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      Infections caused by microorganisms, viruses, and parasites are among the most important challenges faced by the human race. The UN global conference on anti-microbial resistance in 2015 highlighted the need of a global response to tackle epidemics, and emerging drug resistance. The Ebola outbreak of 2013 in West Africa resulting in a heavy death toll, exposed the weaknesses in the current global healthcare systems. Unfortunately, despite tremendous human sufferings as well as the enduring threats to human survival due to infections, the efforts of the pharmaceutical sector toward the development of new anti-infectious agents are less than adequate. Global healthcare research on infections is largely financed by the public funds, which are decreasing world over. This situation demands urgent attention of all stakeholders.




      The 5th volume of the book series entitled, “Frontiers in Anti-infective Drug Discovery”, comprises six reviews focussing on three broad fields i.e. molecular mechanism of infections and target identification for drug discovery and development, the use of various natural agents and their derivatives against various infections in humans and livestock, and the use of natural antimicrobial agents in food processing. These articles are contributed by leading practitioners in this field.




      Yuichi Itto has contributed a comprehensive review of the recent literature on the physics of diffusion of viruses in the cytoplasm of livings cells. The aim was to present a kinetic theory for the infection pathways of viruses in the cytoplasm of cells. The review by Furneri et al. is focused on the antimicrobial activities of essential oils of various medicinal and aromatic plants, especially against multi-drug resistance bacteria. Del Aguila et a.l have contributed a comprehensive chapter on bioactive proteins and peptides derived from food matrices, or released from microorganisms. This review described the antimicrobial properties of various protein and peptides in polymeric food matrices.




      Varela et a.l reviewed the recent literature on the studies of various efflux pump protein super-families which play a key role in multi-drug resistance (MDR) in bacteria. MDR bacteria pose a major challenge in the treatment of infectious diseases. Understanding the underlying mechanism of drug resistance is the key to develop new therapies. The next chapter by Cariddi et a.l is focused on an important aspect of infectious disease prevention and treatment. This involves the use of plant based products in boosting natural defence against infections in livestock. The extensive use of antibiotics in cattle is associated with the emergence of antibiotic resistance and the release of antibiotic residues in dairy and meat products. The review emphasizes on the importance of reinforcing the natural defence against infections by using medicinal plant extracts as well as pure phytochemicals, thus decreasing the reliance and use of antibiotics. In the last chapter, Chordia and Kumar contributed an excellent review on the applications of bioinformatics, computational biology and computational chemistry in the identification of new drug target(s) in pathogenic microorganisms. These drug targets can be enzymes, receptors, ion channels and nucleic acids.




      In brief, the above cited reviews contributed by leading researchers in the field make this volume an interesting and useful reading for research scientists and graduate students. We wish to express our gratitude to all the authors for their excellent and scholarly contributions for the 5th volume of this reputed eBook series. We also greatly appreciate the efforts of the entire team of Bentham Science Publishers for efficient processing and timely management of publication. The skills and efforts of Ms. Fariya Zulfiqar (Assistant Manager Publications), and leadership of Mr. Shehzad Naqvi (Senior Manager Publications) & Mr. Mahmood Alam (Director Publications) are especially praiseworthy. We also hope that like the previous volumes of this internationally recognized book series, the current compilation will also receive a wide readership and appreciation.
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      Abstract




      Recent developments about physics of diffusion for the infection pathway of virus in cytoplasm of a living cell are reported. Specifically, the following three issues are discussed based on the experimental fact that the exponent of anomalous diffusion of the virus fluctuates depending on localized areas of the cytoplasm. Firstly, a theoretical framework developed in view of superstatistics offers a generalized fractional kinetics for describing the infection pathway of the virus over the cytoplasm. There, traditional theory of anomalous diffusion is generalized by introducing exponent fluctuations. Then, the framework explicitly takes into account the existence of two largely separated time scales in the infection pathway. Secondly, a statistical distribution of the fluctuations proposed from the experimental data can be derived by the maximum entropy principle. Thirdly, the motion of the virus over the cytoplasm may obey a scaling law. Consequently, a kinetic theory for the infection pathway of the virus in the cytoplasm is established.


    




    

      Keywords: Anomalous diffusion, Exponent fluctuations, Generalized fractional kinetics, Living cell, Maximum entropy principle, Scaling law, Shannon entropy, Superstatistics, Time-scale separation, Virus infection pathway.


    




    


    * Corresponding author Yuichi Itto: Science Division, Center for General Education, Aichi Institute of Technology, Aichi 470-0392, Japan; Tel: +81 565-48-8121; Fax: +81 565-48-0277; E-mail: itto@aitech.ac.jp


    


  




  

    

      INTRODUCTION




      A number of efforts have been devoted to understanding viruses and related phenomena from the viewpoint of physics (see Refs. [1, 2], for example). In particular, the investigation of the virus infection pathway in living cells may be of obvious importance, for example, for drug delivery based on virus-based carriers [3].




      Just a little more than a decade ago, the infection pathway of adeno-associated viruses in living HeLa cells has experimentally been studied by making use of the technique of real-time single-molecule imaging [4-6]. Here, the adeno-associated virus is a small virus particle, and the HeLa cell is a line of human epithelial cells. In the experiments, the virus is labeled with fluorescent dye molecule, and the fluorescent virus solution of low concentrations is added to a culture medium of the living cells. According to the experiments, the fluorescent virus is internalized into cytoplasm of the cell with endosome formation. Here, the endosome is a spherical vesicle, and the virus is contained in it. Subsequently, the virus inside the endosome moves through the cytoplasm and is released from the endosome, resulting in transport of the virus into nucleus of the cell (see Fig. 1).




      
[image: ]


Fig. (1))


      Schematic description of an overview of the infection pathway of the adeno-associated virus in the cytoplasm of the living HeLa cell. The dot stands for the virus, whereas the circle depicts the endosome. The large and small boxes represent the cell and nucleus, respectively. The arrow indicates a step of the infection pathway.



      Consequently, it has been shown that the virus exhibits stochastic motion inside the cytoplasm in two different forms: one is the free form, and the other is the form being contained in the endosome. Quite interestingly, an exotic and certainly remarkable phenomenon has been observed based on analysis of the trajectories of the viruses.




      Let [image: ] be the mean square displacement in stochastic motion of a particle, which offers the diffusion property of the particle. In general, the property is characterized by the relation that [image: ] behaves for large elapsed time, t, as
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          	(1)

        


      




      Normal diffusion observed in Brownian motion has the value α = 1, otherwise the case with α ≠ 1 is referred to as anomalous diffusion: subdiffusion (superdiffusion) if 0 < α < 1 (α > 1). This means that the particle in the case of subdiffusion (superdiffusion) diffuses slower (faster) than normal diffusion. Remarkably, the experimental observation mentioned above shows that the trajectories of the viruses exhibit not only normal diffusion but also subdiffusion. However, what is truly remarkable is the following fact [5]: in the case of subdiffusion, the exponent, α, fluctuates between 0.5 and 0.9, depending on localized areas of the cytoplasm. It is noted [5] that this may not be due to the forms of existence of the virus (i.e., the free or endosomal one). Thus, this phenomenon highlights heterogeneity of diffusion of the virus. (In a recent work [7], such a phenomenon has been discussed for anomalous diffusion of influenza virus in a living cell. This naturally leads to an interesting question if other viruses exhibit heterogeneous diffusion.) This heterogeneity, in turn, is in marked contrast to traditional anomalous diffusion [8] widely discussed for a variety of physical systems, a short list of which includes particle motion in turbulent flow [9], transport in amorphous solids [10], the flow of contaminated vortex in fluid [11], aqueous solutions of gelatin [12], chaotic dynamics [13], rotating flow [14], porous glasses [15], and gold nanocrystal [16].




      Now, in modern statistical mechanics of complex systems, superstatistics [17], which has already been anticipated [18-20], has been receiving great attention as a possible theoretical framework for describing nonequilibrium complex systems with different dynamics on two different time scales. Its idea has also been examined in various disciplines, examples of which are tracer particles in turbulence, ecosystems with hydro-climatic fluctuations, highway traffic flows, etc. [21-27].




      The framework of superstatistics is as follows. Consider a Brownian particle moving through a fluid environment with varying inverse temperature, β, on a large spatial scale, which is a prototype system in superstatistics [17, 19]. This system is then divided into many small spatial “cells”, each of which is in local equilibrium state characterized by each value of β. So, a local equilibrium state of the Brownian particle in a given cell is described by the ordinary Boltzmann-Gibbs distribution:
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          	(2)

        


      




      where εi is the ith value of the energy of the particle. Eq. (2) stands for the probability of finding the particle in the state with the energy εi, given the value of β and is of the exponential form. The Brownian particle moves through cells with different values of β. A fundamental premise is that the time scale of variation of β is much larger than that of relaxation of the particle in a given cell to a local equilibrium state, i.e., the existence of two largely separated time scales. Accordingly, the distribution of β is introduced, which is denoted by f(β). Then, the distribution describing the system on a long time scale is written as the average of p(εi|β) with respect to f(β):
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          	(3)

        


      




      Therefore, this distribution is expressed as the superposition of p(εi|β) with respect to f(β), i.e., “statistics of statistics” with the large separation of the two time scales, which is referred to as superstatistics. If f(β) is not sharply peaked at a certain value of β, then p(εi) in Eq. (3) can be radically different from the Boltzmann-Gibbs distribution.




      As mentioned earlier, the experimental result shows the local fluctuations of the exponent in the cytoplasm. This poses an interesting question for the physics of diffusion, suggesting the treatment of exponent fluctuations in analogy with superstatistics. On the other hand, in biology, understanding the virus infection process is essential for not only antiviral drug design but also the development of efficient gene therapy vectors [5, 6]. Thus, it appears meaningful to study the virus infection pathway from the perspective of the physics of diffusion.




      In this chapter, we report recent developments about physics of diffusion for the infection pathway of an adeno-associated virus in cytoplasm of a living HeLa cell. Specifically, we discuss the following three issues. Firstly, a theoretical framework constructed in view of superstatistics offers a generalized fractional kinetics for describing the infection pathway of the virus over the cytoplasm. There, traditional theory of anomalous diffusion termed fractional kinetics is generalized based on the fluctuations of the exponent. Then, the framework explicitly takes into account the existence of a large time-scale separation in the infection pathway. Secondly, a statistical distribution of exponent fluctuations proposed from the experimental data can be derived by the maximum entropy principle. Thirdly, the motion of the virus over the cytoplasm may exhibit a scaling nature. Consequently, a kinetic theory for the infection pathway of the virus in the cytoplasm is developed.


    




    

      Generalized Fractional Kinetics in View of Super-statistics




      First, let us discuss the formulation of a generalized fractional kinetics for describing the infection pathway of the virus over the cytoplasm in view of superstatistics presented in a recent work [28].




      Consider 1-dimensional stochastic motion of the virus in the cytoplasm with varying local fluctuations of the exponent. We regard the cytoplasm as a medium for stochastic motions of both the free virus and the virus being contained in the endosome. Then, we imaginarily divide the medium into many small blocks. Each block is identified with a localized area of the cytoplasm. The crucial assumption is the existence of two largely separated time scales in the infection pathway: the time scale of variation of the fluctuations of the exponent, α, over the cytoplasm is much larger than that of stochastic motion of the virus in each localized area of the cytoplasm. In other words, it is assumed that α slowly varies locally but is approximately constant during the motion of the virus over the cytoplasm. In such a situation, from the viewpoint of superstatistics, we describe the motion of the virus over the cytoplasm based on two different statistics: one for stochastic motion of the virus in a local block and the other for the statistical fluctuation of the exponent. Let fα (x, t) dx be the probability of finding the virus in the interval between x and x+dx at time t in a given local block with a certain value of α. The virus moves through the blocks with slowly varying fluctuations of the exponent. So, denoting the statistical distribution of the fluctuations of α by P(α), we express the probability of finding the virus on a long time scale by the average of fα (x,t) dx with respect to P(α):
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          	(4)

        


      




      It is obvious from Eq. (4) that the statistical property of the virus is given by the superposition of fα (x,t) dx with respect to P(α) in accordance with the viewpoint of superstatistics [recall Eq. (3)].




      Based on Eq. (4), we shall formulate a generalized fractional kinetics, in which the statistical fluctuation of the exponent is incorporated. To do so, we apply traditional fractional kinetics [29] to the virus in each local block, generalizing Einstein’s approach to Brownian motion [30]. Keeping this in mind, we write fα(x,t)dx in terms of f(x,t)dx based on the scheme of continuous-time random walks [31]:
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          	(5)

        


      




      Here, the first term on the right-hand side describes all of possible probabilities that the virus moves into the interval from outside or stays in the interval. Then, the second term stands for a partial source with a time-dependent partial source, R(t), which satisfies the condition, R(0)=1, guaranteeing the initial condition, f(x,0) = δ(x), where δ(x) is the delta function. In the first term, the normalized probability density distribution for a displacement, ∆, in a finite time step, τ, is given by [image: ](∆). This is sharply peaked around ∆=0 and fulfills the condition, [image: ](∆) = [image: ](−∆). Then, τ is probability density distribution, ψα(τ). It is noted that this distribution satisfies the condition ψα(0)=0, since τ is finite. As can be seen below, it is implied [see Eq. (12)] that for long time step, this distribution decays as a power law characterized by the exponent α in the following range:
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          	(6)

        


      




      In addition, the normalization conditions are as follows: [image: ][image: ]and [image: ]In Eq. (5), the first two of these conditions lead to
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          	(7)

        


      




      So, R(t) is connected to ψα(τ) through this relation (and therefore depends on α).




      Now, it seems natural to consider that the origin of subdiffusive nature observed in the experiments comes from not [image: ](∆) but ψα(τ). Henceforth, we therefore assume that [image: ](∆) is actually independent of time steps:
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      To formulate the generalized fractional kinetics, we perform the Laplace transforms of Eqs. (4) and (5) with respect to time:
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          	(9)
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          	(10)

        


      




      Here, [image: ]and [image: ]are, respectively, the Laplace transforms of f (x,t), fα (x,t), and ψα(τ), where [image: ]




      Equation (9) precisely shows that the existence of the large separation of two time scales in the infection pathway is explicitly taken into account: the integration over the fast variable, i.e., ∆, is performed first, and the averaging over the slow variable, i.e., α, is taken afterward.




      Regarding this point, we wish to make the following comment. In a recent work [32], superstatistics has been discussed based on the adiabatic scheme in physics. The point of the discussion given there is that, in superstatistics, not the fast variable, i.e., εi, but the slow variable, i.e., β, in Eq. (3) is eliminated first (see also Ref. [33] for a relevant discussion). Therefore, in this analogy, the procedure of time-scale separation in our discussion is opposite to that in superstatistics.




      Now, as [image: ]in Eq. (10), we take
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          	(11)

        


      




      with a characteristic constant, s, having the dimension of time. This characteristic time is considered as an indicative one, at which the virus is displaced. Then, suppose ψα(τ) to have the divergent first moment, so that the exponent α appearing in Eq. (11) is required to be in the range 0<α<1. Accordingly, it is implied that ψα(τ) has the following form:
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          	(12)

        


      




      for the time step τ longer than s, showing that the distribution decays as a power law, as mentioned above.




      Substituting Eq. (10) into Eq. (9), we expand [image: ]up to the second order of [image: ]




      Accordingly, we obtain
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          	(13)

        


      




      where [image: ]is defined by [image: ]. In deriving Eq. (13), it should be noted that [image: ]which comes from the condition [image: ] has been used, and the term [image: ]has been neglected (u is small in the long time behavior). Then, performing the inverse Laplace transform of Eq. (13), we have the following generalized fractional diffusion equation:
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          	(14)

        


      




      Here, D is the diffusion constant calculated as
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          	(15)

        


      




      and [image: ]is a fractional operator [29, 34] defined by [image: ] where Г(α) is the Euler gamma function [35]. In deriving Eq. (14), a mathematical fact of this operator, [image: ]has been used.




      As mentioned earlier, we apply fractional kinetic theory [29] for describing the motion of the virus in each local block. Below, we shall see how Eq. (14) leads to the theory, which turns out to describe subdiffusion with a fixed exponent as well as normal diffusion observed in the experiments [4-6].




      For the virus in the local block under consideration, we take
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          	(16)

        


      




      with a certain exponent, α0, in the range 0 < α0 < 1 in Eq. (14). Subsequently, applying the operator [29, 34] defined by [image: ] we obtain the following fractional diffusion equation:
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          	(17)

        


      




      where Dα0 is a generalized diffusion constant calculated to be
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          	(18)

        


      




      Thus, the mean square displacement of the virus is found to be given by
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          	(19)

        


      




      reproducing the subdiffusive behavior ([image: ]) observed in the experiments [recall Eq. (1)]. In the limit, α0 → 1, [image: ] in Eq. (19) has the form: [image: ] = 2Dt, showing normal diffusion ([image: ]) [note that D1 = D and Γ(2) = 1].




      The present framework also becomes reduced to the basic equation in Einstein’s approach to Brownian motion, as mentioned earlier. To see this, using the distribution in Eq. (16) in Eq. (4), we take, as the distribution of τ in Eq. (5),
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          	(20)

        


      




      with a finite time step, τ0 (i.e., the deterministic case), instead of [image: ] After replacing t with t + τ0, we obtain [without the assumption in Eq. (8)] that
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          	(21)

        


      




      which is of the basic equation in Einstein’s approach [30].




      Thus, from the viewpoint of superstatistics, we have formulated the generalized fractional kinetics based on the statistical distribution of exponent fluctuations.




      In the present theory, regarding the cytoplasm as a medium for stochastic motion of the virus, this medium is imaginarily divided into a lot of blocks. So far, this procedure has only offered a common step for describing the statistical distribution of exponent fluctuations. However, as will be seen in our next discussion, the procedure tells us more than just the step: a theoretical proposition for a form of the distribution, P(α), in a consistent manner.




      

        Maximum-Entropy-Principle Approach to Exponent Fluctuations




        We certainly need clarify the statistical property of the fluctuations of the exponent, since otherwise the framework developed above is formal. In a recent work [36], an attempt has been made to propose the statistical distribution of the fluctuations based on the experimental data. Below, we explain the discussion given there.




        In the experimental result [5], it has been found that, in 104 trajectories of the viruses, the mean square displacement has the form in Eq. (1): 53 trajectories exhibit normal diffusion, whereas 51 among them show subdiffusion with the exponent α, the value of which varies between 0.5 and 0.9. Based on this result, it is considered that normal diffusion is often to be realized, whereas subdiffusion with the exponent near α = 0 may not be the case. This is also motivated by the property [5] that the virus tends to reach the nucleus of the cell. Then, it is supposed that the exponent found in the free form might be slightly different from that found in the endosomal one. Consequently, the following Poisson-like form of fluctuations (i.e., an exponential form) has been proposed:
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            	(22)

          


        




        with a positive constant, λ.




        Here, we wish to make a couple of comments on the distribution in Eq. (22). One might think that this distribution does not explain well the weights of the exponents presented in Fig. 7.44 in Ref. [4]. However, it seems necessary to clarify if each trajectory is taken from each of different localized areas of the cytoplasm. The distribution is supposed to describe the statistical fluctuation on a large spatial scale, which is not limited to the localized areas studied in the experiment. Therefore, it seems fair to say that the distribution in Eq. (22) is yet to be carefully examined based on further information on the fluctuations in order to elucidate if it describes the statistical fluctuation to be observed. In fact, as will be seen below, there is an observation indicating that this distribution may be realized. As shown in Ref. [36], it is possible to theoretically derive the distribution in Eq. (22) in a consistent manner, in which the maximum entropy principle [37] plays a key role (see, for example, Refs. [38-40] in the context of superstatistics). Accordingly, we assume that this is the distribution of relevance, here.




        In what follows, we shall see how the maximum-entropy-principle approach [36] leads to the Poisson-like distribution in Eq. (22).




        Recall that the cytoplasm is regarded as a medium composed of many small blocks. This medium can be thought of as a collection of these blocks. Our situation here is that no information is available about how the exponent locally distributes over the cytoplasm. Therefore, in terms of the statistical property of the fluctuations, any collections constructed by the blocks are identical to the medium. So, we consider all of possible distinct collections, each of which is different from each other in terms of the local fluctuations but is statistically equivalent to each other. In the case of discrete values of the exponent, we consider the medium with a set of different values of the exponent, {αi}i. The total number of distinct collections, G, is then given by
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            	(23)

          


        




        where N is the total number of blocks in the medium and [image: ] is the number of blocks with the ith value of the exponent, αi, in the medium. Taking the logarithm of G, we introduce the entropy associated with the fluctuations as follows:
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            	(24)

          


        




        which gives a measure of the uncertainty about the local fluctuations.




        Now, it seems natural to suppose that N and [image: ],s are large, since the medium consists of many blocks. Therefore, using the Stirling approximation [i.e., ln (M!) ≅ M lnM − M for large M], the entropy S in Eq. (24) can be expressed in the form of the Shannon entropy [41]:
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            	(25)

          


        




        where [image: ] is the probability of finding the exponent αi in a given block of the medium and is given by
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            	(26)

          


        




        (The notation, S[P], means that it is a functional of [image: ],s.) Thus, as the entropy for continuous values of the exponent, we take the following form:
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            	(27)

          


        




        where the summation over i has been replaced by integration over α.




        We are now going to derive the distribution in Eq. (22) based on the maximum entropy principle with the Shannon entropy in Eq. (27). We are considering the situation that only information is available on the statistical property of the fluctuations. In such a situation, the expectation value of α as well as the normalization condition are put as constraints in the principle:
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            	(29)

          


        




        Accordingly, we maximize S[P] with respect to P(α) under these constraints: variation of S[P] with respect to P(α) with the normalization and the expectation value being kept unchanged. As in the standard discussion in the principle, the maximization condition in the present case reads
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            	(30)

          


        




        where S[P] is given in Eq. (27), κ and λ are the Lagrange multipliers associated with the constraints on the normalization condition and the expectation value, respectively, and δP denotes the variation with respect to P(α). Note that since the virus is naturally supposed to tend to reach the nucleus of the cell, the following condition has been imposed in Eq. (30):
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            	(31)

          


        




        from which λ turns out to become a positive Lagrange multiplier. This condition indicates that the number of blocks with the value α = 1 in Eq. (1) is larger than that of blocks with the value α = 0. The stationary solution of Eq. (30) is found to be given by [image: ] which is, in fact, identical to Eq. (22).




        Substitution of the distribution in Eq. (22) into Eq. (14) leads to the generalized fractional kinetics with the Poisson-like fluctuation [36]. Thus, we see that the present framework gives rise to the kinetic theory for the infection pathway of the virus in the cytoplasm.




        Based on the distribution in Eq. (22), a comment is made on the organization of the cytoplasm. It has been pointed out [5, 6] that normal diffusion observed in the experiments is based on Brownian motion, whereas subdiffusion is due to the existence of obstacles (such as organelles) in the cytoplasm. Accordingly, if [image: ] in Eq. (22) can be observed, then it is expected to describe statistical distribution of the obstacles over the cytoplasm.




        Before proceeding, we wish to mention the following point. In the maximum-entropy-principle approach discussed above, we have imposed the constraints on the normalization condition on P(α) and the expectation value of α. If a set of some additional quantities is given and information is available on their expectation values, [image: ] with Q(k) (α) being the kth quantity in the set, then we can have further constraints associated with these quantities in the principle. In such a case, the maximization condition reads
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            	(32)

          


        




        where λ' and λ(k),s are the Lagrange multipliers associated with the constraints on the expectation values of α and Q(k)(α),s, respectively. Correspondingly, the stationary solution of Eq. (32) is given by
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            	(33)

          


        




        provided that λ' and λ(k),s fulfill a condition to be satisfied by Eq. (31). The statistical fluctuation to be observed is supposed to be described by the Poisson-like distribution in Eq. (22) in our present discussion, but, in the case when the statistical fluctuation is different from the Poisson-like one, it may be of interest to examine if it can be described by the distribution in Eq. (33).




        

          Scaling Law for the Motion of the Virus




          In Ref. [28], it has been shown that the present framework implies the existence of scaling law for the motion of the virus over the cytoplasm. So, we shall briefly discuss this remarkable point, below.




          Substituting the distribution in Eq. (22) into Eq. (4), we consider the following probability:
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          From Eq. (13), it then follows that
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          The solution of this equation is found to be given by
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              	(36)

            


          




          with [image: ] being
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          Here, the function, a(y), in this solution is defined by
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          [Note that in Eq. (36), it is the function of 1/u.] A key point is that this function has the following property:
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          for any positive constant, ε. This property seems to allow us to apply a Tauberian theorem for the Laplace transforms (see Theorem 4 in Ref. [42]) in order to examine the asymptotic behavior of ƒ (x, t) for large elapsed time. This theorem implies in the present case that the asymptotic behavior is given by
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          Since a(t) ~ 1/ln[t / (eλs)] in Eq. (40), ƒ (x, t) is seen to behave as follows:
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          for the elapsed time t much longer than eλs. Here, we immediately see that it satisfies the scaling law of the following form:
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              	(42)

            


          




          where [image: ] is a scaling function defined by
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          From the scaling property in Eq. (42), the spatial extension of ƒ (x, t), l (e.g., its half-width), is seen to scale as follows:
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              	(44)

            


          




          implying that the motion of the virus shows logarithmic behavior.




          Now, it is also possible to characterize the motion of the virus by the mean square displacement, instead of the above scaling law. To see this, using Eq. (35) [or equivalently Eq. (36)], the mean square displacement in the Laplace space is found to be given by
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          Then, performing the inverse Laplace transform of Eq. (45), [image: ] is calculated to be
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          where E1(t) is an exponential integral [35] defined by [image: ] and γ is Euler’s constant. For the elapsed time t much longer than eλs, [image: ] behaves as follows:
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              	(47)

            


          




          where both the second term and γ in Eq. (46) have been neglected due to the mathematical fact [35] that the second term tends to decrease for large t, whereas the numerical value of γ is small. It is clear from Eq. (47) that [image: ] (i.e., the root-mean square displacement) has the form in Eq. (44), supporting the existence of the scaling law in Eq. (42).




          Thus, we see that the scaling law for the motion of the virus may be established. This means that if the scaling law can experimentally be observed, then the existence of the time-scale separation is anticipated as a possible nature in the infection pathway.




          Finally, we wish to make the following comment. As mentioned in the very beginning of this chapter, the adeno-associated virus exists in the cytoplasm in the free form as well as the form being contained in the endosome. In Refs. [5,6], the discrimination between them resulted in different values of the diffusion constant. To see the difference in the present theory, let us look at the mean square displacement in the case of normal diffusion: [image: ] [recall the discussion after Eq. (19)]. For the experimental data in Fig. 3 (G) in Ref. [5] (see also Fig. 3 in Ref. [6]), D is estimated as follows: D = 2.8μm2/s for the free form and D = 1.1μm2/s for the endosomal form. In this way, the difference between the values of D in the free form and the endosomal form is seen to be distinguished.


        


      


    




    

      CONCLUDING REMARKS




      We have reported recent developments about physics of diffusion for the infection pathway of an adeno-associated virus in cytoplasm of a living HeLa cell. We have discussed the theoretical framework developed in view of superstatistics for the generalized fractional kinetics for describing the infection pathway of the virus over the cytoplasm. We have seen that the existence of a large time-scale separation in the infection pathway is explicitly taken into account in this framework. It is of central importance to clarify the statistical property of exponent fluctuations. We have also discussed the derivation of the fluctuation distribution proposed from the experimental data based on the maximum entropy principle. We have mentioned an implication of the existence of scaling nature for the motion of the virus over the cytoplasm. The present approach is expected to provide novel insights into the study of virus infection pathway in living cell.
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