

[image: image]

Ultimate Web
Authentication
Handbook

[image:]

Strengthen Web Security by Leveraging
Cryptography and Authentication Protocols
such as OAuth, SAML and FIDO

[image:]

Sambit Kumar Dash

[image:]

www.orangeava.com

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information.

First published: October 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-19416-46-2

www.orangeava.com

Dedicated to

My Beloved Parents

and

My Loving Wife

Foreword

In today's interconnected world, web authentication stands as a crucial pillar of digital security. As technology continues to advance at an unprecedented pace, it is paramount that we equip ourselves with the knowledge and skills to navigate the intricate landscape of authentication protocols and standards. It is with great pleasure and anticipation that I introduce this exceptional book, a comprehensive guide to advanced web authentication, focused on programming and hands-on understanding of authentication protocols, authored by an esteemed industry expert in the field.

I have had the honor of working alongside the author during our tenure together at Symantec, growing Symantec’s strong authentication services to have been serving tens of millions of users worldwide. Sambit, as a brilliant product management leader, spearheaded our flagship authentication product line, which provided comprehensive strong authentication methods and protocols. His exceptional product guidance and expertise were instrumental in driving solutions that ensured the utmost security and reliability for our clients.

Through our work together, I witnessed firsthand Sambit’s unwavering dedication and unparalleled knowledge in the realm of authentication. His deep understanding of the subject matter, combined with his ability to translate complex concepts into practical implementations, positioned him as a true authority in the field.

This book strikes a perfect balance between theory and practice, delving into the fundamental concepts of authentication protocols and standards while emphasizing their practical implementation through programming. By emphasizing the hands-on application of protocols rather than relying on wrapped third-party libraries, one can truly gain a solid grasp of the subject matter. The Flutter client framework and sample server code in the Go Language are especially well chosen for learning and use in one’s own application.

This book caters to the critical needs of a broad audience, ranging from computer programmers, and web application designers, to architects who are eager to embrace authentication best practices in their applications. While network security experts undoubtedly possess invaluable knowledge in the field, they may find that existing resources often lack the level of detail required to configure enterprise authentication tools. Similarly, many Identity Management Products predominantly focus on server components, leaving developers of client integrations without comprehensive guidance.

As someone who has witnessed the author’s extraordinary expertise in managing and building real-world authentication products, I wholeheartedly endorse this book as an invaluable resource for aspiring developers, security professionals, and anyone seeking to advance their knowledge of advanced web authentication.

May this excellent book inspire you to push the boundaries of what is possible in the realm of digital security, and may it empower you to create robust and reliable authentication systems that safeguard the digital world.

— MINGLIANG PEI
Distinguished Engineer, Broadcom
Technical Co-chair of Open Authentication (OATH) and
an author of multiple RFCs in the field of authentication

About the Author

Sambit Kumar Dash is passionate about bringing technology product ideas to reality. He has over 25 years of experience in product and business management, architecture, and research and development. His interests in technology expand to document technologies, computer security, artificial intelligence, and natural language processing. Sambit has conceived and developed a PDF reader library in the Julia language. This library is available on GitHub (https://github.com/sambitdash/PDFIO.jl). He is passionate about developing new technologies and has eight patents in document technologies, computer security, virtualization, and human-computer interfaces. Additionally, he provides product management consultancy to start-ups and early-stage ventures through Lenatics Solutions Private Limited.

About the Reviewer

Gopal Sharma is a hands-on senior technology leader and software architect in Enterprise Software, Digital Technologies, and Data Engineering, with over 25 years of proven experience in building innovative solutions to challenging business opportunities and building R&D teams. He is adept at collaborating with cross-functional teams to deliver innovative solutions that meet business requirements. He is also a freelance writer of technical articles in Big Data, Data Science, and Enterprise Tech.

In the dynamic realm of technology, Gopal's journey is a testament to the enduring pursuit of knowledge. Starting as a mechanical engineer, Gopal's life has been marked by a remarkable transformation, ultimately leading him to his current role as a book reviewer.

Raised in Kolkata, India, Gopal embarked on his academic path at the prestigious Indian Institute of Technology, Kharagpur, graduating in 1995 with a Bachelor of Technology (Honours) in Mechanical Engineering. His early career was firmly rooted in the mechanical domain, where he honed his skills in machinery, design, and manufacturing.

However, Gopal's curiosity and openness to change soon drew him towards the world of software engineering. With determination and a deep desire to learn, he transitioned from mechanical engineering to software development. Starting as a developer, he progressed to roles such as senior developer and tech lead, all the while embracing new challenges with humility.

Gopal's ability to grasp complex software concepts and craft elegant solutions stood him in good stead. His journey exemplified his adaptability and unwavering commitment to self-improvement.

As the years passed, Gopal's career evolved, with him assuming key roles as an architect and software security expert. His dedication to safeguarding digital assets and his deep knowledge of security protocols helped him immensely.

The vast landscape of data science and big data beckoned to Gopal, and he eagerly explored these domains, leveraging data to drive innovation and decision-making. His passion for data was evident in most works he undertook, from analyzing extensive datasets to uncovering valuable insights.

Gopal's reviews offered a unique perspective and a wealth of knowledge. Beyond mere evaluations, they were heartfelt explorations of the books he encountered, demonstrating his authentic passion for learning and his aspiration to impart wisdom to others.

Acknowledgement

Writing an acknowledgment for a book on technology is always challenging, primarily because you are building on top of someone else's work. This book disseminates the ideas and research of hundreds of technologists. Firstly, I would like to express my gratitude to all of them for producing such remarkable pieces of technology. I have provided reference notes for most of their works, but to err is human. Hence, I request readers to report any omissions, as they are purely unintentional.

Secondly, I thank Mingliang Pei for finding confidence in me and encouraging me to take up this audacious step of writing a book on a technology he masters. Your encouraging foreword means a lot to me. Gopal Sharma and Shashi Bhushan Kumar painstakingly went through every piece of technology discussed in the book and provided their invaluable feedback, making the book better in every respect. Srinath Venkataramani's inputs on digital identity and Krishnan Rajagopalan's on foundational identity and MOSIP enriched the contents further. A casual discussion with Ashutosh Chandra added significant updates to the Zero Trust Principles. I thank them all for their contributions. While all these industry leaders have provided well-intentioned inputs, all omissions and errors should only be attributed to me.

Thirdly, I thank Subha and Sonali for being the editors of this book and the entire Orange AVA team for their remarkable support in making this work see the light of day.

Lastly, I want to express my gratitude to you for choosing this work for your learning. We hope you enjoy it as much as we enjoyed putting it all together. Please do not forget to share your comments and suggestions to help us improve the book further.

Preface

The COVID-19 pandemic affected not only approximately 640 million people worldwide but also resulted in 6.6 million casualties1. The disease spared no one, affecting people from developing nations to the most developed ones. Despite all lockdowns and travel restrictions, the world has moved on. Life has not come to a stand still. The pace at which the world embraced digital technologies added to overcoming some need for physical interaction. People could work from home, share personal and private information, and continue communicating securely. Industries not used to remote working opened to employees working from home. The internet was a great enabler in all these. However, the ability to trust the person accessing the corporate resources is equally important. Organizations deployed authentication systems, and they helped in providing secure access.

India launched a massive vaccination program to inoculate its 1.3 billion population. To date, 2.2 billion dosages of the vaccine have been administered2. The vaccination must reach all the deserving people based on priority with tracking of dosage. A vaccine management platform COWIN developed by the Govt of India was used to track patients and medical practitioners. SMS OTP-based authentication is used for the COWIN portal.

India has only about 60% smartphone penetration3; a sophisticated authentication platform could not have reached the masses. As much as networking and the internet have become a need for digitization, there is a growing need to keep information and user identities secured in this connected world. Computers and user authentication have always run together. However, technologies are constantly evolving. Today, almost all our transactions are carried out using the web as the communication interface. Only a few books provide a holistic view of all the user authentication platforms relevant to web authentication. We endeavor to bring a ready reckoner for programmers to understand the authentication protocols and work on them to integrate them into their application development.The book is composed of the following chapters:

Chapter 1: Introduction to Web Authentication: The World Wide Web has evolved organically. It started as a simple platform for information exchange. However, today it has become the backbone of Internet commerce, business, education, governance, etc. If we were to design a system as complex, keeping so much extendibility in mind, it would have been almost impossible. The underlying protocol of Internet HTTP is stateless. It did not have any native security model in place. The state architecture was established at the application layer using some constructs like headers and cookies. Similarly, there are restrictions placed on the protocol to ensure that browser communications remain secure. In this chapter, we will explore some classic security aspects of Web Architecture.

Chapter 2: Fundamentals of Cryptography: HTTP, although developed for information exchange, did not have many safeguards for state and user management. The transport protocols for HTTP did not have any default protection on information exchange. TCP/IP sends a packet to all the network devices without restriction. The network device that is the only intended recipient analyses the network packet and consumes it, while others ignore it. In such an open communication world, for any information to be protected, the data itself should be encrypted such that a non-intended audience cannot decipher the message. We will review some of the encryption technologies in this chapter.

Chapter 3: Authentication with Network Security: In the earlier chapters, we discussed how we can encrypt information. We did not show the application in exchanging information. Fortunately, the network protocol designers realized this complexity and solved it with two distinct architectures. One is in the transport layer called Transport Layer Security (TLS), and the other at the IP layer called IPSec. While both technologies utilize similar encryption techniques, the protocols and usage are very different. We will be focusing on TLS in this chapter. HTTP over TLS as transport is known as HTTPS and is used in most browser communication today.

Chapter 4: Federated Authentication-I: So far, we have only discussed individual services the users are connecting to, authenticating themselves, and getting access to the system. However, in an organization, there are several systems based on functions or roles. An employee connects to the HR system for leave application, the payroll system for salary, or an IT incident management system for reporting the failure of a laptop. An HR team member will have administrative rights over the HR system, while even the CEO may have user-level rights. These granular policy controls are hard to maintain in every individual service. It started the domain of Identity and Access Management (IAM). IAM is a complex domain. It caters to applications and network configurations, one of the significant complexities seen was with Web Applications in terms of session management. A user who has logged in once to the organization servers does not have to reauthenticate for access to any other server. This concept is called Single Sign-On (SSO). SAML was one of the most used protocols for Web SSO.

Chapter 5: Federated Authentication - II (OAuth and OIDC): While SAML started to solve the SSO problem for enterprises, there was a need for mutual trust between the service provider (SP) and identity providers (IdP). In the Web 2.0 world, this was quite limiting. Users wanted to show their Twitter and Facebook feeds on their web pages as mashup content. While such content is viewable on web pages, it should not be editable. A new paradigm of access control or authorization was needed to address this. In SAML, some attributes or membership of groups are good enough to establish access control for a user. OAuth started as an authorization protocol with restricted access to a resource by the owner. However, it got extended as an authentication protocol with the Open Identity Connect (OIDC) protocol. We will see some aspects of the OAuth and OIDC protocols and review Java Web Token (JWT) to transmit authentication and authorization information.

Chapter 6: Multifactor Authentication: Passwords are open to brute-force or social engineering attacks. Hence, the industry is trying to move to a password-less model. However, the investment in passwords is so significant that moving away may take a few more years. In the past few decades, other factors of authentication as something you have (tokens) and something you are (biometric authentication) have developed. They are used alongside password-based authentication providing another layer of authentication. This is known as Multifactor Authentication (MFA). We saw one such technique with digital certificates. We will delve deeper into two standards: Open Authentication (OATH) and Fast ID Online (FIDO) based WebAuthn.

Chapter 7: Advanced Trends in Authentication: We have discussed users producing credentials to justify a claim on their identity. An identity represents a human being, and the biometric, possessory, or knowledge attributes are mere credentials. There is a need to justify if the identity is in existence supported by government records or documentation. This process is called identity proofing. Earlier, ID-proofing systems depended on physical verification by agents and manual approval. With advances in AI, such systems have moved into automated document feature extraction, face recognition, and other biometric data collection mechanisms. Governments have started developing citizen ID databases containing biometric information for verification. In industries where Know Your Customer (KYC) is a policy requirement, faster digital eKYC systems are in use. The KYC systems provide an authoritative database for identity. Additionally, network and device insights and assessment from security practice are making organizations use a Zero Trust Network Security, where authentication is becoming the backbone.

About the Questions

The questions provided at the end of the chapters are for leading you to understand the topic in depth. It is perfectly alright if you cannot answer them satisfactorily in the first reading of the book. Some questions may not have answers within the chapter where they appear. They can create a lingering doubt to be answered in a later chapter. Some of them may need resources outside of the book. As with most practitioner’s quest, some of the questions may not have a concrete answer, especially when it comes to system design, making them open to discussions and debates.

1. World Health Organization Statistics as of 1st Dec 2022 https://covid19.who.int/

2. Ministry of Health and Family Welfare, Government of India as of 1st Dec 2022 https://www.mohfw.gov.in/

3 India to have 1 billion smartphone users by 2026: Deloitte report, https://www.business-standard.com/article/current-affairs/india-to-have-1-billion-smartphone-users-by-2026-deloitte-report-122022200996_1.html

Downloading the code
bundles and colored images

Please follow the link to download the
Code Bundles of the book:

https://github.com/OrangeAVA/Ultimate-Web-Authentication-Handbook

The code bundles and images of the book are also hosted on
https://rebrand.ly/k90i95c

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction to Web Authentication

Introduction

While authentication is the primary focus of our discussion, we cannot look at it in isolation. There is a need to understand the fundamentals of computer networking and its history to appreciate the development of authentication protocols. It is probably secure to have a point-to-point network where communication is confined to two systems only. Such systems are not scalable as you cannot technically wire every pair of devices. The International Standard Organization (ISO) Open Standards Interconnection (OSI) is the backbone of all computer networking. The design prioritized data redundancy, communication assurance, and packet transmission over secured communication. Here is a basic explanation of the communication protocol. The electrical signals are exchanged across the internetworked computer in conceptual packets of electrical pulses. The electrical pulses do not differentiate any device. However, the pulse packets have a destination network address encoded in them. When a computer receives the pulse packet, it matches the address to its own assigned address. If the match is successful, the pulse packet is accepted.

[image:]

Figure 1.1: Networked Devices (A) point-to-point (B) A bus network: signal will reach all devices on the network

In the OSI model, physical and datalink layers are for low-level signal management. The network layer assigns the address for the pulse packets. Internet Protocol (IP) is the protocol of choice today. The computers may have an IPv4 address (32-bit) written as four numbers separated by dots (198.168.1.1). An IPv6 network uses a 128-bit address instead. Hexadecimal numbers are separated by a colon (:) for this representation; for example, 2001:0db8:85a3:0000:0000:8a2e:0370:7334. Due to the nature of transmission, the pulse packets are not delivered in a consistent order. The pulse packets are collected at the network devices and reordered to reconstruct meaningful messages. The transmission layer of the OSI stack handles these scenarios. The most common transmission protocols are the User Datagram Protocol (UDP) and Transmission Control Protocol (TCP). UDP is acceptable for low-latency networks where applications are tolerant to intermittent data loss. TCP is a connection-oriented protocol with guaranteed data delivery. Packets lost are retransmitted as part of TCP. Web interactions utilize TCP as the network transmission protocol. Hence, we will discuss TCP-IP for all network-related discussions in this book.

[image:]

Figure 1.2: ISO OSI Layers vs TCP/IP Layers: While authentication belongs to the session layer in the OSI model or application layer in the TCP/IP model, authentication can be implemented as part of transport and network layers as TLS and IPSec VPNs, respectively.

Networking has not always been an open and standards-based domain. For example, Novell Networking used a proprietary IPX protocol as its networking protocol. Initially, Apollo computers provided the Network File System (NFS) for their networks. As time progressed, organizations realized the need to collaborate to develop open standards for better interoperability. Most web development today is based on open standards. While TCP-IP became the lingua franca of networking, the other OSI layers, namely, session, presentation, and application, never got the buy-in from the organizations to standardize. The applications implemented these layers as per their convenience. Hence, they are considered application layers in the TCP/IP stack. For example, the HTTP protocol is an application layer protocol. Authentication should have been in the session layer in the OSI stack.

Structure

In this chapter, we will cover the following topics:

	Tools and Resources

	HTTP Protocol Basics

	Web Architecture

	Introduction to Authentication

	Authentication over HTTP

	Limitations

	Conclusion

Tools and Resources

We will work with web applications in this book. We will look at HTTP and other internet protocols. We will need some tools to study the network data. Today, most browsers provide great developer tools to trace HTTP data. They have excellent tools for the HTML Document Object Models (DOM) and analyzing embedded JavaScript. We suggest readers use some of these tools to understand the HTTP traffic.

MDN Web Docs

MDN, earlier known as Mozilla Developer Network1, provides excellent documents and training material for web developers. We suggest you review those for a better understanding of HTTP, HTML, CSS, JavaScript, and so on. We do not consider the knowledge of these technologies a prerequisite for this book; a web developer will learn them with experience. We will introduce the required concepts for this book as the need arises.

Google Chrome

Google Chrome started as a developer-friendly browser that tried to use standards-compliant HTML specifications and had one of the fastest JavaScript engines. Today, it dominates the browser market with almost 65 percent market share leaving its distant second competitor at about 11 percent. All browsers ship with excellent developer tools for easier debugging and analysis of web technologies. We use Flutter as a frontend technology for our samples; Google Chrome provides better support for such environments. Moreover, developers have written large numbers of extensions that help analysis in the browser. Google Chrome is available for Windows, Mac OS, and Linux platforms.

CURL

CURL is a set of open-source libraries and command-line tools for accessing URLs. These tools are available on almost all well-known operating platforms; you can download them from https://curl.se. We are interested in the command line tool here so that we can compose custom HTTP requests to better our understanding while reading this book.

OpenSSL

In the area of cryptography or transport-level security, there is hardly any other tool that can boast of such coverage in the market. OpenSSL has the most elaborate cipher suites, certificate management, and transport layer security protocols. It also has an extensive command-line tool that exposes all the relevant functionality to be tried and tested. With strict FIPS compliance practices implemented, OpenSSL is one of the most sought-after tools in the domain. Just as we suggested CURL for connectivity debugging, we will be using OpenSSL for debugging the cryptographic and transport layer security issues. You can download the tool from https://www.openssl.org/source/ 2.

Go Language

Designed by Robert Griesemer, Rob Pike, and Ken Thompson, working for Google, Go Language is a modern C-like general-purpose programming language. Yet the language, with just a decade of existence, has become the language of choice for web application designs due to its concurrency, ease of programming, ecosystem, and support by large organizations. Developed and maintained as an open-source project, the resources for the language can be accessed from https://go.dev. People with relatively less experience with the tool can look at Appendix A: The Go Programming Language Reference for a simplified introduction and installation instructions. However, the presentation is only rudimentary. We expect the readers to learn the Go language from other language resources.

Flutter Framework

While the Go Language provides the backend of a web application, you need the client libraries to render the content on a browser or a mobile application. Developed by Google as an open-source project, the Flutter application framework provides easy-to-use mechanisms to build applications for the web, Windows, Linux, iOS, and Android platforms. Since authentication requires integration with the application UI, we shall be developing some of the applications on Flutter where user interface can be of paramount importance. You can download the Flutter framework resources from: https://flutter.dev. Appendix B: The Flutter Application Framework provides an introductory understanding of the framework.

HTTP Protocol Basics

As organizations were developing more and more applications for desktop computers, the general framework was to bring a file or resource from the remote machine locally before using it. There were hardly any applications that rendered the content while downloading it from a remote resource; the concept known today as browsing. The exchange of text as electronic mail was prevalent. File transfer protocol (FTP) was the most common technique to download non-text content and view it locally. Tim Berners Lee, a scientist at the European Council for Nuclear Research (CERN), developed a telnet-friendly service to download research data and results. Eventually, this became the Hypertext Transfer Protocol (HTTP). Initially started with only the GET as the command, more commands and mnemonics were added to the protocol.

telnet google.com 80

connecting to… 142.XXX.XXX.XXX

GET /

<<Hypertext Response>>

Connection to host lost

[image:]

Figure 1.3: An HTTP client requesting a server for a specific resource

Hypertext Markup Language (HTML) was developed to link text and images in a single view. The National Center for Supercomputing Applications (NCSA) developed the first browser Mozaic. Netscape and Microsoft built their commercial versions of the browsers Navigator and Internet Explorer (IE) respectively by licensing Mozaic technology. The protocol was kept very simple. Open a connection to a server, request the information you require, and close the connection. There was no concept of a state or resuming the activity where you had left. The protocol remained simple and generic, but it did not give the ability to deliver state management.

Headers

HTTP started as a protocol without any state management controls. However, the client and server needed additional directives for communication. Request for a specific URL or resource was not enough for reliable communication. Let us try to connect to http://google.com with curl and understand the data exchange.

In the curl command, the -v option prints the detailed communication exchange. In the print, the outputs are classified into four sets. Sentences beginning with:

	* Are explanations from actions of CURL

	> Information sent from the client to the server

	< Information received from the server

	Nothing - A dump of the data received.

C:\>curl -v http://google.com

* Trying 2404:6800:4009:82b::200e:80…

* Connected to google.com (2404:6800:4009:82b::200e) port 80 (#0)

Along with the GET request, curl sent a few data values. These name-value pairs separated by a colon (:) are headers. Headers help in exchanging control information3 between the client and server.

> GET / HTTP/1.1

> Host: google.com

> User-Agent: curl/7.83.1

> Accept: */*

>

Header User-Agent tells the name and version of the client software used to connect the server. The Host header tells the server and port (optional) that shall receive the request. The Accept header tells the MIME types the client can understand. These are only a few that curl sends for this minimal example. Browsers send a lot more headers as default. One can review a complete list of standard HTTP headers from this MDN site: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers. These are not all. The communication across custom clients and servers can use custom headers as well.

As curl sent a few headers, the site google.com also replied with a few HTTP headers along with the response. The response here is a 301 error stating the site contacted has moved. And, the user agent must connect to the site as per the value of the Location header. The Location header points to the site http://www.google.com/.

* Mark bundle as not supporting multiuse

< HTTP/1.1 301 Moved Permanently

< Location: http://www.google.com/

< Content-Type: text/html; charset=UTF-8

< Cross-Origin-Opener-Policy-Report-Only: same-origin-allow-popups; report-to="gws"

< Report-To: {"group":"gws","max_age":2592000,"endpoints": [{"url":"https://csp.withgoogle.com/csp/report-to/gws/other"}]}

< Date: Thu, 08 Dec 2022 15:21:46 GMT

< Expires: Sat, 07 Jan 2023 15:21:46 GMT

< Cache-Control: public, max-age=2592000

< Server: gws

< Content-Length: 219

< X-XSS-Protection: 0

< X-Frame-Options: SAMEORIGIN

<

Content-Length is a very useful header that tells how many bytes shall be downloaded as part of the response. Here, 219 bytes of content follow the headers.

<HTML><HEAD><meta http-equiv="content-type" content="text/HTML;charset=utf-8">

<TITLE>301 Moved</TITLE></HEAD><BODY>

<H1>301 Moved</H1>

The document has moved

here.

</BODY></HTML>

* Connection #0 to host google.com left intact

If you plan to download only the HTTP headers and no content, you could use the curl command line:

 curl --head -v http://google.com

There is a lot of information on HTTP headers one needs to learn to be a good web developer. However, we will leave those for the readers to explore for themselves.

Cookies

In HTTP, there is no way to track the continuity of requests. Every request is an independent exchange of data. The server can send a client key-value pairs to remember, and the client can send the same key-value pairs in a subsequent request. These kinds of exchanges are known as cookies in HTTP. The information exchanged in cookies is small chunks of data only.

C:\>curl --cookie-jar cookies.txt -v http://www.google.com

* Trying 2404:6800:4007:81f::2004:80…

* Connected to www.google.com (2404:6800:4007:81f::2004) port 80 (#0)

> GET / HTTP/1.1

> Host: www.google.com

> User-Agent: curl/7.83.1

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 200 OK

< Date: Thu, 15 Dec 2022 07:55:39 GMT

…

< Set-Cookie: 1P_JAR=2022-12-15-07; expires=Sat, 14-Jan-2023 07:55:39 GMT; path=/; domain=.google.com; Secure

< Set-Cookie: AEC=AakniGMJBryHGiLz0B-1QnVwN91aqzJeWcfrpw2hO_idwaRhjCMeJ6mNHA; expires=Tue, 13-Jun-2023 07:55:39 GMT; path=/; domain=.google.com; Secure; HttpOnly; SameSite=lax

*Added cookie NID="511=tOdOEL2UXQFjj2IUhgV1wrFmW9Hs_eIacoHSD9lVeUoSgLOGF9gYObvKzw5q0h3BR2OnbKnzlcaSDy0QeamKxFJnWXh3gnpPY38lOFyHIvjhxGq_-eQU5OggdCcTmGOJEFeq0alI-VxhPhhmYunoC949t9abiWu9UK-0_jKVjYs" for domain google.com, path /, expire 1686902139

< Set-Cookie: NID=511=tOdOEL2UXQFjj2IUhgV1wrFmW9Hs_eIacoHSD9lVeUoSgLOGF9gYObvKzw5q0h3BR2OnbKnzlcaSDy0QeamKxFJnWXh3gnpPY38lOFyHIvjhxGq_-eQU5OggdCcTmGOJEFeq0alI-VxhPhhmYunoC949t9abiWu9UK-0_jKVjYs; expires=Fri, 16-Jun-2023 07:55:39 GMT; path=/; domain=.google.com; HttpOnly

…

Here the curl command contacts the server with the option (--cookie-jar <filename>) to save the received cookies. The server sends a response with three headers of Set-Cookie. Set-Cookie as a directive to the client to cache the cookie values and send them to the server in the subsequent request. If you open the cookies.txt file, you will see the following data:

Netscape HTTP Cookie File

https://curl.se/docs/http-cookies.html

This file was generated by libcurl! Edit at your own risk.

#HttpOnly_.google.com TRUE / FALSE 1686902139 NID 511=tOdOEL2UXQFjj2IUhgV1wrFmW9Hs_eIacoHSD9lVeUoSgLOGF9gYObvKzw5q0h3BR2OnbKnzlcaSDy0QeamKxFJnWXh3gnpPY38lOFyHIvjhxGq_-eQU5OggdCcTmGOJEFeq0alI-VxhPhhmYunoC949t9abiWu9UK-0_jKVjYs

Out of the three cookies suggested by the server, only one is saved by the client. Let's look at the Set-Cookie headers closely.

Set-Cookie: 1P_JAR=2022-12-15-07; expires=Sat, 14-Jan-2023 07:55:39 GMT; path=/; domain=.google.com; Secure

Along with the key and value pair, we have other directives like:

	
expires: The time when the cookie expires. Browsers need not store a cookie after the expiry

	
domain: the domain to which the cookie is bound

	
path: the path where the cookie shall be used. A '/' shall mean any path after the domain name as in this case.

	
Secure: This cookie shall be exchanged in a secured HTTPS exchange channel. On an HTTP channel, such a cookie shall not be sent.

It is this secure directive that ensures the cookie is not saved in the cookie jar file4. We shall now use curl with the option –cookies to send the cookie in the HTTP request.

C:\>curl --cookie cookies.txt -v http://www.google.com

* Trying 2404:6800:4009:823::2004:80…

* Connected to www.google.com (2404:6800:4009:823::2004) port 80 (#0)

> GET / HTTP/1.1

> Host: www.google.com

> User-Agent: curl/7.83.1

> Accept: */*

> Cookie: NID=511=tOdOEL2UXQFjj2IUhgV1wrFmW9Hs_eIacoHSD9lVeUoSgLOGF9gYObvKzw5q0h3BR2OnbKnzlcaSDy0QeamKxFJnWXh3gnpPY38lOFyHIvjhxGq_-eQU5OggdCcTmGOJEFeq0alI-VxhPhhmYunoC949t9abiWu9UK-0_jKVjYs

>

As expected, curl sent the cookie to the server in the request headers.

Session Management

Cookies serve three purposes in HTTP:

	Session Management – Storing logged-in users, shopping cart information, a continuation of the previous step, navigation history, and so on.

	Personalization - Storing user preferences, themes, and so on.

	Tracking - analyzing user behavior.

Here we will be focusing on the first aspect only. Suppose we want to count the number of times a user has visited a website. The server can send the client a Set-Cookie header to store a counter. On the subsequent request, the server can receive the counter from the client, increment the counter, and send back a Set-Cookie header with the incremented value of the counter. The following diagram explains the process.

[image:]

Figure 1.4: Cookies used to count the number of visits

We shall use Golang5 to develop the series of samples showing the session management. Each part has a separate handler function for easier understanding. The server can be launched by going into the chapter-1 folder and using the command:

PS C:\work\HOWA\chapter-1> go run .\main.go

Minimal Web Server

We use the go language tools and HTTP package6 to code our use cases. There are more advanced libraries available in the framework. However, we prefer the HTTP package due to its native availability in the Go language framework. The following code block initializes a web server over port 8080.

func addHelloHandler() {

helloHandler := func(w http.ResponseWriter, req *http.Request) {

io.WriteString(w, "Hello, World!\n")

}

http.HandleFunc("/hello", helloHandler)

}

func main() {

addHelloHandler()

log.Fatal(http.ListenAndServe(":8080", nil))

}

By connecting to http://localhost:8080/hello you will get a response of:

Hello, World!

Counter Cookie

As shown in Figure 1.4, the server sets the cookie for the counter. The user agent (browser) honors the server directive and sends the cookie to the server. The server looks for the cookie and increments the counter. It sets the cookie again and sends it back to the browser. The following code block shows the above concept in action.

func addCountHandler() {

countHandler := func(w http.ResponseWriter, req *http.Request) {

count := 0

if c, err := req.Cookie("count"); err == nil {

if count, err = strconv.Atoi(c.Value); err != nil {

log.Default().Print(err)

count = 0

}

}

count += 1

http.SetCookie(w, &http.Cookie{

Name: "count",

Value: strconv.Itoa(count),

})

str := fmt.Sprintf("You have visited: %d times.", count)

log.Default().Print(str)

io.WriteString(w, str)

}

http.HandleFunc("/count", countHandler)

}

By connecting to http://localhost:8080/count, you will be able to see the number of times the client connected to the server.

You have visited: 7 times.

The browser sends the state parameter of computation (count) that the server trusts for subsequent business logic. While this architecture is reasonable for a trusted client and server, a rogue client can manipulate the server’s behavior. We want the control to be maintained on the server. Most servers will keep the business logic opaque to the client. They only notify the client to keep a reference to the session. The continuation of the session can be maintained, while the actual data needed is maintained on the server.

Session Cookie

The session cookie7 is an opaque reference to the session data. The actual data is stored on the server in a local variable such as a map or a database. The server sets the session cookie on the client. The client can send this cookie to the server for subsequent computations. The following code snippet explains this concept.

func addSessionHandler() {

cmap := map[string]int{}

sessionHandle := func(w http.ResponseWriter, req *http.Request) {

uid := ""

if cookie, err := req.Cookie("session"); err != nil {

uid = uuid.NewString()

log.Default().Printf("No session found. Creating a new session: %s", uid)

http.SetCookie(w, &http.Cookie{

Name: "session",

Value: uid,

})

cmap[uid] = 0

} else {

uid = cookie.Value

}

cmap[uid] += 1

str := fmt.Sprintf("You have visited: %d times.", cmap[uid])

log.Default().Print(str)

io.WriteString(w, str)

}

http.HandleFunc("/session", sessionHandle)

}

We use the cmap variable to store a mapping from the session id to the actual counter. The session id is a globally unique random value. If the session id is not transferred by a rogue client, it will be hard to guess the session ID. Capturing the session ID of another client session is called session hijacking. Web applications use various security architectures to ensure the application is protected against session hijacking. The job of authentication is to ensure that access to the session data is provided to an authorized entity or user.

Protecting the Cookies

Cookies can be sensitive attributes that a server sends to the client for safe protection and use. Web servers expect a trustworthy user agent must securely keep cookies and use them within the restrictions of use. Cookies can have Secured and HttpOnly attributes set on them. The Secured attribute ensures that the cookie is only to be used in an HTTPS transport. Similarly, HttpOnly means the cookie cannot be manipulated on the client by JavaScript. The SameSite attribute controls how the cookie is to be used across sites. There are also time limits, domain, and path restrictions set on cookie usage. A trusted client should consider all these limitations while accessing the server. Security of cookies and sessions is a researched topic with many industry practices8. Is it desirable for a session cookie to have the Secured and HttpOnly attributes set?

Web Architecture

The web architecture we discussed was oversimplified. We connected a client with a server. The client could assume the working of the server and respond accordingly. We did not discuss the presence of hundreds of networking devices between the client and the server. Multiple physical devices can provide various functions for the server. Hence, what we see as a single server in a schematic could be a complex setup. The flexibility of the web architecture keeps all these transparent from the users and the clients. Server developers should not assume any specific functioning of the client, nor the client developers should be dependent on any architectural details of the servers. They should interact with each other using a standard protocol like HTTP or compliant extensions of the HTTP. For example, HTTP is a proxy-compliant protocol. An organization can configure a transparent HTTP proxy that can redirect all the outbound HTTP connections through the proxy server. The clients do not need any specific functionality to support proxy servers. Even if there are some specific activities to be carried out, they should be within the scope of the HTTP protocol and not vary depending on the type of proxy server used.

[image:]

Figure 1.5: A complex network in the web. All clients are redirected through a proxy. There are many network devices. An application gateway on the server side can control access to all the connections to the cloud services or the web server. The clients will not even be aware of the existence of a database server

For a well-designed system for the web, the client does not need any specific functionality to be implemented if it is connecting to one server or a collection of servers. Following the network protocol properly shall automatically address such needs. Hence, there is a significant focus on using compliant protocols.

Web Application Architecture

As client-server applications became the norm of the industry, we started seeing clients that handled most of the presentation layer while data and business logic (application logic) were handled by the servers. This is known as the three-tier application architecture.

[image:]

Figure 1.6: Three-tier application architecture

Web applications operate out of thin clients or browsers. Hence, the presentation layer was to be computed at the server as well. Clients are just meant to render the computed document object models (DOM) in the server presentation layer. Before web applications became mainstream, desktop applications or thick clients used Model-View-Controller UI models to present the data. View and controllers were implemented in the client, while the server provided the necessary model or data.

[image:]

Figure 1.7: MVC in a Web Application

The adaptation of MVC architecture to the web applications was a mere extension of the client-server application with the view and controller residing on the server. The browser or the user agent renders whatever content is provided by the presentation layer. Even the controller events are posted to the presentation layer for subsequent updates. The computing power of the end-user devices could not be exploited in this model. The presentation layer became the front-end entry point for all communication with the browser.

[image:]

Figure 1.8: Model-View-View Model (MVVM) Web Architecture

The Model-View-View-Model (MVVM) is a new kind of web application paradigm that is adopted by the most modern Single Page Architectures (SPA) like Flutter, Angular, React, and so on. The View is implemented as a SPA and is always loaded in the client. There is a continuous data exchange between the view layer and the view model layer. The view model is the presentation layer of the data that must be rendered in the view. View models are provided as APIs that the clients consume. Moreover, view models are continuously computed and updated from the model. Any update to the view models leads to the creation of new views in the client. The view layer and its associated HTML 5 resources are cached in the client. There is a need for such data to be protected and restricted against unauthorized access. The API layer of the MVVM is the real server entry point and should be properly access-controlled.

In our examples, we shall use Flutter for the view layer of the MVVM architecture. We will use Golang-based services for the API layer.

Introduction to Authentication

Authentication is an age-old field in technology. From the time there has been the existence of multi-user computing systems, we have been careful in protecting the distinction of work of one person from the other for various reasons. The technologies used in authentication are interdisciplinary and can be complex. We present a simplified aspect of authentication with these two anecdotes. Interestingly, every society has similar stories related to authentication.

The Sun temple of Konark, Odisha, India, was built in the 13th Century AD. It took 12 years to build the temple with the help of 1200 artisans. Bishu Maharana, the chief architect of the temple, left home when his son, Dharmapada, was still a toddler. In 12 years, the architect has never visited his home nor met his wife and son. When Dharmapada decides to meet his father on the construction site, his mother asks him to carry a piece of her jewelry and lemons from their backyard as artifacts to prove his identity to his father. Seeing both, Bishu Maharana recognizes his son.

The second story comes from Yadon Ki Barat, a movie of the 70s from the Indian movie industry, also known as Bollywood. The three sons of the family are separated young due to some unforeseen circumstances. They are in search of one another without the knowledge of any addresses. One of the sons is a singer in a hotel who keeps singing the first stanza of a family song they had been introduced to in their childhood by their parents, thinking someday one of his other brothers shall hear and complete the rest of the song. The same works and the family members are reunited.

In both these stories, the assertion of identities is impossible as appearances have changed from childhood to adulthood. Both are looking for some alternate artifacts that can establish a piece of circumstantial evidence. In short, we are in search of establishing authentication mechanisms. Digital authentication techniques are not entirely different from artifact matching. The category of artifact used for authentication varies based on who matches the artifacts and the purpose of artifact matching9.

Credentials and access tokens

Let us look at a typical hiring process for an employee. We publish high-level requirements for candidates and start the interview process.

	The person should have an engineering degree from an institute of repute or institutions we have shortlisted.

	The person should have 5-10 years of experience from companies of repute (again, we have a list of reputed employers).

	The person should know some specific technologies.

	
His interpersonal skills were verified with discussions in the interview.

Finally, the company sent him an offer letter.

On the day of joining, an HR executive takes the offer letter, verifies all the necessary documents, and provides the access badge to the employee. All the information the candidate provided to the company is about his credentials. Interviewers and HR executives verified the credentials against a set of premises they had in mind. Suppose the HR executive doubted the document the candidate provided had been forged. The HR executive may escalate the matter to a document verification expert for authenticity. Depending on who is doing the verification, the credential may change. The HR department sent an offer letter. One can think of the offer letter as a derived credential based on the credential validation by the interviewers. Similarly, on the date of joining, the candidate will be given an access pass with a Photo ID to use organization resources. The automated access card provides the necessary access to the employee; the photograph helps the human security guard identify an authorized employee. The access card is an access token for the physical world.

Can an access token or card be a credential? In the limited sense, it is. For example, you show your ticket and passport at an international airport counter and receive a boarding pass. You have proven your credentials in terms of:

	You are a bonafide citizen trusted by your government.

	You have paid the necessary fees for the travel.

Based on this credential, the airline issues a boarding pass that allows you access to the flight. The boarding pass is an access token or a ticket and is not a credential.

Suppose you have an onward journey and take a connection to another mode of transport; the airline may not ask you to verify the ticket and passport but may allow you access using the boarding pass. The boarding pass is derived credential from your verified passport and travel ticket. In this book, we shall use credentials as proof of identity and use the term ticket or access token for the output of the verification process.

[image:]

Figure 1.9: Credentials and tokens. Access tokens from previous steps can be used as derived credentials for future authentication steps in a workflow

To summarize, authentication is about provisioning and verifying artifacts to ascertain the identity of a user or an entity. At least for most of this book, we will use this definition of authentication. However, each validation of an artifact can be complex and a domain of its own. We will discuss a few well-known types of artifact validation, but on a limited scale. In the digital world, password has been used as the most common form of credential. Initiatives like FIDO 2 and WebAuthn are proposed to switch to a password-less mode. We will discuss them later in this book. For the initial chapters, we will use passwords in many examples.

Authentication over HTTP

RFC 7235 defines the authentication protocol for HTTP. It provides a challenge-response architecture for authentication for client and server communication. The architecture is proxy-aware and can be additionally used to authenticate to HTTP proxy servers.

[image:]

Figure 1.10: HTTP Authentication. RFC 7235 describes this authentication scheme. While user name and password-based basic authentication are shown as an example in this workflow, any of the IANA-approved authentication schemes can be used here

The following code snippet in Go implements the idea described in Figure 1.10. We use basic authentication as the authentication mechanism.

func addBasicAuthHandler() {

pmap := map[string]string{"jdoe": "password"}

basicAuthHandler := func(w http.ResponseWriter, req *http.Request) {

if u, p, ok := req.BasicAuth(); ok {

if pmap[u] == p {

str := fmt.Sprintf("User %s authenticated.", u)

io.WriteString(w, str)

log.Default().Print(str)

} else {

str := fmt.Sprintf("User %s failed to authenticate.", u)

w.WriteHeader(http.StatusUnauthorized)

log.Default().Print(str)

}

} else {

w.Header().Add("WWW-Authenticate", "Basic Realm=\"Access Server\"")

w.WriteHeader(http.StatusUnauthorized)

log.Default().Print("Basic authentication needed.")

}

}

http.HandleFunc("/basicauth", basicAuthHandler)

}

When ok is false, there is no Authorization header in the request. The server responds with a WWW-Authenticate header, recommending the client send an Authorization header. The two scenarios are shown in the following curl commands.

C:\>curl -v http://localhost:8080/basicauth

* Trying 127.0.0.1:8080…

* Connected to localhost (127.0.0.1) port 8080 (#0)

> GET /basicauth HTTP/1.1

> Host: localhost:8080

> User-Agent: curl/7.83.1

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 401 Unauthorized

< Www-Authenticate: Basic Realm="Access Server"

< Date: Thu, 29 Dec 2022 18:05:08 GMT

< Content-Length: 0

<

* Connection #0 to host localhost left intact

In the next request, the browser should honor the Www-Authenticate header and send the base64 encoded user name and password as part of the Authorization header.

C:\>curl -v http://localhost:8080/basicauth -u "jdoe:password"

* Trying 127.0.0.1:8080…

* Connected to localhost (127.0.0.1) port 8080 (#0)

* Server auth using Basic with user 'jdoe'

> GET /basicauth HTTP/1.1

> Host: localhost:8080

> Authorization: Basic amRvZTpwYXNzd29yZA==

> User-Agent: curl/7.83.1

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 200 OK

< Date: Thu, 29 Dec 2022 18:08:34 GMT

< Content-Length: 24

< Content-Type: text/plain; charset=utf-8

<

User jdoe authenticated.* Connection #0 to host localhost left intact

Now, the user jdoe is authenticated. In a browser session, this username and password will be cached and will be sent in all sessions to the server. Authentication shall be carried out with every request. Basic authentication is not the only authentication method, there are other methods like Bearer, Digest, HOBA, and so on.10

Limitations

Since HTTP headers are used for authentication here, these are known as header-based authentication. This authentication is helpful for network communication devices like proxies and servers, as most clients and browsers can understand the protocol.

[image:]

Figure 1.11: Basic authentication UI in Chrome. The authentication challenge is shown even before any parts of the page are shown

OEBPS/images/Figure-1.1.jpg

OEBPS/images/Figure-1.11.jpg
R —

c localhost

@ K Bookmaris ee My“Proc

e

OEBPS/images/Figure-1.10.jpg
fil

———— — —
Client Server
1 |[Request
GET / ATTPL.1 i
1p |Response
I 401 Unauthorized
Ask WWW-Authenticate: Basic Realm=“Access Server”
User

. |GET / HTTP1.1
Authorization: Basic <<base64 encoded>>

2r .

200 0K
or
401 Unauthorized

OEBPS/images/Figure-1.2.jpg
Application

Presentation

Session

Transport

Network

Application Layer

Transport Control
Protocol (TCP)

Data Link

Physical

1SO 0S| Model

Internet Protocol (IP)

Network Access Layer

TCP/IP Model

OEBPS/images/Figure-1.4.jpg
Server

Client
1 Request
>
GET / HTTP1.1
1r ke Response
r Set-Cookie: counter=1
GET / HTTP1.1
2 Cookie: counter=1 .

Set-Cookie: counter=2

2r k

OEBPS/images/Figure-1.3.jpg
Request
GET / HTTP1.1

Response
<<Data..>>

arm

Server

OEBPS/images/Figure-1.5.jpg
Cloud

O S

i
|
w

Network Devices Proxy/ Web
Firewall/ Server Database
App Gateway

End-user
Clients

OEBPS/images/cover.jpg
NA

Web
Handbook

Strengthen Web Security by Leveraging
Cryptography and Authentication
Protocols such as OAuth,

SAML and FIDO

Sambit Kumar Dash

OEBPS/images/line.jpg

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		Foreword

		About the Author

		About the Reviewer

		Acknowledgement

		Preface

		Errata

		Table of Contents

		1. Introduction to Web Authentication

		Introduction

		Structure

		Tools and Resources

		MDN Web Docs

		Google Chrome

		CURL

		OpenSSL

		Go Language

		Flutter Framework

		HTTP Protocol Basics

		Headers

		Cookies

		Session Management

		Minimal Web Server

		Counter Cookie

		Session Cookie

		Protecting the Cookies

		Web Architecture

		Web Application Architecture

		Introduction to Authentication

		Credentials and access tokens

		Authentication over HTTP

		Limitations

		Form-based authentication

		Conclusion

		Questions

		2. Fundamentals of Cryptography

		Introduction

		Security by Obscurity

		Structure

		Message Consistency

		Protection

		Symmetric Cryptography

		Encryption

		Signing

		Password Safety

		Asymmetric Cryptography

		Digital Signing

		Digital Certificates

		Certificate Profile

		Issuance

		Examples

		Self-Signed Certificate for CA

		Generating RSA Keypair and CSR

		Signing the CSR with CA

		Viewing the Certificate

		PKCS#12 Container

		Encryption Using Certificates

		Signing Using Certificates

		Digital Signing for Authentication

		Conclusion

		Reference Books

		Questions

		3. Authentication with Network Security

		Introduction

		Network Protocols

		Structure

		Transport Layer Security

		Server Authentication

		Client Authentication

		Web Browser Support

		Client Certificates

		Non-TLS certificate-based authentication

		Conclusion

		Questions

		4. Federated Authentication-I

		Introduction

		Structure

		Federated authentication

		Service provider initiated

		IDP initiated

		Single sign-on

		Authentication ticket or token

		Claims-based authentication

		SAML token

		Metadata

		Profiles

		Binding

		Configuring the identity provider

		Configuring the HR app service provider

		Session management

		Protecting the APIs

		Single sign-on

		IDP-initiated authentication

		Protected resources

		Identity and access management

		Conclusion

		Questions

		5. Federated Authentication - II (OAuth and OIDC)

		Introduction

		Structure

		Authentication vs authorization

		OAuth protocol

		3-legged OAuth protocol

		Web application displaying GitHub user data

		Limited capability device

		Command line utility for GitHub

		Native applications

		Authorization server

		Integration and Resource Server

		Native client using Flutter

		Token issuance

		Token expiry

		Scopes

		OpenID Connect (OIDC)

		Using OAuth for Authentication

		Identity Token

		JSON Web Token

		Login with Google

		Configuring the Google Cloud Platform

		User Experience

		Token Security

		Token Expiry

		Service Endpoints

		Web front end

		Conclusion

		Questions

		6. Multifactor Authentication

		Introduction

		Structure

		Factors of authentication

		OTP-based authentication

		HOTP Sample

		Synchronization of the counter

		Unattended HOTP devices

		Time-based OTP

		Synchronization of time

		Exchanging shared secret

		Other OTP-like authenticators

		Fast Identity Online (FIDO)

		Registration

		Authentication

		Sample code and user interface

		Selection of FIDO 2 Devices

		Front end for registration

		REST APIs for registration

		Device Attestation

		Device Security

		Bringing it all together

		Authorization policy

		Server-rendered authentication forms

		User consent

		Session Management

		Post Registration

		Conclusion

		Questions

		7. Advanced Trends in Authentication

		Introduction

		Structure

		Digital identity

		Proliferation of identities

		Foundational identity

		Digital identity

		Indian National Foundational Identity (Aadhaar)

		Validation

		Ecosystem

		Beyond India (MOSIP)

		Know your customer

		Beyond identity

		e-Signing

		Identity Wallets

		Biometric authentication

		Fingerprint

		Face biometry

		Other biometric technologies

		Local vs. server authentication

		Liveness and antispoofing mechanisms

		Post-quantum cryptography

		Current status

		Zero trust architecture

		Standardization

		Conclusion

		Questions

		Appendix A: The Go Programming Language Reference

		Introduction

		Installation

		The Go Play Ground

		Hello World

		Simple function

		Closure

		HTTP server

		Built-in data types

		Variables

		Pointers

		Global vs. local

		Control flow

		Error handling

		User-defined data types

		Interface

		Exporting methods and variables

		Resolving package dependencies

		Conclusion

		Appendix B: The Flutter Application Framework

		Introduction

		Installation

		DartPad

		Hello World

		Fibonacci function

		Futures

		HTTP Requests

		User interface

		Stateless vs stateful widgets

		Providers and change notifications

		Conclusion

		Appendix C: TLS Certificate Creation

		Introduction

		Root certificate

		Intermediate CA

		TLS server certificate

		Generating the PKCS-12 file

		Client hierarchy

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to Web Authentication

OEBPS/images/Figure-1.7.jpg
f0 <

, L

c M
. — o o Business Logic
Client n Presentation d
t Layer -—
v ’ “ [—]
o I ="
: Database
e
'

Server

OEBPS/images/Figure-1.6.jpg
Client

Application Server

L(((

Database

Server

OEBPS/images/Figure-1.9.jpg
Credential

®
dah . dib
User % Verifier 1

®
% Token 1 .'h

Verifier 2

Token 2

OEBPS/images/Figure-1.8.jpg
View

Client

g0 - <

—npaocz

API Layer

— o ao Z

[

Business Logic

Database

Server

OEBPS/images/logo.jpg

