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    The ability to analyze the genomes and transcriptomes using NGS techniques was a potential breakthrough in research. These sequencing techniques allow the discovery of unexpected transcripts, high speed, scalability and recently have become highly accessible thanks to a drastic drop in costs. This last condition has enabled the use of sequencing as a clinical tool. However, brute force does not automatically lead to an advancement in knowledge, in fact, the biggest challenge related to the sequencing is processing this huge amount of raw data to assess the differential gene expression, RNA editing, genomic imprinting, new splicing variants, and gene fusions. In this regard, much of the research in Bioinformatics and Biostatistics is developing algorithms and publishing software for filtering, analyzing, and visualizing sequencing data. A few researchers have the necessary skills to create software or understand the algorithms implemented by a tool, so most of them are limited only to the use of the software. These researchers may find themselves disoriented in front of a vastness of software that promises to face the same problem but offers different results. In parallel, technological improvements are providing increasingly long and accurate sequencing allowing direct reading of full-length transcripts and single-cell RNA sequencing. The latter is highly applicable for studying tumor heterogeneity, tracking metastases and deciphering the message carried by even a single extracellular vesicle. In the future, more intelligent programs are expected, that is, capable of comparing sequencing information with all data available in databases and directly providing biologically significant information and translating these findings into clinically actionable results. These will be programs that will speak more and more in biological but also in medical terms. For clinical use, response times are very important. In the case of aggressive diseases, the entire pipeline duration should not exceed a couple of weeks and in the case of aggressive infections, we speak about a few days. All this together will allow for a revolution in science for precision medicine based on personal genome. This book shows various methods for analyzing genomics and transcriptomics data, always keeping in mind the objective of providing really useful information to medicine. Among the different omics applications, it shows the analysis of mitochondrial DNA for the diagnosis of mitochondrial diseases and the improvement of genetic counseling, the prioritization of genes, and the discovery of gene variants. The reader is guided through the use and performance analysis of various programs, data visualization tools are shown and the results of multiple programs are compared for an integrated approach. Through the chapters, we are accompanied in a didactic way, thus bringing non-experts closer to a field usually dominated by bioinformaticians. In the end, the reader understands that sequencing, even if carried out some time before, does not age so quickly, because as new algorithms are produced, we can look at those same data from a new perspective, obtaining new results which provide us with satisfaction of unexpected discovery.
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    In the last decade, the scientific community assisted in a real revolution determined by the development of technologies that caused a rapid increase in the amount of information usable by researchers. While traditional analytic approaches were based on the study of single molecules, novel technologies permitted a characterization of entire pools of specific biomolecules. Consequently, the term “Omic Sciences” was coined, highlighting the global vision that derives from this kind of study. Among them, genomics, transcriptomics, proteomics and metabolomics represent the most innovative branches that belong to the omic universe. In contrast to the relevance of these methodologies, the common disadvantage of the big amount of data generated and has arisen, hence, its management. Therefore, in order to minimize the “big data” complexity, there was a huge progress of bioinformatic areas, trying to analyse data faster and more accurately. Nowadays, computational sciences are continuously developed, and several tools, based on bioinformatic and biostatistical analysis pipelines, are programmed. Based on this consideration, I think that novel insights in omics experimental procedures and, predominantly, in new strategies for data analysis could provide an interesting and exploitable topic for many researchers. So, the idea for this book series is to realize an integrated approach between all omic sciences, exploiting innovative bioinformatics and biostatistical methodologies able to unveil hidden sides of these scientific areas. This first volume of the proposed book series would face the application of innovative analytic pipelines to obtain the most useful and translational results from genomics and transcriptomics data, with the fundamental support of machine learning algorithms and innovative biostatistical models. Such procedures will be applied to real data coming from human sample analyses, ranging from biopsies to cell cultures. I think that the holistic approach of previously discussed sciences could permit us to advance towards new scenarios, finally trying to see the “big data” as a precious resource rather than a real problem to be faced.
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      Abstract


      Mitochondria represents one of the most essential, investigated organelles of eukaryotic cells. Due to the relevance of the functions, especially cellular respiration, mitochondria are subject to continuous oxidative stress stimuli that, over time, can impair this distinct genome, leading, for example, to several neurodegenerative and age-related diseases. Today, the growth of next generation sequencing techniques allows researchers to improve variant detection of mtDNA, increasing, in the meantime, the quantity and complexity of data produced, making molecular diagnosis of mitochondrial diseases more challenging. The main issues that will be faced working with mtDNA high-throughput sequencing deal with detection and interpretation of low heteroplasmy and homoplasmy levels, variants unrelated to exhibited phenotype and identification of variants of unknown significance (VUS). To perform an accurate analysis of mtDNA variants produced by next generation sequencing experiments, we propose an integrated approach that foresees the complementary use of the most recent algorithms applied to mtDNA data, trying to extract the maximum from each one. This workflow foresaw four macro-phases (mitogenome alignment/assembly, variant calling, variant annotation and in-silico variant effects predictions), each one characterized by a mixed output coming from several tools and databases rich in complementary information on mtDNA variants. In this way, a superior quality output could be obtained, leading to improved genetic counseling for patients affected by primary mitochondrial pathologies.
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      INTRODUCTION


      Mitochondria are correctly considered one of the most essential and interesting organelles of eukaryotic cells. While well known to act as the powerhouse of the cell, mitochondria are involved in several other fundamental cellular activities, such as induction of apoptosis by the release of cytochrome C following caspase


      activation, storing calcium ions after quickly absorbing and holding them until they are needed, and heat production by non-shivering thermogenesis [1]. Despite these essential functions, the prominent role of mitochondria deals with the production of cellular adenosine triphosphate (ATP) and establishment of membrane potential by oxidative phosphorylation [2]. Such tasks could be accomplished by the involvement of a huge variety of proteins, most of which are encoded by the nuclear genome and then translocated to mitochondria [3]. Nevertheless, the most intriguing aspect of mitochondria lies in the uniqueness of its own genome (mtDNA), distinct from the nuclear one. Human mtDNA consists of a double-stranded circular molecule of about 16,600 nt, structured in nucleoids and associated with proteins, localized in the proximity of the mitochondrial inner membrane, within the mitochondrial matrix [4]. MtDNA codes for only thirteen polypeptides of the oxidative phosphorylation complex (OXPHOS), along with 22 tRNAs and 2 rRNAs (12S and 16S), supporting mitochondrial translational processes. As for the majority of vertebrates, the non-coding portion of DNA is situated within a 1 kb noncoding region (NCR), which represents the most polymorphic site of mtDNA, especially in a hypervariable sub-region called HVR [5]. The latter is frequently sequenced to analyze population genetic lineages through mitochondrial haplogroup assignment [6]. The whole NCR can control both transcription and translation, exerting an important regulatory role within mtDNA, also supported by the mtDNA control region. This portion presents the transcription origin for both strands and the replication origin for one strand and also constitutes the site of mtDNA displacement loop (D-loop) [7]. This region is highly variable and, even if its exact functions are not totally clear, it has already been associated with cancer [8]. Apart from this specific example, it is already known that a lengthy accumulation of lower levels of mtDNA damage and mtDNA copy reduction could be linked to the etiopathogenesis of neurodegenerative and metabolic age-related diseases [9-12]. Mitochondrial impairments, with the incidence of about 1:4,300, primarily affect oxidative phosphorylation but, with several mitochondrial proteins encoded by the nuclear genome, the derived pathological phenotypes are greatly heterogeneous [13]. Numerous human pathogenic mtDNA variants, carried by protein coding genes rDNA and tDNA, are continuously updated in the MITOMAP human mitochondrial genome database [14]. Despite an actual number of about 15,000 reported variants, only a few hundred are confirmed as disease-causing. These mutations lead to a wide range of maternally inherited diseases, characterized by high heterogeneity of both clinical phenotype and penetrance, principally deriving from shifts and differences in the mutant load, due to stochastic segregation of mtDNA during cellular divisions. As a consequence of this distribution, the mutation load could range from homoplasmy, with 100% mutant load, to the coexistence of both mutant and wildtype molecules, called heteroplasmy, also varying across different tissues and organs. When the levels of heteroplasmy increase, energy production decreases to the minimum threshold needed for cell physiological homeostasis, leading to the appearance of symptoms [15].


      Today, the development of next generation sequencing (NGS) techniques permits efficient analysis of mtDNA, improving sample output and sensitivity of variant detection [16]. Nevertheless, massive parallel sequencing of total mtDNA implies a higher quantity and complexity of data, making molecular diagnosis of mitochondrial diseases more challenging. The main issues that will be faced working with mtDNA high-throughput sequencing deal with detection and interpretation of low heteroplasmy and homoplasmy levels, variants unrelated to exhibited phenotype, and identification of variants of unknown significance (VUS) [17]. Therefore, to perform an accurate analysis of mtDNA variants produced by NGS experiments, we propose an integrated approach that foresees the complementary use of the most recent algorithms applied to mtDNA data, trying to extract the maximum from each one. In this way, a higher quality output can be obtained, leading to improved genetic counseling for people affected by primary mitochondrial pathologies. A schematic workflow of the entire pipeline is reported in Fig. (1).

    


    
      MATERIAL AND METHODS


      
        Samples


        To cover the widest range of frequently realized NGS experiments, a heterogeneous group of 26 samples was chosen to perform the whole pipeline. Seven RNA-sequencing outputs, resulting from independent pair-end experiments on the Illumina platform, came from the whole transcriptome analyses of retinal pigmented epithelial (RPE) cells treated with A2E oxidant agent in a follow-up of two time-points (3h and 6h) after basal time (called, respectively, 3h_RPE, 6h_RPE and 0h_RPE), and from biopsies of patients affected by cerebral cavernous angiomas (CCM) (called, respectively, CCM_1, CCM_2 and CCM_CTRL). All RNA-Seq experiments foresaw 3 biological replicates (Total of RNA-Seq samples=18). However, in data analysis outputs, we considered the average results from replicates. The other eight samples consisted of six patients affected by orphan forms of retinitis pigmentosa (RP) (ME_2, ME_3, ME_4, ME_5, RP_8, RP_32), one patient affected by CCM (ME_1) and one patient affected by arteriovenous malformations (ME_6), respectively. These samples underwent whole exome sequencing (WES) in independent pair-end experiments on the Illumina platform. Quality scores for sequenced samples were around 28 across all reads, with mean read length ranging from 100 to 200 bp and with total average read number ranging from about 45 million to 95 million.
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Fig. (1))

        Diagram of mtDNA variant analysis proposed pipeline. Figure shows main phases of mtDNA variant analysis, listing the single macro-steps with specific tools and databases used.
      


      
        Mitogenome Assembly/Mapping


        Obtained raw sequences were filtered to remove low-quality reads (average per base Phred score < 30) and adaptor sequences. The quality of analyzed data was checked using FastQC (v.0.11.9) (https://www.bioinformatics.babraham.ac.uk/ projects/fastqc/) and QualiMap (v.2.2.1) [18], while trimming was realized by Trimmomatic (v.0.39). Filtered data were then assembled/mapped by CLC Genomics Workbench v.20.0.3 (https://digitalinsights.qiagen.com/products-overview/analysis-and-visualization/qiagen-clc-genomics-workbench/), Multi-Sample Statistical Mitogenome Assembly with Repeats (SMART2) [19] and an adapted version of TRIMITOMICS pipeline [20]. All assembly/alignments were realized using the Revised Cambridge Reference Sequence (rCRS), available as sequence number NC_012920 (formerly AC_000021.2) in GenBank's RefSeq database. This specific rCRS is the most commonly used standard comparison sequence for human mtDNA research. It is 16569 bp in length, which includes one spacer at position 3107 to preserve the historical CRS position numbering (Fig. 2). It is a single reference individual from haplogroup H2a2 and has been used as a standard for reporting variants for over 30 years.


        CLC Genomics Workbench is a widely used, cutting edge multifunctional NGS analysis and visualization platform that permits a genome guided assembly after aligning reads to reference and following extraction of consensus sequence from mapped reads. Mapping analysis was conducted using the following settings: quality trim limit = 0.01, ambiguity trim maximum value = 2. Map to annotated reference was as follows: mismatch cost = 2, insertion and deletion costs = 3, minimum length fraction and minimum similarity fraction = 0.8, maximum number of hits for a read = 10, strand-specific = both.


        SMART2 is the most recent pipeline in the field that is able to assemble de novo and annotate complete circular mitochondrial genome sequence from whole exome/genome sequencing data even in the presence of repeats. Settings for SMART2 analyses were: automatic selection of number of read pairs per bootstrap, with doubling strategy starting with 100k; number of bootstrap samples=1; minimum seed kmer coverage=20; coverage-based filtering method=intersection; kmer size=31; number of threads=16; genetic code=02-vertebrate.


        TRIMITOMICS is a particularly interesting pipeline for the assembly of mitochondrial gene cassettes and whole coding sequences from RNA-Seq reads, based on free algorithms used stepwise, depending on the success of mitogenome assembly in the preceding step. The first step consisted of the NOVOPlasty v.3.8.2 organelle assembler analysis, with the following settings: Genome Range=1-16569; k-mer=31; max memory=16; extend seed directly=no; variance detection=no. If a full or partial mitogenome was not obtained, the RNA-Seq reads were firstly mapped to their respective reference genome with Bowtie2 v.2.4.1 algorithm, using default presets, and then assembled with Trinity v.2.10.0, following genome guided approach with standard settings, except “max intron length=10000”. If none of the previously cited methods successfully produced mitogenome, the complete transcriptome was assembled by Velvet v.1.2.10, considering a range of kmer sizes (31, 51, 71). Mitochondrial contigs were then extracted from de novo produced transcriptome assemblies by BlastN, using the reference mitogenome. If the complete genome was not retrieved by any of the described approaches, the results were joined or put together as a meta-assembly with MAFFT v.7.464 to improve the output. Raw data are available upon request.
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Fig. (2))

        rCRS reference mitogenome sequence. The figure highlights the genomic features of Revised Cambridge Reference Sequence (rCRS), available as sequence number NC_012920 (formerly AC_000021.2) in the GenBank RefSeq database.
      


      
        Variant Detection by mtDNA-Server


        Once obtained, assembled mitogenomes (in BAM format) were analyzed for variant calling by mtDNA-Server, a highly scalable Hadoop-based server for mtDNA NGS data processing [21]. After input validation and quality control of BAM files, parallel analysis with variant detection was performed. HadoopBAM split the input into several chunks and, for each one, reads were filtered out if the Phred score < 20 and the length < 25, as were reads marked as duplicates. Then, all passed bases for each site were counted per strand (A, C, G, T, N (unknown), d (deletion)). Regarding heteroplasmy detection, several approaches were performed: initially, sites presenting coverage < 10 bases per strand and mitochondrial hotspots around 309, 315 and 3107 were filtered out, according to reference sequence. For survived sites with an allele coverage of 3 bp per strand and a variant allele frequency (VAF) ≥ 1% (strand independent), a machine learning (ML) model was applied, considering sequencing errors per base in each strand. Then, all sites showing a log likelihood ratio (LLR) ≥ 5 were tagged as heteroplasmic sites. Additionally, the Wilson and the Agresti-Coull confidence intervals were computed for heteroplasmic variants, and the assigned heteroplasmy level is a weighted mean of heteroplasmy of both strands. An important feature of the mtDNA-Server regards the intra-sample contamination check, based on current phylogeny to avoid erroneous interpretations and conclusions. In the case of contaminations caused by different mtDNA sequences, the two VAF-based profiles generated by the mtDNA-Server (VAF < 50% for the minor, VAF > 50% for the major) lead to different valid haplogroups.

      


      
        Variant Annotation and Prioritization


        This step must be performed very carefully, as it is fundamental for the next interpretation phase of analysis. Thus, it is important to remember several practical rules: I) Explore databases which are continuously updated and specific for mtDNA, II) Evaluate variant frequency not only in the general population, but also in particular haplogroups, III) Pay particular attention to low heteroplasmy levels, IV) Combine additional data supporting the modulation of clinical penetrance, such as mitochondrial haplogroup, V) Consider inter-species nucleotide and/or amino acid conservation. We adopted several dedicated tools for annotations of mtDNA variants, related to the principal, regularly updated, databases.


        The most complete tool we used to realize these purposes is the MSeqDR mtDNA Variant Tool set (mvTool), built upon the MSeqDR infrastructure (https://mseqdr.org), which supports all mtDNA nomenclatures, converts variants to standard rCRS- and HGVS-based nomenclatures, and annotates novel mtDNA variants [22]. For previously annotated mtDNA variants, mvTool extracts and provides updated population data and pathogenetic classifications from MSeqDR Consortium members [23], dbNSFP [24], the Human Mitochondrial Database (HmtDB) [25], Mitomap [26], the 1000 Genomes Project data, GeneDx [27], ClinVar [28], with resources coming from around 50,000 germline mitogenomes. If a variant has not been annotated previously, mvTool conducts new predictions by calling Ensembl Variant Effect Predictor (VEP) [29] and stores its genomic annotations in an internal database that mvTool will search first. Furthermore, if the input includes all mtDNA variants of a given sample, exact mtDNA haplogroup assignment can be obtained by Phy-Mer sub-tool.


        Nevertheless, variant frequency interpretation of a general population can be challenging, as cited databases include patient data, and due to features of mtDNA genetics (heteroplasmy level, incomplete penetrance, influence of mitochondrial haplogroup background).


        To bypass this problem, we made additions to our pipeline analyses performed with tools and databases focusing on haplogroup classification. The already cited Mitomap advises if a variant is identified at >1% in at least one of the macro-lineages or over 10% in the major haplogroups for tRNA variants. Results from this step of prioritization were, then, corroborated by data coming from the forensic database EMPOP v.4/R13 [30], and from other two important and recent updated tools, HaploGrep 2 and MToolBox.


        HaploGrep 2 includes a generic rule-based system for immediate quality control (QC), which allows to identify artificial recombinants and missing variants as well as annotating rare and phantom mutations [31].


        MToolBox applies a computational strategy to realign already assembled mitochondrial genomes to detect insertions and deletions (indels), and to assess the heteroplasmic fraction (HF) of each variant allele with the related confidence interval (CI), before haplogroup assignment and variant prioritization [32]. This latter step was performed by aligning each sample-specific reconstructed contig against the related macro-haplogroup-specific consensus sequence. This process could identify private variants, through a prioritization process, justifying further clinical investigation. Prioritization also considered the pathogenicity of each mutated allele, computed with different algorithms, and the nucleotide variability of each variant site, while the amino acid variability was considered only if the variant site was codogenic.


        Finally, to provide a complete description of the variant, we retrieved data from the Mitobreak database, focusing on mtDNA rearrangements. In detail, MitoBreak provides a complete, quality checked list of breakpoints from circular deleted mtDNAs (deletions), circular partially duplicated mtDNAs (duplications) and linear mtDNAs [33].

      


      
        In Silico Predictions and Variant Consequences


        Today, massive mtDNA screening by NGS has shown a huge number of novel variants of unknown significance (VUS), whose clinical interpretation is more complicated than nuclear VUS, because of the mtDNA characteristics, such as heteroplasmy and high mutation rate not considered in the classical prioritization algorithms, and due to limited guidelines for mtDNA compared to those provided for nuclear VUS.


        Thus, it is clear that a combined approach of complementary in-silico prediction tools is the best way to obtain reliable results. These tools estimate the functional impact of variants by methods based on structure analysis and/or interspecies sequence conservation.


        The most complete and continuously updated tool we used for prediction of mtDNA variants is MitImpact 3D v.3.0.2, a collection of pre-computed pathogenicity predictions for all possible nucleotide changes that determine non-synonymous substitution, in human mitochondrial protein coding genes [34]. The possible effect of these variants was computed by MitImpact 3D through the following missense pathogenicity predictors and machine learning based approach meta-predictors: PolyPhen2 (ver. 2.2.2) [35], SIFT (ver. 5.0.3) [36], FatHmm (ver. 2.2, “weighted” and “unweighted” setting) [37], MutationAssessor (ver. 2.0) [38], PROVEAN (ver. 1.3) [39], EFIN [40], CADD (ver. 1.2) [41], PANTHER [42], PhD-SNP [43], SNAP [44], MutationTaster ver. 2 [45], SNPdryad [46], DEOGEN2 [47], Mitoclass.1 [48], CAROL [49], Condel [50], COVEC (vers. 0.4) [51], Meta-SNP [52], APOGEE (ver. 1.0) [53], dbSNP (ver. 151) [54], ClinVar, PhyloP and PhastCons evolutionary conservation indices (UCSC Gene Tables, group: Comparative Genomics; track: Conservation; tables: phyloP100wayAll and PhastCons100way) [55], SiteVar human mtDNA site-specific variability [56], COSMIC somatic variants (ver. 87) [57], MISTIC Mutual Information scores [58], CHASM [59], TransFIC [60]. Moreover, the tool permitted to evaluate compensated pathogenic deviations (CPDs), amino acid substitutions described as pathogenic in human populations but that appear as wild type residues in non-human ortholog proteins, as well as intra-protein sites that significantly co-variate each other with two different tools, EV Mutation algorithm (https://marks.hms. harvard.edu/evmutation/index.html) and pairwise covariation analyses with the I-COMS resource.


        The wide range of data coming from MitImpact 3D was, then, enriched by HmtVAR [61], a free resource which hosts variability and pathogenicity data on human mitochondrial variants, integrated with data coming from several online databases and in-house pathogenicity assessments, based on various evaluation criteria. HmtVAR also presents manually curated tRNA variant attributes manually curated, but the most relevant resources dedicated to mitochondrial tRNAs that we used were MITOTIP and PON-mt-tRNA.


        MITOTIP is the most recent tool available through Mitomap that mixes secondary structure information, structural analogies with other tRNA variants and conservation scores, providing the best prediction performances regarding specificity and sensitivity [62].


        PON-mt-RNA, instead, is a posterior probability-based algorithm which computes a multifactorial score associating 12 features, including sequence context and evidence of segregation, RNA secondary structure and tertiary interaction, functional assays such as biochemistry and histochemistry, and evolutionary conservation [63].

      

    


    
      RESULTS


      
        Alignment and Assembly of mtDNAs


        We applied our pipeline to two types of datasets, 8 pair-end WES samples and 6 pair-end RNA-Seq samples. Performed sequencing globally generated about 100 million quality reads (mean mapping quality=28), with a percentage of ~75% uniquely mapped, ranging from a few hundred reads generated from an AVM sample (ME_6) to 35 million reads produced by Illumina pair-end experiment on CCM_1 transcriptome. The big difference between WES and RNA-Seq mapped reads is due to different types of experiments, which consider duplicated reads differently. In transcriptome mapping, duplication is relevant for expression quantification, while WES data might reflect PCR biases. Thus, as shown in Table 1, filtered reads with quality acceptable features are considerably less than raw ones. Interestingly, the only tool which was able to map mtDNA in all samples was CLC Genomics Workbench, even if the best efficiency was achieved with the SMART2 specific algorithm. Trimitomics adapted workflow, instead, mapped only CCM transcriptomics samples, probably due to a greater depth of initial raw data (not shown), highlighting elevated requirements requested by Bowtie2, NOVOPlasty, Trinity and Velvet algorithms. A detailed report of alignment and assembly statistics is available in Tables 1 & 2. Once produced, all partial or fully assembled mitogenomes were merged to obtain only one meta-mitogenome for each sample, needed for subsequent steps.

      


      
        Mitogenome Annotations


        De novo annotation with a consistent method is a promising approach to evaluate and improve existing annotations, trying to reduce inconsistencies and errors, such as missing or incorrect information of the reading direction (strand), missing gene annotations, erroneous gene designations, mistaken identity of tRNAs, and inconsistencies in gene names. The MITOchondrial genome annotation Server 2 (MITOS2) uses a novel strategy based on aggregating BLAST searches with previously annotated protein sequences to detect protein coding genes, tRNAs and rRNA. Each structured RNA was annotated using specific covariance models. Annotation of protein coding genes reached the best results in ME_2 and ME_6 detecting 9 and 14 genes, respectively, with high quality score (~ 106).


        
          Table 1 Alignment and assembly statistics of WES analyzed samples. The table shows the main features related to mapping and assembly steps performed on WES considered samples by CLC Genomics Workbench and SMART2 algorithms.


          
            
              
                	

                	STATISTICS FEATURE

                	ME_1

                	ME_2

                	ME_3

                	ME_4

                	ME_5

                	ME_6

                	RP_8

                	RP_32
              


              
                	CLC GENOMICS WORKBENCH

                	Overall Reads

                	1,052

                	3,52

                	1,086

                	1,128

                	1,056

                	471

                	4,519

                	2,841
              


              
                	Filtered Reads

                	759

                	2,542

                	12

                	20

                	7

                	4

                	3,777

                	1,739
              


              
                	Passed Reads

                	293

                	978

                	1,074

                	1,108

                	1,049

                	467

                	742

                	1,102
              


              
                	Passed FWD Reads

                	18,163

                	48,33

                	57,781

                	58,553

                	56,357

                	28,109

                	53,711

                	79,383
              


              
                	Passed REV Reads

                	9,486

                	43,921

                	46,292

                	48,35

                	44,58

                	16,791

                	53,716

                	76,653
              


              
                	Mapping Quality OK

                	293

                	978

                	1,074

                	1,108

                	1,049

                	467

                	742

                	1,102
              


              
                	Mapping Quality BAD

                	742

                	2,512

                	0

                	0

                	0

                	0

                	3,706

                	1,68
              


              
                	Unmapped Reads

                	0

                	0

                	0

                	0

                	0

                	0

                	0

                	0
              


              
                	Wrong Reference in BAM

                	17

                	30

                	12

                	20

                	7

                	4

                	71

                	59
              


              
                	Base Read Quality OK

                	27,649

                	92,251

                	104,073

                	106,903

                	100,937

                	44,9

                	107,427

                	156,036
              


              
                	Base Read Quality BAD

                	1,944

                	6,527

                	4,401

                	5,005

                	5,012

                	2,267

                	3,873

                	9,264
              


              
                	Bad Alignment

                	0

                	0

                	0

                	0

                	0

                	0

                	0

                	0
              


              
                	Duplicates

                	0

                	0

                	0

                	0

                	0

                	0

                	0

                	0
              


              
                	Short Reads (<25 bp)

                	0

                	0

                	0

                	0

                	0

                	0

                	0

                	0
              


              
                	SMART2

                	Filtered mtDNA Read Pairs

                	872,55

                	5,174,00

                	/

                	1,492,542

                	789,545

                	10,847

                	3,099,482

                	1,931,744
              


              
                	Filtered mtDNA Read average length (bp)

                	100.97

                	100.75

                	/

                	100.97

                	100.98

                	100.93

                	149.67

                	149.54
              


              
                	N° of Contigs in Preliminary Assembly

                	139,66

                	706,438

                	/

                	391,732

                	130,721

                	2,762

                	120,364

                	357,75
              


              
                	Longest linear contig in Preliminary Assembly

                	1,2

                	4,01

                	/

                	1,237

                	1,331

                	338

                	10,964

                	2,671
              


              
                	N° of Contigs in Preliminary Filtering

                	80

                	95

                	/

                	122

                	76

                	0

                	15

                	103
              


              
                	Longest linear contig in Preliminary Filtering

                	526

                	4,01

                	/

                	498

                	563

                	0

                	10,964

                	2,671
              


              
                	Aligning mtDNA Reads Pairs

                	4,092

                	2,958

                	/

                	864

                	4,958

                	0

                	2,614

                	1,654
              


              
                	Aligning mtDNA Reads Length (bp)

                	100.61

                	99.71

                	/

                	100.62

                	100.71

                	0

                	149.40

                	149.00
              


              
                	SPAdes N° of Contigs

                	170

                	158

                	/

                	44

                	182

                	0

                	13

                	50
              


              
                	SPAdes Longest linear contig

                	697

                	10,699

                	/

                	800

                	640

                	0

                	16,538

                	4,887
              


              
                	Length of assembled mitogenome

                	2,244

                	8,341

                	/

                	2,311

                	1,301

                	0

                	16,57

                	4,935
              

            
          

















