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    There is a need to provide a new, up-to-date, comprehensive, and innovative review of the developments to show, integrate, synthesize and provide future research directions in the applications of advanced mathematics in data science. Therefore, this book has made a valuable contribution to the literature by providing systematic reviews on the interrelationships between mathematics, statistics, and computer science.


    Data Science is one of the most significant advances of this century. It deals with the collection, preparation, analysis, visualization, management, and preservation of this data – both structured and unstructured. Data science incorporates several technologies and academic disciplines to discover, extract, compile, process, analyze, interpret, and visualize data. It includes mathematics, statistics, computer science and programming, statistical modeling, database technologies, signal processing, data modeling, artificial intelligence, machine learning, natural language processing, visualization, and predictive analytics.


    Mathematics is very important in the field of data science as concepts within mathematics aid in identifying patterns and assist in creating algorithms. Understanding various statistics and probability theory notions is key to implementing such algorithms in data science.


    This book provides a comprehensive account of the areas of the applications of advanced mathematics in data science. It has covered many significant issues, methods, and applications of data science and mathematics in some crucial areas, such as The Role of Mathematics in Data Science, Mathematical Modeling in Data Science, Mathematical Algorithms for Artificial Intelligence and Big Data, Soft Computing in Data Science, Data Analytics: Architecture, Opportunities, And Open Research Challenges, Linear Regression, Logistic Regression, Neural Networks, and a Review on Data Science Technologies.


    The book has implications for data science modeling and many real-life applications. Many readers, including undergraduate university students, evening learners, and learners participating in online data science courses, will be benefitted from this book.


    I recommend this book to all interested in data science technologies, mathematical modeling, and applications.


    
      S.B. Goyal

      Faculty of Information Technology

      City University

      Petaling Jaya, 46100, Malaysia

    

  


  


  


  
    PREFACE



    

    

    

    

    

  


  
    The title of our book is Advanced Mathematical Applications in Data Science. The book is dealing specially Data Analysis – Mining and analysis of Big Data, Mathematical modelling in Data science, Mathematical Algorithms for Artificial Intelligence and Big Data, using MATLAB with Big Data from sensors and IOT devices, the relationship between Big data and Mathematical modelling, Big IOT Data analytics, Architecture, opportunities and open research challenges, the role of Mathematics in Data science, linear regression, logistic regression, Neural networks, Decision tree, applications of linear algebra in Data science, Big Data and Big Data analytics, concepts, types and techniques, foundation of Data science, fifty year of Data sciences, Health Bank – a world health for Data science applications in Healthcare, Radio frequency identification, a new opportunity for Data science, towards a system building agenda for data, semantic representation of Data science properly, a review on Data science techniques, Big Data: the next era of Information and Data science in medical imaging, Data science and healthcare, soft computing in Data science, foundation for private, fair and robust Data science, Data science fundamental principles, practical Data sciences for Actuarial task etc.


    The scope of this book is not only limited to above highlighted areas but much more than that. Today as all of us are aware that most of the decision making and marketing strategies are data driven. So the research in this field is very much important and useful for any kind of day to day decision making and for marketing strategies etc. Finally we would thank the Bentham Science publishing house for giving us an opportunity to explore this field.
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      Abstract


      The field of data science relies heavily on mathematical analysis. A solid foundation in certain branches of mathematics is essential for every data scientist already working in the field or planning to enter it in the future. In whatever area we focus on, data science, machine learning engineering, business intelligence development, data architecture, or another area of expertise, it is important to examine the several kinds of mathematical prerequisites and insights and how they're applied in the field of data science. Machine learning algorithms, data analysis and analyzing require mathematics. Mathematics is not the only qualification for a data science education and profession but is often the most significant. Identifying and translating business difficulties into mathematical ones are a crucial phase in a data scientist's workflow. In this study, we describe the different areas of mathematics utilized in data science to understand mathematics and data science together.
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      INTRODUCTION


      To analyze data for the sake of decision making, “Data Science” combines different subfields of work in mathematics/statistics and computation in order to accomplish this. The use of the word “science” suggests that the discipline in question follows methodical procedures to arrive at findings that can be verified.


      The discipline makes use of ideas that are derived from the fields of mathematics and computer science since the solutions to the following problems can be found in the findings that are achieved via kinds of columns given below. such processes: making a Netflix movie suggestion, financial projections for the company, a home's price can be estimated by comparing it to other properties of a similar size and quality in terms of factors like the number of rooms and square footage, a song suggestion for Spotify playlist as discussed [1, 2, 3, 4]. How, therefore, does mathematics come into play here? In this chapter, we give evidence for the claim that mathematics and statistics are crucial because they provide the means to discover patterns in data. Furthermore, newcomers to data science from other fields can benefit greatly from familiarity with mathematics.

    


    
      DATA SCIENCE


      Data science uses the tools and methods already available to discover patterns, generate meaningful information, and make decisions for businesses. Data science builds prediction models with machine learning.


      As discussed [5], data can be found in a variety of formats, but it is useful to think of it as the result of an unpredictable experiment whose outcomes are up to interpretation. In many cases, a table or spreadsheet is used to record the results of a random experiment. To facilitate data analysis, variables (also known as features) are typically represented as columns and the items themselves (or units) are represented as rows. To further understand the utility of such a spreadsheet, it is helpful to consider three distinct kinds of columns given below:


      ● In most tables, the first column serves as an identifier or index, where a specific label or number is assigned to each row.


      ● Second, the experimental design can be reflected in the columns' (features') content by identifying which experimental group a given unit falls under. It is not uncommon for the data in these columns to be deterministic, meaning they would remain constant even if the experiment was repeated.


      ● The experiment's observed data is shown in the other columns. Typically, such measurements are not stable; rerunning the experiment would result in different results [6].


      Many data sets can be found online and in various software programs.


      Data science study may be divided as follows:


      1. Acquire, enter, receive, and extract information from signals and data using these key phrases related to data capture. At this juncture, we are collecting both structured and unstructured data in their raw forms.


      2. Data Architecture, Data Processing, Data Staging, Data Cleansing, and Data Warehousing all need regular upkeep. At this point, the raw data will be taken and transformed into a format that the next stage can utilize.


      3. Data processing consists of data mining, data summarization, clustering and classification, data wrangling, data modeling, etc. Once the data has been prepared, data scientists evaluate its potential for predictive analysis by looking for patterns, ranges and biases.


      4. Some analytics/analysis methods are exploratory, confirmatory, predictive, text mining, and qualitative. At this point, the data will be analyzed in several ways.


      5. Communication is required in a number of different areas, including the reporting of data, the display of data, business intelligence, and decision-making. The final step in the process involves analysts producing the findings in formats that are simple to grasp, such as charts, graphs, and reports.


      Applying such algorithms in data science requires familiarity with numerous topics, from mathematics, probability theory, and statistics. However, almost every single topic of today's data science methods, including machine learning, is rooted in rigorous mathematics.

    


    
      MAIN MATHEMATICAL PRINCIPLES AND METHODS IMPORTANT FOR DATA SCIENCE


      
        

        Linear Algebra


        The fields of data science and machine learning can benefit tremendously from using linear algebra, a branch of mathematics. Learning linear algebra is the most important mathematical ability for anyone interested in machine learning. The vast majority of machine learning models may be written down as matrices. A dataset is frequently represented as a matrix in its own right. Linear algebra is employed in data pre-processing, data transformation, and model evaluation (see [4, 5, 7, 8]).


        
          Matrices


          The building elements of data science are matrices. They appear in a variety of linguistic personas, from Python's NumPy arrays to R's data frames to MATLAB's matrices.


          In its most basic form, the matrix is a collection of numbers that take the form of a rectangular or array-like array. This can be used to symbolize either an image, a network, or some other type of abstract organization. In practice, the matrices are of assistance in the field of neural networks as well as image processing.


          Almost every machine learning algorithm, from the KNN (K-nearest neighbor algorithm) to random forests, relies heavily on matrices to perform its core functionality.


          Matrix is a method of grouping related items for easy manipulation and manipulation according to our needs. When training different algorithms, it is frequently utilized in the field of data science as a storage medium for information, such as the weights in an artificial neural network [9, 10, 11].

        


        
          System of Linear Equation


          The relationship between linear dependency and the solution of linear equations is substantial. Since the topic is systems of linear equations, let's begin anew with the equations:
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          We know D and c as constant terms and need to find z.


          The system is equivalent to a matrix equation of the form:


          D * z= c


          where A is a m x n matrix of coefficients, x and b are column vectors. The equation corresponds to:
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          The Number of Solutions


          Three cases can represent the number of solutions of the system of equations Dz = c.


          1. No solution


          2. Exactly 1 solution


          3. An infinite number of solutions


          It is because we are dealing with linear systems: two lines can’t cross more than once. These three cases are illustrated in Fig (1). Here, the first one shows the lines are parallel but distinct (no solution), in the second, lines intersect at one point (one solution) and the third one depicts the lines are identical (infinite number of solution).
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Fig. (1))

          Number of solutions.
        


        
          Vectors


          In Data Science, vectors are used to mathematically and readily express an object's attributes, which are numerical qualities. Vectors are indispensable in numerous fields of machine learning and pattern recognition.


          Vectors are frequently employed in machine learning because they provide a straightforward method of data organization. Vectorizing the data is frequently one of the very first steps in developing a machine learning model.


          They are also frequently utilized as the foundation for various machine learning approaches. Support vector machines are one specific illustration. A support vector machine examines vectors in n-dimensional space to determine the optimum hyperplane for a given data set. Fig (2) displays the optimal hyperplane with a blue line that separates two classes of instances: squares and circles. The other lines, however, are not proper hyperplanes, as they do not classify the objects properly. The dark-filled instances are called Support Vectors. Essentially, a support vector machine will seek to identify the line with the greatest distance between the data sets of both classes. Due to the higher reinforcement, future data points can be classified with greater certainty.
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Fig. (2))

          The optimal hyperplane for a given data set is shown through the blue line.

          The following parts will describe the various ways linear algebra can be applied to the field of data science.


          Linear algebra is a crucial component of machine learning optimization. Some of the important applications are:

        


        
          Loss Function


          The loss function is utilized to compute how dissimilar our forecast is from the expected output.


          The Vector Norm can be used in linear algebra to create a loss function. A vector's Norm can be derived from the magnitude of the vector. Let us examine L1 norm: When the only allowable directions are parallel to the space's axes, the L1 Norm is measured as the distance between the origin and the vector. As demonstrated in Fig. (3), the L1 norm is the distance between the origin (0,0) and the destination (4,5), comparable to how a person travels between city blocks to reach their destination, which comes out to be 9 in this case.
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Fig. (3))

          L1 Norm of a vector p=9.

          L1 Norm of vector p = (p1, p2, ..., pn), is given by
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          Regularization


          In the field of data science, the concept of regularisation is extremely important. It is a strategy that stops models from being overfitted to their data. In point of fact, regularisation is another application of the norm.


          Overfitting is a situation in data science, machine learning and statistics when statistical models fit completely against all the training data used in the model. A model like this has poor performance with new data since it has learned everything, even the noise, in the training data. It is not possible for it to generalize the knowledge that it has never come across. Regularization is a technique that penalizes too complex models by including the Norm of the weight vector within the cost function. Given that we want to make the cost function as little as possible, we need to make this Norm as small as possible. This causes components of the weight vector that are not necessary to decrease to zero and prevents an excessively complex prediction function from being generated.

        


        
          Support Vector Machine Classification


          Support Vector Machine (SVM) is an algorithm that is a discriminative classifier as it finds a decision surface and it is a supervised machine learning algorithm.


          In SVM, data items are represented as points in n-dimensional space to represent n (number of features). The value of each feature is the value of a certain coordinate. Then, we accomplish classification by locating the hyperplane that distinguishes the two classes the most, i.e., the one with the greatest margin, which in this case is C as shown in Fig. (4),
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Fig. (4))

          The margin for the hyperplanes is maximum for C.

          When fewer dimension are there then its associated vector space, then the subspace is called a hyperplane. Therefore, a hyperplane is a straight line for a 2D vector space, a 2D plane for a 3D vector space, a 3D plane for a 4D vector space, and so on. Also, using Vector Norm margin is computed.

        

      


      
        Statistics


        
          Probability Theory


          Probability theory is a subfield of mathematics/statistics that concentrates on investigating random occurrences. Data scientists who work with data that has been influenced by chance need to have this ability [12, 13].


          Given that chance occurs in every situation, the application of probability theory is necessary in order to comprehend the workings of chance. The objective is to ascertain how likely it is that a specific event will take place. This is often accomplished by using a numerical scale ranging from 0 to 1, with “0” denoting improbability and “1” denoting absolute certainty.

        


        
          Normal Distribution


          With mean (μ) and standard deviation (σ) as the parameters, a random variable “x” is normally distributed when its probability density function as follows:
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          The normal distribution, sometimes known as a bell curve, is shown in Fig. (5), with the blue curve. It has symmetry about the middle black line, where the mean, median and mode coincides, and 50% of data values lie on the left side of the black line and 50% on the right side.
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Fig. (5))

          The standard normal distribution curve.

          Since the sum of all possible probabilities is 1, the total area under the curve is 1. So, in both directions, the probabilities around the mean move in a similar manner. That is why the normal distribution of the mean is exactly similar.


          Depending on how dispersed the data is, the distribution could vary slightly. If there is a sufficient difference from the mean, there will be a flatter in the normally distributed curve if the range and the standard deviation of the data are very high [6, 14].


          Moreover, if there is a larger deviation from the mean, the data's probability decreases, being closer to the mean. Similarly, suppose the standard deviation is low, which indicates that the majority of values are close to the mean. In that case, there is a significant likelihood that the sample means will be close to the mean, and the distribution will be much slimmer, as shown in Fig. (6) with black line. Whereas, the pink and red curves are thicker and flatter, this shows a greater standard deviation.
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Fig. (6))

          Variation in standard normal curve with standard deviation. 

          
            	The probability of a random variable falling within that interval is given by the area beneath a probability density function.


            	Normally distributed sample means represent that the random samples are of equal size from a population's data.

          


          There is a greater likelihood that the sample means will be close to the actual mean of the data than that they would be further away. Normal distributions flatter greater standard deviations than smaller standard deviations.


          For model development in data science, data satisfying normal distribution is advantageous. It simplifies mathematics. Depending upon the hypothesis, whether it is the bivariate distribution or normal distribution, models such as LDA, Gaussian Naive Bayes, logistic regression, linear regression, etc., are explicitly developed. Also, Sigmoid functions behave naturally with data when it is normally distributed.


          Numerous natural phenomena in the world, such as financial data and forecasting data, exhibit a log-normal distribution. From a study [15], we can convert the data into a normal distribution by employing transformation techniques. In addition, many processes adhere to the principle of normality, including several measurement mistakes in an experiment, the position of a particle experiencing diffusion, etc.


          Before fitting the model, it is therefore preferable to critically examine the data and the underlying distributions for each variable before fitting the model.

        


        
          Z Scores


          Numerous situations will arise in which we will need to determine the chance that the data will be less than or greater than a specific value. This value will not be equal to 1 or 2 standard deviations of the mean.


          The standard score or Z score measures the observed value's distance from the mean in terms of standard deviations. If Z score is greater than zero, it indicates that the recorded value standard deviation is above the mean. If the Z score is negative, then it denotes a value that is below the mean.


          Observed value is µ+zσ, where µ is the mean and σ is the standard deviation.


          Using the Z table, the probability for a specific Z table is determined. There is no need to calculate the area under the normal curve. In the Z table, rows of the Z table have the Z score in tens and columns have the hundredths decimal. The value is equal to the area under the curve shown shaded with green in minus the Z score.


          For a given Z score, we can see Z table to find the probability values that will go below that score. It might be negative or positive. For example, if we search for 1.47, we find that 93% of the data falls below that value. Fig. (7), depicts in green the area under the bell curve to the left of z= μ+2σ.
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Fig. (7))

          Area under the normal curve calculated using Z score.
        


        
          The Central Limit Theorem


          When there is a great quantity of data, it might be challenging to comprehend what it all indicates. It is not easy to get a handle on what's going on beneath the surface. In order to figure out how to resolve this issue, we investigate a modest portion of the available data. To ensure the accuracy of the conclusion, we would consider the outcome based on more than one factor. On the other hand, processing this enormous volume of data is a tremendously challenging endeavor. In order to process it, we determine the mean of the data from anywhere between 40 and 50 different people.


          Repeatedly selecting a sample of around fifty persons and computing the mean is something that helps us achieve our goal. Doing this fairly regularly also helps. The plotting of the means of these samples can now begin. These sample means represent a highly symmetrical frequency distribution. The frequency of the actual data is the greatest close to the mean and diminishes steadily as we move far from it on either side.


          Probabilities can be easily derived from frequencies. We can compute the likelihood for each bin by dividing the frequency of a bin (such as 200 to 300) by the total number of data points in the observation. Consequently, the probability distribution now replicates the shape of the frequency distribution.


          The probability distribution gets increasingly symmetrical when the sample size used to determine the means is very large. As the population means centered on the curve, the probability distribution tends to be perfectly symmetrical as the sample size approaches. The resulting curve represents a normal distribution.

        


        
          Some Other Statistical Methods


          Some other statistical methods which are used in data science widely are the following:

        


        
          Skewness


          In real-time case studies, data skewness is one of the significant issues that data scientists frequently confront. In a normal distribution, data are symmetrically dispersed. The symmetrical distribution has zero skewness because all central tendency measures are centered (Mean=Median= Mode).


          In positively skewed data, the mean is higher than the median and the findings are skewed to the bottom, as shown in Fig. (8). The median is the midpoint value and the mode is always the highest. The mean is greater than the median.
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Fig. (8))

          Positive Skewness: Mean > Median > Mode.

          Extremely positive skewness is undesirable for distribution purposes, as it might lead to misleading findings. Data transformation technologies are assisting in normalizing skewed data. The well-known transformation for positively skewed distributions is the log transformation. The log transformation suggests natural logarithm calculations for each value in the dataset.


          In negatively skewed data, the mean is smaller than the median, as shown in Fig. (9). Negatively Skewed Distribution is a distribution in which the distribution's mean, median, and mode are negative rather than positive or zero.
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Fig. (9))

          Negative Skewness: Mode >Median >Mean.

          Several transformations can be done to the data in order to preserve its information while simultaneously plotting the data under a symmetrical curve. Despite the fact that this transformation is determined by the features of the data, the following processes are utilized for data transformation:



          
            	Re-plotting each data point after taking the square root of each data point.


            	Taking the cube root of every data point and re-plotting the results.


            	Re-plotting each data point after calculating its logarithm.


            	Re-plotting each data point after taking its reciprocal.

          

        


        
          Kurtosis


          The degree of presence of outliers in the distribution is measured by kurtosis.


          In statistics and probability theory, excess kurtosis is used to compare the kurtosis coefficient to the normal distribution. Since the kurtosis of normal distributions is 3, extra kurtosis is calculated by subtracting kurtosis from 3. Three possibilities are: excess kurtosis can be negative (Platykurtic), positive (Leptokurtic), or close to zero.


          A high kurtosis value typically indicates that the distribution's tails have more extreme values than the tail of the normal distribution. This could result in a length that is six or seven standard deviations from the mean. Similarly, if the kurtosis value is extremely low, the distribution's tail will be shorter than the tail of a normal distribution.


          A high value of kurtosis is frequently regarded as riskier since data that are applied to any machine learning algorithm tend to produce outlier values that are further from the mean. Fig. (10) indicates the types of kurtosis, leptokurtic has long tails due to the presence of many outliers and platykurtic has short tails due to fewer outliers.
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Fig. 10)

          Types of Kurtosis: Leptokutic, Mesokurtic and Platykurtic.
        

      


      
        Applications of Statistics in Data Science through Machine Learning Algorithms


        The applications of statistics in data science through Machine Learning Algorithms are discussed in the next few sections below:


        
          Regression


          The field of statistics known as regression can be used to make predictions based on an existing dataset. Simple linear regression, multivariate regression, polynomial regression, quantile regression, probit regression, and logistic regression are different forms of regression analytics [10, 11, 16]. We may want to see if teaching a student longer affects their test scores or to know how much money a certain lifestyle costs. Regression can help in answering these questions. Linear regression is a statistical method for forecasting a response by determining the optimal line to represent the connection between a dependent and an independent variable. Let's pretend you have access to a dataset (training set) depicting sales of ice cream y on days with average temperatures of x. Using the training data, a regression model learns weights w that allows for accurate prediction of y.


          The objective of learning weights for the regression line is to achieve a level of accuracy that is as close to perfect as possible.


          
            
              	[image: ]
            

          


          In order to calculate the derivative of S(w) and find a solution for zero derivative, the closed form solution can be used to minimize S(w), which is essentially the same thing. As a result, we will be presented with the weights resulting in the shortest distance between the regression line and the training data.

        

      


      
        Machine Learning Using Principal Component Analysis to Reduce Dimensionality


        Principal Component Analysis (PCA) is a statistical technique for extracting features. PCA is utilized for highly linked and high-dimensional data. As depicted in Fig. (11), the fundamental concept of PCA is to transform the original space of features into the space of primary components [4].
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Fig. (11))

        PCA algorithm showing the transformation from old to new feature space so that the feature correlation is removed.

        A PCA transformation accomplishes the subsequent:



        
          	Decrease the number of features utilized in the final model by concentrating on the components that account for the majority of the variance in the dataset.


          	Eliminates the association between features.

        

      


      
        Mathematical Basis of PCA


        Consider a strongly correlated features matrix with four characteristics and n observations, as given in Table 1.


        
          Table 1 Features matrix with 4 variables and n observations.
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        We may create a scatter plot to visualize the correlations between the features. We may compute the covariance matrix to quantify the degree of connection between attributes using the following equation:
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        where µj and σj are the mean and the standard deviation of the feature ∆4, respectively.


        The covariance matrix can be written in matrix form as a 4 x 4 symmetric matrix.
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        By conducting a unitary transformation (PCA transformation), this matrix can be diagonalized to provide the following:
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        Due to the fact that the trace of a matrix remains unchanged when subjected to a unitary transformation, we observe that the sum of the diagonal matrix's eigenvalues equals the total variance of features ∆1, ∆2, ∆3, and ∆4. Consequently, the following quantities can be defined:


        [image: ]


        Notice that when p = 4, the cumulative variance becomes equal to 1 as expected.

      


      
        Classification


        Classification is a method used to give categories to a set of data to make accurate predictions and conduct a thorough analysis [17]. When using classification techniques, we are presented with an already existing dataset and are made aware of the classes to which particular instances belong; with this information, a prediction model can subsequently be constructed to address the following problem: Determine, for each new instance that will be added to the dataset, which category does that specific instance fall under.


        The Max Entropy algorithm, the K-nearest neighbor algorithm, and the Naive Bayes algorithm are all examples of classification algorithms [18].


        In contrast to the idea of regression described earlier, which involves weights being learned to predict continuous values, the Max Entropy method, also known as Logistic Regression, involves weights being learned to forecast categorical values.


        
          K-Nearest Neighbor


          The current examples are compared with the data points from the past, and decisions on classification are made based on the extent to which the new cases match the ones that came before them.



























































