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    Chemistry is central to science, engineering and medicine, and has been at the forefront of the development of advanced materials for applications ranging from personal electronics, lighting and displays, solar energy conversion, energy storage, through environmental remediation, to clinical diagnosis, and advanced therapies for the treatment of cancer.


    In this book, Future Trends for Top Materials, my colleague Mário J. F. Calvete presents an extensive review of the chemistry of some of the most important materials for these applications. These include the pyrrole-based systems phthalocyanines, porphyrins, porphyrinoids, boron dipyrromethene (bodipy) dyes, together with polymethine (cyanine) systems, and the carbon allotropes of fullerenes, carbon nanotubes and graphene. Further, from our understanding of mechanisms, stereochemistry and chemical bonding, it is now possible to design molecular architecture with specific materials functions. Dendrimers, metal-organic and covalent- organic frameworks are discussed within this perspective. The author also considers relevant aspects of metal and semiconductor based nanoparticles, including superparamagnetic systems and quantum dots. In the final chapter, he summarizes possible achievements based on relevancy of the most important materials.


    All of the systems discussed are treated in terms of their synthesis and functionalization, before discussing their most important applications (real and potential). Examples are given in catalysis, photovoltaics, sensing, imaging, nonlinear optics, optoelectronics, biomedicine… This book provides both a good starting point for those entering the field, and a presentation of the state-of-the-art in for more experienced researchers.


    The author is to be commended for both the breadth and depth of the work described, and for the extensive bibliography. This can form the basis for a course in advanced materials chemistry, but also acts as an excellent entry for those starting research in this area.


    The author, Mário Calvete, has extensive experience in many of the topics discussed, and is to be commended for this excellent publication.


    
      Hugh D. Burrows

      Chemistry Department

      University of Coimbra, Portugal
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    The idea behind this book arose from a necessity typical from Organic Chemists. Exploration of search engines in diverse topics usually leads to isolated results on each certain thematic issue. Hence, a directed and simple approach seemed necessary. After a careful compilation, discussion of synthetic methodology, historical perspective and relevance is provided for each of the families of compounds here described. The most representative and notable examples are mentioned/scrutinized at historical level, either regarding synthetic aspects or applications (which can be across any field, from medical, biological or materials applications, among others).


    This contribution focuses on defined compounds (or types of compounds) which are sure candidates to occupy a prominent place in synthesis (and in diverse applications) in the forthcoming years, for a large number of readers, who by any motivation want to explore new compounds for any given application. In this book, general and established synthetic methodologies for several compounds are also given, in an attempted way to provide straightforward approaches for researchers who intend to start new topics, as a hands on reference guide for scientists working in the fields of chemistry, physics, biology, biomedicine, materials science, polymer science, nanotechnology or supramolecular science.


    This eBook is divided in 9 chapters, in following order: phthalocyanines, polymethines, porphyrins, BODIPYs, dendrimers, carbon allotropes, organic frameworks, nanoparticles and future prospects. Each chapter covers detailed synthetic aspects of the most established preparation routes for each type of compounds, while giving a historical perspective, with selected information on actual and outstanding applications of each material, unraveling what likely might be the future for each one. I would like to refer to the last chapter, which deals with the synthesis and functionalization of several types of inorganic nanoparticles, but emphasizing the organic functionalization of such inorganic materials.


    Bottom-line, it is intended to provide a clear concept on each section as a “since when/how/why/what’s next” overall idea, targeted for researchers either from industries or universities, who by any motivation want to explore new compounds for any given application, providing general and established synthetic approaches, or to readers who would like to know more in a concise manner, without spending unnecessary efforts on isolated thematic search through available search engines.
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      Abstract


      Phthalocyanines are colored aromatic macrocycles, composed of four iminoisoindoline units, giving origin to a highly conjugated planar macrocycle, known for its remarkable stability. Their remarkable features have rendered them wide attention, which continues to live on nowadays. Herein is presented a conspectus on the field of phthalocyanines, where emphasis is set on their preparation methods, along with more detailed examples on several promising applications with 418 references provided. Some synthetic details on the preparation of state-of-the-art compounds are given as well.
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      INTRODUCTION


      Phthalocyanines are intensely blue-green colored aromatic macrocyclic compounds, consisted by an 18 π-electron system, composed of four iminoiso indoline units, conferring a remarkable stability for an organic compound. Nevertheless, phthalocyanines offer great structural flexibility, being capable of forming coordination metal complexes with the majority of periodic table elements. Phthalocyanine structures are directly associated to the naturally existing porphyrins, with the differences being the four benzo-subunits and the nitrogen atoms at each of the four meso positions, reason why phthalocyanines are occasionally referred to as tetrabenzotetraazaporphyrins.


      Other quite known related macrocycles include the tetraazaporphyrins, more known as porphyrazines (without the four benzo-subunits at each of the four meso positions) and naphthalocyanines (with additional four benzo-subunits at each of the four meso positions) (Fig. 1).


      Less known, but also important are the subphthalocyanines, which are the lower homologues of phthalocyanines (having three N-fused iminoisoindoline units bearing a boron core). These compounds possess delocalized 14 π-electronic system, being considered aromatic compounds, although they possess nonplanar cone-shaped structure.


      Nomenclature in phthalocyanines follows adapted IUPAC nomenclature codes. A system of abbreviations is necessary to avoid the long-winded nature of Pc nomenclature demanded by the IUPAC system. Fig. (2) shows the accepted numbering system of the Pc ring, where sixteen possible substitution sites in the macrocycle appear.
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Fig. (1))

      Phthalocyanine derivatives.
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Fig. (2))

      Phthalocyanine ring numbering.

      As many great findings in History, phthalocyanines were discovered fortuitously. Braun and Tcherniac observed a dark, insoluble material during the preparation of 2-cyanobenzamide from phthalimide and acetic acid in 1907 [1]. Nevertheless, less importance was given to such findings at the time. Later, in 1927, a remarkably stable blue material, ascribed as copper phthalocyanine, was synthesized by de Diesbach and von der Wied in 23% yield, as a side reaction of 1,2-dibromobenzene with copper(I) cyanide in pyridine (Rosenmund-von Braun reaction) [2]. Almost coincidentally, the preparation of a blue-green material occurred during the industrial synthesis of phthalimide from phthalic anhydride, at the Grangemouth plant of Scottish Dyes Ltd. in the year 1928. Dandridge and Dunsworth, two laboratory employees analyzed the side-reaction meticulously and discovered that it was prone to occur inside older iron reactors, which could release some iron splinters from reactor cracks during production. Initial studies on these iron containing pigments reveled an outstandingly stable insoluble dye, whose preparation and properties gave rise to a patented, granted in 1929 [3]. One year earlier, Imperial Chemistry Industries (ICI) had acquired Scottish Dyes Ltd., and the curiosity of the new owners provoked a decisive chain of events, by sending some samples to Professor Jocelyn Thorpe and Imperial College, London, who in turn gave the investigation to newly appointed Reginald P. Linstead (later entitled Sir) who, through collaboration with ICI, managed to meticulously explore most aspects of this new substance. Indeed, the term phthalocyanine was the first used by him [4], as a derivatization from the Greek words phthal (rock oil) and cyanine (blue).


      In following years phthalocyanine structure was clarified, along with procedures for the preparation of several metal phthalocyanines and their metal-free complexes [5-10]. Research continued until it was interrupted by World War II, including seminal outcomes reporting the first synthesis of naphthalocyanines [11] and accomplishment of two dozen different metals inside phthalocyanine cavities [12]. In the subsequent years after World War II, research hasted and great developments were reported on the family of phthalocyanines. For instance, in 1972, subphthalocyanines were accidentally discovered by Ossko and Meller [13], when attempting to synthesize boron containing phthalocyanines via cyclotetramerization reaction of boron trichloride with phthalonitrile in chloronaphthalene at 200 °C. Unexpectedly, a pink colored product was isolated the structure of which was determined later by Kietaibl using X-ray crystallography [14].


      Through direct retrieval from a search engine (Web of KnowledgeSM-Thomson Reuters®) the hits obtained (approximate value, including patents) on phthalocyanine related reports since its discovery, appear as follows: 1907-1939 (40 reports); 1940-1959 (110 reports); 1960-1979 (2800 reports); 1980-1989 (5500 reports); 1990-1999 (13000 reports); 2000-2009 (23000 reports) and finally from 2010-2013 (12300 reports).

    


    
      SYNTHESIS OF PHTHALOCYANINE DERIVATIVES


      In general, phthalocyanine synthesis proceeds from single step cyclotetramerization reactions, normally using benzoic acid derivatives, e.g. phthalimide, phthalic anhydride, o-cyanobenzamide, phthalonitrile (the most used) or isoindolinediimine [15-19] (Scheme 1).
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Scheme (1))

      Common synthetic pathways for phthalocyanine synthesis.

      A direct and convenient method for the preparation of metal containing phthalocyanines is heating phthalonitrile with a metal salt in the presence of high boiling solvents, such as quinoline, dimethylformamide, 1-chloronaphthalene, DMAE. Dimethylaminoethanol, octan-1-ol, hexan-1-ol pentan-1-ol. In addition, some hindered bases such as 1,8-diazabicycloundec-7-ene and 1,5-diazabicyclo(4.3.0) non-5-ene can also be used to aid cyclotetramerization, giving good results in many cases.


      Phthalimide, phthalic anhydride and phthalic acid precursors can also be applied successfully for metal phthalocyanine synthesis, particularly phthalic anhydride, as most commercial processes are based on this compound. Such reactions are normally carried out in melted urea, acting as a convenient nitrogen source (ammonia), with ammonium molybdate as catalyst, transforming the anhydride in phthalimide in situ. Occasionally, low reactive phthalonitriles can also be transformed in diiminoisoindoline, prepared from the reaction of phthalonitrile and ammonia, using sodium methoxide as catalyst.


      The low solubility in most solvents presented by phthalocyanines is a challenging issue in any application, which is caused by the strong interaction of the π-electrons of their extended aromatic system and appropriately called π-stacking. Preventing this strong interaction increases solubility and can be facilitated by substituents in three ways: i) axial substituents, by modulating the valence of the central metal; ii) peripheral substituents that are sufficiently space demanding; iii) non-peripheral substituents. The first approach, which deals with central metal coordination with additional axial ligands (axial substitution) was firstly developed by Kenney group, in 1962 [20]. Generally, covalently bound axial ligands require the central metal ion to be at least in a +3 or +4 oxidation state, e.g. Al3+, Ga3+, In3+, Si4+, Ge4+ and Sn4+, since phthalocyanine itself has a -2 oxidation state and can only be attached after cyclotetramerization. In addition, suitable ligands such as pyridines can also form stable coordination bonds with many central metal ions, accounting for the enhanced solubility of metal phthalocyanines in pyridine and quinoline, firstly reported by Cariati [21].


      Albeit the many studies committed to the explanation of the mechanism of phthalocyanine formation, the exact and unambiguous course of the reaction still remains unclear. Bottom-line, the mechanism of phthalocyanine formation can be considered as a stepwise polymerization of the appropriate precursor followed by coordination of the central metal ion and ring closure originating the macrocyclic molecule [22-29]. An interface of two factors might be the driving force for phthalocyanine macrocycle formation: the template effect of the central metal ion/resulting stabilization the complex and thermodynamic stabilization/ aromaticity involved in the cyclotetramerization/consequent ring closure.


      Phthalocyanine solubility in general organic solvents can also be improved by appending long chain or bulky substituents at the macrocycle periphery (2 and/or 3 positions), referred as peripheral substitution, or at non peripheral positions (1 and/or 4 positions) (Fig. 3). Non-peripheral substituents are most effective in order to diminish π-stacking. Due to mutual sterical hindrance, the phthalocyanine is distorted out of the plane, but to the expense of increased strain in the molecule. In contrast, peripheral substituents have to be highly space demanding in order to prevent π-stacking. Nevertheless, out-of-plane distortion is minimal and resonance stabilization is maintained.
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Fig. (3))

      Non peripherally and peripherally substituted phthalocyanines.

      Substitution at the 1, 2, 3 or 4 positions of a phthalonitrile yields tetrasubstituted phthalocyanines, while substituting at the 1,2, 2,3, 1,3 or 1,4 positions gives octasubstituted phthalocyanines. Moreover, simultaneous substitution at all phthalonitrile positions is also possible, giving rise to hexadecasubstituted phthalocyanines. In general, the peripherally substituted phthalocyanines studied in more detail are the tetra- and octa- substituted ones [15].
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Fig. (4))

      Tetra substituted phthalocyanine's isomers.

      The solubility of tetrasubstituted phthalocyanines is higher than that of octasubstituted phthalocyanines, due to the fact that tetrasubstituted phthal ocyanines appear as a mixture of isomers (Fig. 4), consequently leading to a lower degree of order in the solid state, when compared to symmetrically octa- or even hexadecasubstituted phthalocyanines.


      Furthermore, the less symmetrical isomers have a higher dipole moment derived from the more unsymmetrical disaposition of the substituents at the phthalocyanine ring periphery [30, 31]. This was proven by Hanack group, after complete separation of the four structural isomers of nickel tetra (2-ethylhexyloxy) phthalocyanine, for the first time by HPLC [32], and later of a family of 2,9,(10),16,(17),23,(24)-tetrasubstituted phthalocyanines [31].


      Summing up, the introduction of substituents at the phthalocyanine macrocycle is of utmost importance for most concrete applications. Although modulation of the phthalocyanine is possible, the relative stability of the macrocycle hampers reactivity towards many synthons, mainly originating mixtures with several degrees of substitution. Therefore, prior phthalonitrile (or any other phthalocyanine precursor) functionalization followed by cyclotetramerization is the main approach, leading to an exact number of substituents on the desired phthalocyanine (metallated or free-base), of which is important to refer the comprehensive reviews of Nemykin on the synthesis of substituted phthalonitriles and their transformation in phthalocyanines [33, 34].


      Modulation of the benzene rings in phthalocyanines in a non symmetrical manner (i.e., differentially substituted) is sometimes necessary, in order to introduce specific functionalities for the most varied applications.
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Fig. (5))

      Unsymmetric substitution patterns on phthalocyanines.

      The chemistry of unsymmetrically substituted phthalocyanines had its beginnings with Linstead in 1955 [35], followed by work of Leznoff in 1982 [36], making a 28 year hiatus between the two first reports on unsymmetrical phthalocyanines. However, after that, the number of reports on the preparation of unsymmetrical phthalocyanines increased nearly exponentially, including several important reviews on the topic [37-43].


      The main possible types of unsymmetrical phthalocyanines are A3B, ABAB and AABB types, as represented in Fig. (5). Most of preparations rely on the use of statistical cross condensation reactions between two different phthalonitriles, varying the ratios between them, favoring a specified statistical product, according to Table 1, in a model developed by Cook [44]; however not considering template, steric and electronic effects. In addition, it does not consider that the particle reservoir decreases during the reaction. However, this can be neglected, to a good approximation of the large particle number.


      
        Table 1 Predicted relative yields from statistical condensation of different phthalonitriles.
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      Strategies for obtaining unsymmetrical A3B-type phthalocyanines are by far the most developed ones, of which the above mentioned methodology is the most used. Other less used approaches include the subphthalocyanine methodology (Scheme 2), firstly developed by Kobayashi [45], where a subphthalocyanine was expanded to an unsymmetrical phthalocyanine, by reacting it with a diiminoisoindoline derived compound. This method revealed to be quite selective and efficient in several cases, allowing as well to prepare phthalocyanines otherwise inaccessible by other methods [46, 47].


      Another method for A3B unsymmetrical phthalocyanines is based on solid phase synthesis, a method developed by Lever [36], involving the connection of a substituted phthalonitrile to a polymeric support. This polymer-linked precursor might then be reacted with another differently substituted phthalonitrile, originating a polymer-linked A3B phthalocyanine, which can then be selectively unattached from the polymer.
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Scheme (2))

      Synthesis of unsymetrically substituted phthalocyanine from subphthalocyanine.

      ABAB and AABB phthalocyanines can seldom be isolated from statistical mixtures, due to their similar polarity and solubility. Nevertheless, some methods have been developed to prepare this type of phthalocyanines. For instance, Young developed a method [48], where 1,3-diiminoisoindoline and 1,3,3-trichloroisoindolenine derivatives where reacted in presence of a reducing agent and base (Scheme 3).
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Scheme (3))

      Synthesis of ABAB substituted phthalocyanine.

      The authors alleged that the only formed derivative was the ABAB phthalocyanine, in 50% yields; however, Hanack tried such a procedure but the obtained yields were lower than those achieved by Young (15-25%) [49]. Nevertheless, this route affords high selectivity for the desired compounds.


      Additionally, AABB phthalocyanines are even more complicated to prepare. In this case the synthesis of this type of phthalocyanines occurs through an intermediate designated “half-phthalocyanine”, which is a diiminoisoindoline dimer (AA), further reacted with a B type phthalonitrile, yielding an AABB phthalocyanine. This intermediate was first reported by Oliver [26] and later followed by Leznoff [50] and Kobayashi [51-54].

    


    
      APPLICATIONS OF PHTHALOCYANINES


      The list of phthalocyanine applications is enormous. A simple search on the number of patents issued throughout the years reveals more than 15000 patents worldwide where phthalocyanines are involved directly. The approximate production of phthalocyanines derivatives passes 60000 tons per year. Initially after their discovery, phthalocyanines were mostly used as dyes in the textile, paper and other industries due to their chemical, photochemical, and thermal stabilities [15, 18, 55, 56]. Phthalocyanines are widely used in inks (ballpoint pens, printing inks, etc.), coloring for plastics and metal surfaces as well as dyestuff for jeans and other clothing. Interestingly, copper phthalocyanine was certified as a food dyestuff in Germany and for coloring contact lenses in the United States [57].


      In more recent decades the chemistry of substituted and unsubstituted phthalocyanines has experienced a remarkable expansion and, in addition to traditional applications, substituted have found potential applications in many other fields. It is worth mention both the Porphyrin Handbook, published between 1999 and 2003, with 20 volumes and 122 chapters, 24 of them exclusively concerning phthalocyanines and their properties [58]. Later, this successful series of books were complemented with the acclaimed Handbook of Porphyrin Science, still unfinished, containing so far 35 volumes and 180 chapters, having 21 chapters concerning phthalocyanines [59]. Both series are edited by the eminent professors Kevin M. Smith, Roger Guilard and Karl M. Kadish.


      Like mentioned above, phthalocyanines have more recently found applications in catalysis [60-86], chemical sensors [87-111], as Langmuir-Blodgett films [112-126], semiconductors [30, 92, 127-150], materials for ink-jet printing [55, 151], electrophotographic applications [152-157], optical data storage [158-166], liquid crystals [167-189], light-harvesting modules for dye-sensitized solar cells and organic photovoltaics [139, 190-203], nonlinear optics [184, 204-222], photosensitizers for photodynamic cancer therapy [223-237], antibacterial composites [238-256] and theranostics [257-261].


      
        Applications in Catalysis


        Catalysis is a highly significant metallophthalocyanine applications. For example, the Merox process involves the catalytic oxidation of mercaptans using sulfonated cobalt phthalocyanine (petrol sweetening), (Fig. 6, 1) to remove most of sulfur from petrol [262].
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Fig. (6))

        Phthalocyanines for application in catalysis.

        Another well documented field is research on the degradation of pollutants using catalytic amounts of metal phthalocyanines, including in photocatalytic and electrocatalytic processes [66, 67, 69, 263].


        Though centered in oxidation, other processes including several C−C bond formation reactions, preparation of nitrogen-containing compounds and reduction reactions and can be proficiently catalyzed by metal phthalocyanines. They own several advantages over other types of processes, e.g. noble metals. Their reactivity can be modulated by appropriate structural modifications, either by changing the nature of the central metal or by modifying the structure of the macrocyclic ligand.


        The peripheral substituents are crucial in the catalytic chemistry of metallopht halocyanines [34]. Changing the electron donating or electron-withdrawing substituent’s character allows obtaining the desired solubility, tuning catalytic properties and stability of phthalocyanine complexes.


        For example, appending fluorinated substituents to metallophthalocyanine molecules increases their stability against radical, electrophilic or nucleophilic attacks [264]. For instance metallated hexadecafluorinated phthalocyanines (with ruthenium (2a)) [265], iron (2b) [266], cobalt (2c) [267] and copper (2d) [267] as central metals have been prepared and used in a variety of catalytic reactions (Fig. 6). In addition, all-fluorinated phthalocyanines bearing perfluoroalkyl groups such as 3a [268] and 3b [269] have also been used in catalytic reactions.


        Immobilization by encapsulation (a method named ship-in-a-bottle synthesis) has performed for the immobilization of several phthalocyanine derivatives, like for instance unsubstituted iron(III) phthalocyanine 4 [270] or tetrasubstituted zinc phthalocyanine 5 [271] derivatives (Fig. 7) and used for photocatalytic pesticide degradation. Other authors described the mesoporous silica covalent anchoring of cobalt(II), manganese(III) and iron(III) phthalocyanines (6a-c) [64, 272, 273]. Also copper hexadecafluorinated phthalocyanine 7 was encapsulated inside a mesoporous material (Fig. 7) [274], through an innovative approach, which consisted in reacting hexadecafluorinated copper phthalocyanine with 3-aminopropy-ltrimethoxysilane, followed by posterior tetraethylorthosilicate co-condensation yielding an hexagonally ordered material, having high surface area.

      


      
        Applications as Langmuir-Blodgett Films


        Organic thin films formed from conjugated organic molecules are of particular interest, since they may lead to the preparation of inorganic-organic heterostructures with differentiated properties, including ultra-fast optical response, chemical sensing, reactivity and biocompatibility [275]. Reactivity of reactive centers with analytes is ruled by thickness and film characteristics. For instance, ultrathin films are satisfactorily used in molecular separation, reception and discrimination.
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Fig. (7))

        Immobilized phthalocyanines for application in catalysis.

        In this regard, phthalocyanines conform to the requisite of thermal and mechanical stability, necessary for Langmuir-Blodgett based functional devices. The use of the Langmuir-Blodgett method is essential, since some applications, such as photovoltaic cells, optical storage, electrochromic displays, color filter dyes and electro-luminescence [276, 277], require layers of molecular dimensions.


        The first reports on Langmuir-Blodgett phthalocyanines applications emerged in the 1930s, unsuccessfully using unsubstituted iron and magnesium phthalocyanines [278]. The revival of interest in Langmuir-Blodgett films of phthalocyanines begun in the early 1980s [120, 121], by Robert’s group. Their promising results instigated research on deposition studies of substituted phthalocyanines soluble in organic solvents, particularly the tris-N-isopropyl -aminomethyl derivative, 4a, and the tetra-tert-butyl derivatives 4b (Fig. 8) [120, 121].
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Fig. (8))

        Phthalocyanines for application in Langmuir-Blodgett films.

        Research on both substituted and unsubstituted phthalocyanines has continued, aiming to produce highly ordered films for particular applications. Reports on films of non substituted compounds included annealing a film of free base phthalocyanine at 300 °C [279, 280], or even zinc phthalocyanine [281]. However, research on films of substituted phthalocyanine derivatives has been much more intense, for instance in various metallated tetrasubstituted phthalocyanines. These include aryloxy groups 4c [282], alkoxy groups [283], esters 4d [284, 285] and amides 4e [286, 287] (Fig. 8).


        Usually, tetrasubstituted phthalocyanines form materials that are isomeric mixtures, which is improbable to promote optimal film ordering. So, attention has also been turned to octasubstituted purely symmetrical macrocycles, such as the octakis (dodecylo-xymethyl)-copper phthalocyanine 5a (Fig. 8) [288, 289]. Nevertheless, nonperipherally substituted octaalkoxy or octaalkyl phthalocyanines 6a,b (Fig. 8) form better monolayers, depending on the aliphatic chain length, with the octapentyloxy derivatives forming the best films [290].
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Fig. (9))

        Non-peripherally substituted phthalocyanines for application in Langmuir-Blodgett films.

        While the octasubstituted phthalocyanine derivatives described above possess an amphiphilic character, their properties are inferior to the phthalocyanines bearing long-chain alcohols 7 and 8 (Fig. 9) [291-295].


        As sensing and recognition of biologically and environmentally important ions has appeared, most of thin films prepared actually meet the requirements to act as powerful chemical sensors affording actual information on the localization and quantification of the targets of interest. For instance, films produced from phthalocyanines type 7 and 8 have been prepared and used as efficient NOx sensors [296, 297]. These materials possess hydrophilic or lipophilic chains, therefore assisting the preparation of an organized floating film, which revealed to be essential for an effective sensor. In subsequent years, Ding also prepared sensor films using phthalocyanine derivatives of type 9 (Fig. 10), and successfully tested them in gas sensoring of NOx, ammonia and other amine containing gases [298-301].
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Fig. (10))

        Peripherally substituted phthalocyanines for application in Langmuir-Blodgett films.
      


      
        Applications as Fluorogenic Chemical Sensors


        Besides from the intensive utilization of phthalocyanine Langmuir-Blodgett films as sensors, other analytical methods have been used, e.g. fluorescence, this is a strong tool due to its simplicity and high detection limit. Particularly, suitable probes in conjunction with fluorogenic methods are favorable to measure analytes, given that fluorimetry is highly sensitive, quickly performed, and nondestructive.


        Several authors have prepared and used phthalocyanine derivatives as metal ion sensors [302-305]. For instance, Barret and Hoffman prepared polydentate based on porphyrazine derivatives 10 and 11 (Fig. 11) [302] and demonstrated their ability in binding metal ions through the peripheral coordinating diamine or diazacrown groups, along with metal ion coordination.


        
[image: ]


Fig. (11))

        Phthalocyanines for application as sensors.

        Anions can also be detected using phthalocyanine derivatives by the same fluorometric means [306-309]. For instance, phthalocyanine 12 (Fig. 11) [307], an octatosylaminophthalocyanine was used as anionic chromogenic chemosensor. The host:guest complexes formed could be restored back by acid treatment, without loss of sensoring capability, allowing the phthalocyanine based chemosensor to be reused.


        Martínez-Mánez [308] and Torres [309] have also separately used subphtha-locyanines 13a [308] and 13b [309] (Fig. 11) for cyanide ion detection to the ppm level due to the selective reaction of this anion with the selected subphthalocyanines. The method was easy assessed, allowing selective visual detection of very low cyanide concentrations [309].

      


      
        Applications as Semiconductors


        Thin films of phthalocyanines are further important for application in conductor devices. Organic semiconductor devices are increasingly enjoying a widespread commercialization [310, 311]. Phthalocyanines can be used in organic electronics, as organic semiconductor single crystal assembly directly onto device structures. For instance, the mostly studied phthalocyanine for conducting purposes has been the unsubstituted copper phthalocyanine [140, 312-314], ever since it was the first phthalocyanine found with seconducting properties [140, 312]. Also zinc phthalocyanine [315, 316] and hexadecafluorinated copper phthalocyanine [317] are good examples of phthalocyanine derivatives used for this application.

      


      
        Applications as Liquid Crystals


        Nowadays, liquid-crystal displays are necessary to our everyday life. Usually these devices are based on self-organized stacked molecules. Vorländer described the rodlike (calamitic) counterparts, in 1907 [318], while Chandrasekhar discovered the disklike (columnar, discotic) liquid crystals in 1977 [319], providing a wider range of applications, turning into appropriate compounds in several electronic/optical devices, such as photocopiers, laser printers, photovoltaic cells, light-emitting diodes, holographic data storage centers and field-effect transistors. Mesomorphic phthalocyanines [179, 320, 321] provide effective materials, possessing strong visible and NIR absorption but nevertheless, an easy alignment and/or long-time mesophase stability are the most important features desirable for potential applications, [322].


        For instance, comparison of side chain effect on the mesophases produced by phthalocyanines of the type 14a-e (Fig. 12) [323], revealed that phthalocyanines 14c,d bearing ramified alkyloxy chains displayed higher phase transition than linear side chain bearing phthalocyanines 14a,b, consequently reducing the melting transition. Very interesting was (S)-citronellol substituted phthalocyanine compound 14e [324], which formed a room temperature chiral columnar mesophase and a high temperature achiral rectangular columnar mesophase [325].
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Fig. (12))

        Octa alkoxy-substituted phthalocyanines for application as liquid crystals.

        Exploiting the capabilities of the chiral substituent, Nolte and coworkers have further investigated the columnar properties of phthalocyanine 15 (Fig. 13) and observed a molecular arrangement comprising one “edge-on” lamellar phase and two “face-on” phases.

      


      
        Applications as Light-harvesting Modules for Organic Photovoltaics and Dye-sensitized Solar Cells


        Solar cells based on organic materials are enjoying rising attention. Usually, these materials are mostly constituted by a bulk heterojunction resultant from the interaction of donor and acceptor materials, combining the advantages of higher conversion efficiency and straightforward fabrication. Phthalocyanines conjugated system produces intense absorption spectra, possessing very high molar absorptivity (ε) values exceeding 105 Lmol-1cm-1, high chemical and thermal stabilities and appropriate redox properties.


        Tang reported the first phthalocyanine based heterojunction solar cell, constituted of acceptor perylene derivative 16 and donor copper phthalocyanine (17a) (Fig. 14) [326], achieving efficiencies of ca 1%. When zinc phthalocyanine (ZnPc, 17b) was employed as a donor instead of 17a conversion efficiency of 1.3% was obtained [327]. Furthermore, other different acceptors (17c-e) were used and the efficiencies obtained were usually lower than 1% [328-330].
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Fig. (13))

        18-Crown-6 substituted phthalocyanines for application as liquid crystals.
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Fig. (14))

        Perylene-phthalocyanine system for photovoltaics.

        To improve the process ability of a phthalocyanine: [6 , 6]-phenyl-C61-butyric acid methyl ester blend (phthalocyanine:PCBM) and to expand the spectral absorbance window to 350-550 nm, Ru(II) phthalocyanine 18 complex was prepared and evaluated in a blended Pc:PCBM blend bulk heterojunction solar cell (Fig. 15) [331]. The blend with a 2:1 ratio of acceptor:donor produced efficiencies up to 1.6%.


        Phthalocyanines can be used in solar cells with mainly three different attachment methods: adsorption, metal-ligand interactions and anchoring using sulfoxy or carboxy substituents.


        While the first method produces cells with very limited efficiency, the two last anchoring methods provide the requested ability for efficient light harvesting.
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Fig. (15))

        Ruthenium(II) phthalocyanine complex.

        Many photosensitizers of the phthalocyanine family have been tested in DSSCs, with different efficiencies, for instance the dye 19 gave 3.1% efficiency with a PEDOT:PSS-coated fluorine-doped tin oxide (FTO) counter electrode (Fig. 16). Additional development of the system was obtained by pretreatment of TiO2 surface with dilute HNO3, displaying a 4.1% overall efficiency [332]. Using chenodeoxycholic acid as co-adsorbent, dye 20 (Fig. 16) gave an efficiency of 3.6% [333] and 7.7% when tested as a blended DSSC. The use of Pc dyes with two carboxy ligands that had no macrocyle core conjugation was also reported [334]. The dye 21, in the presence of chenodeoxycholic acid (Fig. 16) gave an energy conversion efficiency of 3.1%.


        A high efficiency sole phthalocyanine DSSC was reported by Kimura [335]. Phthalocyanine 22 (Fig. 16) displayed a conversion efficiency of 4.6%, most probably due to diphenylphenoxy moieties bulkiness, resultant from low dye aggregation.
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Fig. (16))

        Phthalocyanines for application in DSSCs.

        The same group later prepared compound 23 (Fig. 16), bearing electron-donating methoxy groups in the 2,6-diphenylphenoxy substituents [336], displaying a higher efficiency of 5.3%. In sequence, the same group reported an efficiency of 5.9%, using phthalocyanine 24, (Fig. 16) [337], with 2,6-diisopropylphenol groups at the periphery of the phthalocyanine and direct attachment of a carboxylic acid.


        Besides zinc phthalocyanines, attention has also been given to ruthenium, titanium and silicium derivatives, profiting from their axial coordination ability, preventing molecular aggregation and thus alleviating the unfavorable recombination kinetics and poor injection between the dye and the TiO2. In this context, phthalocyanine 25 (Fig. 17), bearing peripheral carboxylic acid groups and two pyridine axial ligands, was compared with phthalocyanine 20 in DSSCs, just differing in the central metal plus its own coordinated axial ligands [338].


        Further, Ru phthalocyanine derivatives 26 (Fig. 17) were reported [339], failing to improve the photovoltaic performance. While no enthusiastic results have been reported for titanium [340, 341] and silicium phthalocyanines [342] of the same type, more recent examples describing the synthesis and application of silicon compounds 27 and 28 (Fig. 17) were reported [343].
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Fig. (17))

        Axially substituted phthalocyanines for application in DSSCs.

        Characterized by its red absorption features, 28 demonstrated an efficiency of 4.5%, ascribed to the improvement of dye’s light-harvesting capability by direct naphthalene unit fusion, along with reduced molecular aggregation by axial introduction of the alkylsilane chains. Nevertheless, naphthalocyanine 27 only presented a 0.9% efficiency, which could be attributed to the weak dye regeneration caused by the HOMO energy level of 27, in opposition to 28, as demonstrated by cyclic voltammetry.

      


      
        Applications in Nonlinear Optics


        Nonlinear optical (NLO) materials can control optical signal processing applications, e.g. all-optical switches, modulators and high speed electro-optical, as well as optical signals in optical communications.


        On from the 80s, organic materials appeared as important subjects for NLO applications [344-346], since they exhibit fast and large nonlinearities and are usually easy to integrate and process into optical devices. Furthermore, organic materials offer the advantage of fine-tuning, modification of the chemical structure. Particularly, phthalocyanines can have large nonlinearities and picosecond response times, having the potential to be integrated into optical devices.


        Nonlinear refraction and absorption are nonlinear optical features directly related. Generally, several mechanisms, both non-parametric and parametric, contribute to the nonlinearities and a consistent evaluation of the responsible mechanisms requires experiments involving different pulse lengths. Optical limiting consists of a sample transmittance decrease under fluence illumination or high intensity. Optical limiting is also regarded as the reverse of saturable absorption where increase in transmittance is seen at high illumination. Phthalocyanines are promising metallo-organic materials for optical power limiting in the visible and NIR spectral range, due to their suitable photophysical properties.


        Phthalocyanine’s first report on optical limiting appeared for chloroaluminium phthalocyanine 29 (Fig. 18) [347], and later on, the heavy-atom effect has been explored to obtain remarkable improvements on the phthalocyanine’s reverse saturable absorption. Thus, several phthalocyanine series containing In(III), Ga(III), Al(III), Pb(II) and Sn(IV), Ge(IV), Si(IV) as central atoms were studied [348]. For example, a lead phthalocyanine bearing 4 β-cumylphenoxy groups 30 [349-351] and a chloro-indium phthalocyanine 31 [218] are still among the best benchmark materials (Fig. 19) [352].


        Several groups have been very proficient on the synthesis of several series of phthalocyanines in order to establish unambiguous structure property relationships. For instance, Hanack’s group reported, in 1998, the highly soluble axially substituted aryl and alkyl indium phthalocyanine compounds (32) [353], extending their studies to several sets of phthalocyanines (33) (Fig. 18) [221, 354]
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Fig. (18))

        Phthalocyanines for NLO applications.

        Phthalocyanines used as nonlinear transmitters frequently suffer from solution aggregation, causing upper triplet state fast decays [355-357]. Changing axial ligands in phthalocyanines proved to be a valuable tool for suppressing the typical aggregation.


        Thus, the axially substituted phthalocyanine complexes 32b and 32e, as well as their related 33b and 33e displayed higher nonlinear absorption coefficients, lower limiting thresholds and lower transmission at high fluences. Snow and Shirk [358] also prepared a substituted phthalocyanine 34 (Fig. 19) for optical limiting thin film production, displaying self-healing properties after irradiation.


        The presence of peripheral electron withdrawing groups effect in Pc’s was also analyzed [359]. Their presence, as in Pcs 35 (Fig. 19) or 36 (Fig. 20) improved the OL effect, probably due to a transition dipole moment increase between the excited states accountable for the OL effect. Several other studies have been carried out, always with the purpose of establishing standard methodologies for measuring the optical power limiting effects of phthalocyanines and derivatives [164, 360-364].
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Fig. (19))

        Phthalocyanines for NLO applications.

        Extension of conjugation in going from phthalocyanines to naphthalocyanines causes an increase in π-electron delocalization and electronic polarizability in both linear and nonlinear optical regimes [365, 366]. The structure property relationships that were carried out afterward were similar to the studies made for phthalocyanines, as the structural similarity induced quite related results. Thus, the optical limiting properties of naphthalocyanines were first reported in 1991 [367], and other authors continued their efforts in finding suitable naphthalocyanines for optical power limiting [368-371].


        Through appropriate peripheral substitution, naphthalocyanines can give an increased transmitting window, shifted more to the red, which is desirable for the fabrication of optical limiters effective in the broad visible-light range including the red-light region. A strong naphthalocyanine’s Q-band bathochromic shift upon alkoxy-substitution in the peripheral positions closest to the core (α- or 1,6-positions) can be observed, due to mixing the oxygen pz-orbitals with π-HOMO of the macrocycle and distortion of the naphthalocyanine-core geometry from the planar, causing the destabilization of π -HOMO.


        Thus, α-substituted alkoxy naphthalocyanines 37a and 37b (Fig. 20) presented their maximum transmittance at 635 nm in contrast to 560nm for other naphthalocyanines [371], and the absorption maximum of 37c was shifted to 910nm leaving open the 520-780nm window in which RSA is observed [372]. Nevertheless, no significant improvement was observed, for other substitution patterns were tested. For instance, compounds 38a,b (Fig. 20) were also prepared [208, 373], where compound 38b has shown high solubility and no aggregation at 2x10-3M concentrations in chloroform and an optical limiting threshold of 10 nJ.


        The presence of heavy atoms like bromine in peripherally of the naphthalocyanines was also focused [374]. It could be seen that the influence of bromine substituent on the excited state absorption was significant and, therefore, the optical limiting behavior of 39a was better than the one of 39b (Fig. 21). Later, a comparison of the effect of the presence of halogens at the periphery was evaluated [375-377]. For instance, the comparison of nonlinear transmittance of naphthalocyanines 40a,b (Fig. 21) [377] demonstrated that bromine substituted naphthalocyanine rings display significantly OL effect enhancement when high-intensity nanosecond laser pulses at 532nm are utilized.
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Fig. (20))

        Naphthalocyanines for NLO applications.
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Fig. (21))

        Naphthalocyanines for NLO applications.

        The NLO properties two Si naphthalocyanines 41a,b (Fig. 21) [378] were measured, showing that the increasing number of peripheral bromines from 41a to 41b resulted in a triplet excited-state lifetime decrease and consequent triplet excited-state quantum yield increase. The improved nonlinear transmittance (NLT) could be mainly attributed to a triplet excited state absorption to ground-state absorption cross-section increased ratio.


        In order to acquire the differences in the OPL capability upon variation of the axial ligand on naphthalocyanines, the axial halogen effect on the OL of indium naphthalocyanines 42a-c (Fig. 21) was reported [379]. Good OL effect of 532nm picosecond and nanosecond laser pulses using these complexes was observed; however little influence of halogens at axial positions was found.

      


      
        Applications as Photosensitizers for Photodynamic Cancer Therapy


        As already well noted, phthalocyanines absorb strongly in the red and NIR part of the visible. Phthalocyanines are particularly interesting for photomedical applications, and have been used for photodynamic therapy of cancer since 1985 [232, 380]. In some cases photodynamic therapy treatment has some advantages over conventional cancer therapies such as chemotherapy, radiation and surgical treatments. It permits selective damage of diseased tissues, due to interaction of individually non-toxic components (photosensitizer, light and oxygen).


        Phthalocyanines belong to the group of 2nd generation photosensitizers, exhibiting high extinction coefficients between 670 and 750 nm. Variation of the peripheral and axial substituents can modify the aggregation tendency, biodistribution, pharmacokinetics, solubility, as well as fine-tuning of NIR absorbance [381, 382]. For instance, the use of detergents can minimize the natural aggregation tendency of phthalocyanines in aqueous buffer (pH 7.4), allowing these compounds to keep their photochemical activity [383, 384].


        One of the most known (and successful) cases of phthalocyanine use for photodynamic therapy regards the report of sulfonated aluminium phthalocyanine derivative 43 (also known as Photosens®, a registered trademark by Russian researchers) (Fig. 22), which started clinical trials against breast, skin, gastrointestinal tract and lung cancers [385-388]. More recently, silicon phthalocyanine complex 44 (also known as Pc4) (Fig. 22) was successfully tested in blood sterilization, and against colon, ovarian, and breast cancers [237, 385, 389-394]. Cationic phthalocyanine derivatives are believed to localize in the mitochondrion which are organelles crucial to cell survival and the site of oxidative phosphorylation [395-397].
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Fig. (22))

        Water soluble phthalocyanines for PDT applications.
      


      
        Applications as Antibacterial Composites


        The application of photodynamic therapy to kill microbial pathogens is currently an emerging area of research. Nevertheless, the first recorded observation of photodynamic processes was the inactivation of a microorganism (paramecia) by Oscar Raab, more than 100 years ago [398]. The development of our current lifestyle has naturally induced bacteriological proliferation, and photodynamic therapy can be seen as a practical alternative, since photosensitizers can act on parasitic protozoa, bacteria and fungi, upon light activation [242-244, 399].


        Gram bacteria can be classified as gram-negative and gram-positive bacteria. Gram-positive bacteria possess thick peptidoglycan layers in the cell wall that encases their cell membrane, while gram-negative bacteria posses thinner peptidoglycan layer sandwiched between the inner cell membrane and the bacterial outer membrane. Regardless of their thicker peptidoglycan layer, gram-positive bacteria are more susceptible to antibiotics than gram-negative ones, due to the latter's relatively impervious lipid bacterial outer membrane [400]. Usually, neutral and anionic photosensitizers are efficiently bound to Gram (+) bacteria, and they effectively inactivate these Gram (+) bacteria after illuminating with appropriate light, which is not the case for Gram (-) bacteria [400].


        
[image: ]


Fig. (23))

        Cationic phthalocyanines for application in antibactericidal applications.

        Since photosensitizers bearing cationic charge increase the permeability of the outer membrane of Gram (-), these may effectively increase killing Gram (-) bacteria and many phthalocyanine type sensitizers have already been tested for photodynamic inactivation of bacteria. For instance Jori and van Lier studied the effect of pre-treatment of the bacteria with ethylenediaminetetraacetic-acid (EDTA) [401, 402]. Treatment with EDTA made Gram (-) cells lose up to 50% of their lipopolysaccharides, caused by removal of divalent cations upon EDTA treatment. The photosensitizers 45 (Fig. 24) were then used to efficiently inactive the Gram (-) bacteria, through induced photosensitivity and the analysis on irradiated cells suggested that the cytoplasmic membrane was an important target of the photo process.


        Several research groups, including Jori [251, 403] and Brown [247, 250], among others [404-406] are quite active in understanding the mechanisms of action of phthalocyanines in the use of phthalocyanines for bacteria inactivation. For instance, Jori prepared unsymetrically substituted Zn(II)-phthalocyanines 46ab (Fig. 23) [403] which were used efficiently against Candida albicans. They have also prepared the cationic Zn(II) phthalocyanines 47a,b (Fig. 23) [251] bearing peripheral cationic substituents which have shown to be efficient photoantimicrobial agents: against Staphylococcus aureus upon short irradiation times in the presence of low phthalocyanine concentrations (0.1 μM). Brown also prepared cationic phthalocyanine 48 and used it successfully for Gram-positive and Gram-negative bacteria photoinactivation [247, 250].

      


      
        Applications in Molecular Imaging


        Phthalocyanine molecules can be used to detect and image diseased tissues. The ideal fluorophore should own a large Stokes shift, minimum photobleaching, high quantum yield of fluorescence, besides high target affinity. The research and development of late generation photosensitizers spotted the potential in the detection and treatment of diseases that a unique therapeutic and imaging platform could have.


        Switching between imaging and therapeutic modalities in a single platform is a particularly suitable use for photosensitizers in imaging modalities such as radio, nuclear, fluorescence and magnetic resonance imaging, combined with photodynamic, photoacoustic or photothermal therapies, besides hyperthermia, chemo and gene therapy [407].


        Lier group has promoted the 64Cu labeling of sulfo-phthalocyanine derivatives 49a-e (Fig. 24) [408, 409]. In the first case, a mixture of phthalocyanines with different degrees of sulfonation was labeled with 64Cu source (64Cu(OAc)2) [408], by conventional heating, yielding a mixture of sulfonated 64Cuphthalocyanine derivatives, appropriate for positron emission tomography (PET) studies.


        Liu [410, 411] also synthesized several zinc phthalocyanines substituted with galactose moieties 50a-e (Fig. 24) and studied them as near infrared fluorescent probes, using liver tumor-bearing athymic nude mice as models.


        The authors observed that in the tumor imaging of galactose substituted zinc phthalocyanines, the fluorescence images were best acquired at 24 h after intravenous injection, since due to probe distribution, the fluorescence was found in the whole body with no selectivity at initial hours. Luminescence signals were observed in the liver cancer, whereas no luminescence signal was observed in the control group.


        Vicente also prepared zinc(II) phthalocyanine 51 substituted with a monoclonal antibody (MAb) [412] (Fig. 24). The zinc phthalocyanine:MAb bioconjugate (3:1 ratio) was in vitro tested for its human colorectal HT-29 cells target capacity, by fluorescence.
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Fig. (24))

        Phthalocyanine conjugates for application in medical imaging.
      

    


    
      EXPERIMENTAL SECTION


      
        Synthesis of Water Soluble Tetrasulfonated Phthalocyanine (Scheme 4)
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Scheme (4))

        Water soluble tetrasulfonated phthalocyanine. Procedure for total synthesis of phthalocyanine A can be directly found in Reference [413].
      


      
        Synthesis of (2,3)-type Octa-alkoxy Substituted Phthalocyanines (Scheme 5)
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Scheme (5))

        2,3-Octa-alkoxy substituted phthalocyanine. Procedure for total synthesis of phthalocyanine E can be directly found in Reference [414].
      


      
        Synthesis of (1,4)-type Octa-alkoxy Substituted Phthalocyanines (Scheme 6)
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Scheme (6))

        2,3-Octa-alkoxy substituted phthalocyanine. Procedure for total synthesis of phthalocyanine G can be directly found in Reference [415].
      


      
        Synthesis of Sulfonamide Substituted Phthalocyanines (Scheme 7)
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Scheme (7))

        Sulfonamide substituted phthalocyanine. Procedure for total synthesis of phthalocyanine I can be directly found in Reference [416].
      


      
        Synthesis of Tetra Substituted Glucopyranosyl Phthalocyanines (Scheme 8)
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Scheme (8))

        Tetra glycosylated zinc phthalocyanine. Procedure for total synthesis of phthalocyanine I can be directly found in Reference [417].
      


      
        Synthesis of Unsymmetrically Substituted (AAAB) Phthalocyanines (Scheme9)
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Scheme (9))

        Unsymmetrically substituted (AAAB) nickel phthalocyanines. Procedure for total synthesis of phthalocyanine K can be directly found in Reference [22].
      


      
        Synthesis of Subphthalocyanines (Scheme 10)
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Scheme (10))

        Subphthalocyanine synthesis. Procedure for total synthesis of subphthalocyanine L can be directly found in Reference [418].
      


      
        Synthesis of (AABB) Substituted Phthalocyanines (Scheme 11)
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Scheme (11))

        Synthesis of (AABB) substituted phthalocyanine. Procedure for total synthesis of phthalocyanines N and O can be directly found in Reference [419].
      


      
        Synthesis of (ABAB) Substituted Phthalocyanines (Scheme 12)
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Scheme (12))

        Synthesis of (ABAB) substituted phthalocyanine. Procedure for total synthesis of phthalocyanine R can be directly found in Reference [48].
      


      
        Synthesis of an Octa-substituted Naphthalocyanine (Scheme 13)
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Scheme (13))

        Octa-substituted naphthalocyanine. Procedure for total synthesis of naphthalocyanine V can be directly found in Reference [377].
      

    


    
      CONCLUDING REMARKS


      Phthalocyanines, as NIR dyes, are appealing molecules for a variety of applications. Their synthetic versatility can simply allow almost any type of application known in fields ranging from catalysis, to materials science and biomedicinal applications.


      As far as any scientist imagination can go, so can the possible applications for materials based on phthalocyanines and related compounds. The possibility of widely varying the substitution pattern on phthalocyanine structures is probably the main possible direction for successful applications; however not less important than the establishment of definite structure-property relationships for any desired purpose, something has been only partially achieved so far. Standardization of procedures will definitely boost the understanding and appliance of phthalocyanines in the main areas of science.
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