install Visual Studio Code, also popularly known as VS Code. This is a light-weight code editor which is helpful in coding in ReactJS. All these three requirements are completely free to install on Windows, Mac and Linux.

Structure

In this chapter, we are going to discuss the following topics:


	Introduction to Design Patterns

	Requirements



Introduction to Design Patterns

Design patterns are an advanced concept in ReactJS which means designing the code in an efficient way. These advanced concepts allow us to write an effective code, by using patterns such as controlled and uncontrolled components.

We will also learn other advanced concepts like memoization which optimizes the performance of React. The readers will be able to develop enterprise level React systems for reusability. We will use React Hooks, Context API, HOCs, Custom hooks and React functional programming to build reliable apps that scale.

By understanding these design patterns, developers can develop scalable, maintainable and optimized React applications.

Requirements

Since this book is about advanced React concepts, the Basic understanding of React and JavaScript is required. You should have Node and NPM installed on your machine because React requires both to create applications, and install dependencies. Besides this, Visual Studio code should also be installed on your machine. Next, we will learn to install these on Windows. The setup for Mac and Linux is quite similar, and can be done easily.

Node and NPM Installation Windows

First, we need to go to the official NodeJS download url which is https://nodejs.org/en/download. Afterwards. click on Download Node.js vXX.XX.X button. During the time of writing the book, it was v20.12.2.
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Figure 1.1: Node Install Link

Next, on the top side of the browser, we will see the 'msi file' being downloaded. Click on the 'Open' icon to run the file directly.
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Figure 1.2: Node Downloaded

A pop-up will come that will start the 'Node.js Setup Wizard'. Here, click on the Next button.
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Figure 1.3: Node Setup Wizard

In the next window, accept the terms by clicking on the 'checkbox', and then the 'Next' button.
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Figure 1.4: Node License Agreement

Next, it will show the default directory to install NodeJS. Here, then click on the 'Next' button.
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Figure 1.5: Node Default Path

In the next screen also, click on the 'Next' button.
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Figure 1.6: Node Features

Now, the wizard will install all the necessary tools. Here, select the 'checkbox' and then click on the 'Next' button.
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Figure 1.7: Node Necessary Tools

Finally, we will get the 'Install' button. Click it, and install NodeJS.
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Figure 1.8: Node Install

It will take around 1 minute to install 'NodeJS', and the progress bar will show the status.
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Figure 1.9: Node Install Progress

Once the installation is complete, click on the 'Finish' button.
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Figure 1.10: Node Install Finish

Now, the setup for additional tools will start. It will open the command line, where we need to click on any button.
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Figure 1.11: Node Additional Tools

Now, open any terminal and run the command node '-v'. It will give the 'Node' version installed which is 20.12.2 in our case.
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Figure 1.12: Node Version

Now, in the terminal, run the command npm -v. It will give the NPM version installed which is 9.5.0 in our case. NPM stands for Node Package Manager that is automatically installed with Node installation:
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Figure 1.13: NPM Version

VS Code Installation Windows

To download Visual Studio Code or VS Code, first go to https://code.visualstudio.com/, and click on the download button. This site automatically detects your operating system.



[image: ]


Figure 1.14: VS Code

Download the Link

Afterwards, on the top side of the browser, we will see the VS Code file being downloaded. Click on the Open icon to run the file directly.
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Figure 1.15: VS Code Downloaded

A pop-up will open showing the License Agreement. Then, accept the agreement, and click on the Next button.
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Figure 1.16: VS Code License Agreement

The next window will show the path on which VS Code will be downloaded. Here, just click on the Next button.
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Figure 1.17: VS Code Install Location

In the next pop-up, just click on the Next button.
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Figure 1.18: VS Code Shortcut

In the next pop-up, select all of the check boxes for a better experience. Then click on the Next button.
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Figure 1.19: VS Code Options

Finally, click on the Install button.
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Figure 1.20: VS Code Install

It will take around two (2) minutes to install the VS Code.
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Figure 1.21: VS Code Install Progress

Once the installation is complete, click on the Finish button. Keep the default checked option of Launching VS Code.
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Figure 1.22: VS Code Install Complete

Next, the VS code will open, and we will see the version information.
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Figure 1.23: VS Code


Conclusion


In this chapter, we learned about design patterns. Lastly, we have learned to install NodeJS and VS Code on windows systems which is the basic requirement to start with the book.

In the next chapter, we will learn about the first design patterns of Layout and Container components.

Points to Remember


	The concept of Design Patterns which is an effective way to write production ready and highly optimized React Code.

	Installation of NodeJS, NPM and VS Code that are must to start coding in ReactJS. All these three can be easily installed, and completely free to use.









CHAPTER 2


Layout Components



Introduction

In this chapter, we will start with Design Patterns. We will first learn in detail about design patterns. Afterwards, we shall learn about the three types of Layout Components. The first Layout Component will be Screen Splitter which is known as Split Screen Pattern also. In this, we pass the components as props, generally more than one. The second Layout Component is the Lists, in which we deal with the List in the most professional way. Lastly, we will learn about Modals, where we are going to create the most effective modal, without using any external library.

Structure

In this chapter, we will discuss the following topics:


	Design Patterns Details

	Layout Components

	Screen Splitter

	Lists

	Modals







Design Patterns Details

In this book, we will be exploring various React Design patterns that address the common challenges encountered during application development, using React. Let us first know what design patterns are, and their impact.

Design patterns can be defined as effective solutions to common application development challenges. Not all solutions are effective. Some approaches lead to decreased performance, and reduce maintainability, commonly referred to as Anti-patterns.

Design patterns, on the other hand are the most optimal and effective solutions to those challenges. The design patterns which we will be learning in this book differs from the Object Oriented Programming. This is because React has moved away from Class-based Components to Functional Components.

These patterns address challenges encountered in React development. We will check how to create reusable layouts for organising components, including Split Screens and Modals. We will also learn to reuse complex logic among components, instead of duplicating codes.

We will also learn to share codes for tasks such as fetching data from API. Another thing that we will learn is working with forms in React. We will also incorporate concepts of functional programming in our React application. We will learn how live and recursive functional programming concepts can be integrated into React.

Layout Components

In this chapter, we will first look into the important concept of Layout components. These are specialised components that focus on organising all the components, within a web page. In this chapter, we will explore these three layout components.


	
Split Screens: Multiple components are arranged in different sections of the page.

	
Lists: Displaying data in List format.

	
Modals: Contents displayed on top of the actual page.



We will understand the fundamental concepts behind layout components, and ways to create them effectively. For example, when we develop a component for the side navigation bar such as below, we generally include the HTML structures and styles within the component itself.

We have created a simple React app where the App.js is calling a Navbar component, and passing a style and children prop.

import './App.css';

import Navbar from "./components/Navbar";

function App() {

const navbarStyle = {

backgroundColor: 'blue',

color: 'white',

padding: '10px'

}

return (

<Navbar style={navbarStyle}>

<h1>This is a Navbar</h1>

</Navbar>

);

}

export default App;
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Figure 2.1: Starting with App.js

In the Navbar.js file, we are taking those two props, and displaying them:

const Navbar = ({ style, children }) => {

return (

<nav style={style}>

{children}

</nav>

)

}

export default Navbar
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Figure 2.2: Navbar Component

Our app running on http://localhost:3000/ is displaying the Navbar properly.
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Figure 2.3: Localhost Showing Navbar

With the Layout component, we adopt a different approach. We separate the actual layout styles into dedicated components, and only insert the specific component. Our App.js now contains two components: LayoutComponent and SideNavBar.

import './App.css';

import LayoutComponent from "./components/LayoutComponent";

import SideNavBar from "./components/SideNavBar";

function App() {

const navbarStyle = {

backgroundColor: 'blue',

color: 'white',

padding: '10px'

}

return (

<LayoutComponent style={navbarStyle}>

<SideNavBar />

</LayoutComponent>

);

}

export default App;
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Figure 2.4: Restructuring App.js with Layout Design Pattern

The LayoutComponent file is similar to the Navbar.js file we created earlier. It contains the props of style and children, and shows the following code.

const LayoutComponent = ({ style, children }) => {

return (

<nav style={style}>

{children}

</nav>

)

}

export default LayoutComponent
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Figure 2.5: The LayoutComponent

The SideNavBar.js component will contain our h1 code.

const SideNavBar = () => {

return (

<h1>This is a Navbar</h1>

)

}

export default SideNavBar
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Figure 2.6: The SideNavBar.js File

Our app running on http://localhost:3000/ is displaying the Navbar, as in the earlier case.
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Figure 2.7: Localhost with Layout Component

This separation allows us to decouple the component logic from its specified placement on the page, giving us greater flexibility for future use.

Screen Splitter

Now, we will start with the first Layout Component which is known as Split Screen Pattern. We have first added the famous CSS-in-JS library of styled-components that will help us style our React code.

Next, we shall create a new file, SplitScreen.js inside the components folder. Here, we have first imported the styled from styled-components. Next, we have made a Container and Panel style for flex effect. Our SplitScreen component is taking two props - Left and Right.

import styled from "styled-components"

const Container = styled.div`

display: flex;

`

const Panel = styled.div`

flex: 1;

`

const SplitScreen = ({ Left, Right }) => {

return (

<div>SplitScreen</div>

)

}

export default SplitScreen
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Figure 2.8: Creating SplitScreen.js and Installing Styled-Components

We have updated the return statement in the SplitScreen.js file. Here, we have added the Container styled component first, and inside it two Panel components: The Left and the Right components, which we are being received as props.

<Container>

<Panel>

<Left />

</Panel>

<Panel>

<Right />

</Panel>

</Container>
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Figure 2.9: Adding Styled-Components in SplitScreen.js

Next, we will update the App.js file, to call the SplitScreen component. We are passing two props, left and right here. Both of these are calling components that we have created here only.

The LeftComp has an h2 with a background of yellow, and the RightComp has an h2 with a background of orange.

import SplitScreen from "./components/SplitScreen";

const LeftComp = () => <h2 style={{ background: 'yellow' }}>Left Component</h2>

const RightComp = () => <h2 style={{ background: 'orange' }}>Right Component</h2>

function App() {

return (

<SplitScreen Left={LeftComp} Right={RightComp} />

);

}

export default App;
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Figure 2.10: Calling SplitScreen from App.js

Back to our app running on http://localhost:3000/, we will see the Left Component and the Right Component with correct background colour. Each is taking half of the screen width due to flex: 1.
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Figure 2.11: SplitScreen on Localhost

Screen Splitter Enhancements

We will make slight modifications in the Split Screen Pattern to make it more usable. Here, we will update our components so that the Left Component occupies less size than the Right Component.

So, in the SplitScreen.js file, we are getting two new props of leftWidth and rightWidth which have default parameters also of 1.

Afterwards, we will add a prop of flex in the Panel styled component. This is a feature of the styled components where we can pass props like this. We have updated the flex on the Panel styled component to take the prop of flex.
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Figure 2.12: Adding Data in SplitScreen.js

Now, in the App.js file, we will pass the props of leftWidth and rightWidth. Notice that the rightWidth is 3.
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Figure 2.13: Sending New Props from App.js

Back to our app running on http://localhost:3000/, we will see that the Left Component is one-third of the Right Component. This is due to flex: 3 on the right component, and flex:1 on the left component.
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Figure 2.14: Updated Screen in Localhost

Lists

Next, we shall look into the List and the List items as a Layout component. We will look into the most professional React component design pattern for dealing with these kinds of components.

We have first created a new data folder inside the src folder. Inside it, we have created two files - authors.js and books.js.

The authors.js contains an author’s array of objects. For each author, we have the name, age, country, and books.

export const authors = [

{

name: "Nabendu Biswas",

age: 42,

country: "India",

books: ["TypeScript Basics", "Practical GraphQL"]

},

{

name: "Ami Ganatra",

age: 36,

country: "India",

books: ["Ramayana Unravelled", "Mahabharata Unravelled"]
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