

[image: image]

Ultimate Agile
Administration
with Jira

[image:]

Solutions for Agile Project Administration
Using Dashboards, Automation
Rules, and Plugin
Integration with Jira

[image:]

Yogita Chhaya

[image:]

www.orangeava.com

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Jira® is a proprietary product developed by Atlassian Corporation.

First published: December 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-96782-60-3

www.orangeava.com

Dedicated To

My beloved Parents,

family members

and

my mentors

About the Author

Yogita Chhaya is an engineer and educator and has extensive experience in the field. She has served as an independent Jira software educator for multinational companies and educational institutes and is a seasoned Jira Administrator. With over 20 years of experience in production, product management, process management and various roles within telecom companies, she has also been involved in the education and training sectors. Her active involvement includes working on Agile transformation, evaluating various Atlassian tools, managing server migrations and conducting training on Jira software along with add-on applications.

About the Technical Reviewer

The author, Subramanyam Gunda, brings over 15 years of professional experience in the IT and service industry to the table, with a rich background as an Agile Consultant (Agile Product Owner, Lead Scrum Master, Agile coach).

He takes immense pride in his writings and publications, having authored two impactful books. His journey began with the Dell-EMC organization publishing his three Data Domain technical KB articles, a game-changing moment that bolstered his confidence in both his subject matter expertise and writing skills. His first book, "ABCs of Agile Scrum Framework: Secrets to Successful Project Management," served as a valuable reference for countless project managers and Agile enthusiasts. Following its success, his second book, titled "Business Analysis Life Cycle & the IT Business Analyst's Role in Traditional, Digital, and Agile Worlds," garnered critical acclaim, awards, and recognition. Currently, he is crafting his third book on Agile concepts (revision of his first book) and his fourth book on Tarot readings.

In addition to his literary achievements, Subramanyam has secured gold, silver, and bronze medals for India in the "Atlympics - 2021 competition," a prestigious event hosted by the Atlassian Organization. Beyond his professional pursuits, he passionately volunteers his time and serves in various capacities, including as an 'Atlassian Community Leader for the Visakhapatnam chapter,' an 'Atlassian Creator,' and a member of the 'Atlassian Community Advisory Board.'

Outside of his career and volunteer work, Subramanyam enjoys participating in online Sudoku and Rubik's Cube competitions, where he has earned numerous accolades as well as writing blogs on his website.

He generously dedicates time to reviewing fellow author's books, offering constructive feedback and valuable suggestions. Among the prominent titles he has reviewed are "Supercharging Productivity with Trello," "The Art of Crafting User Stories," and "Unleashing the Power of UX Analytics," all published by Packt.

You can connect with the author through the following platforms:

LinkedIn: https://linkedin.com/in/gsubashb4u

YouTube: https://www.youtube.com/@gsubashcosmopolitan

Personal website: https://www.gsubashcosmopolitan.com/

Atlassian Chapter: https://ace.atlassian.com/visakhapatnam/

Acknowledgements

I am grateful for the support I received from my parents when I started learning Atlassian products. They were always with me on the journey of learning and supported me at every step I took. It would not have been possible to write this book without their inspiration.

I am thankful to my family members for supporting and encouraging me throughout my writing journey. They encouraged me to write this book and share whatever I know through it.

I am grateful to all the organizations that provided support when I was a beginner and later as a trainer. I have worked with many organizations and individuals. Writing this book wouldn't have been possible without their support.

Above all, I thank the team that guided, supported and helped me write this book. I am thankful to the reviewer and technical reviewer of the book who guided me throughout the writing process. Their inputs have made this book insightful and invaluable for readers seeking practical understanding and real-world applications.

Preface

This book covers the fundamentals of Agile, including Agile values and principles. It also introduces the Scrum and Kanban frameworks, important terms in Jira, and how to create a Jira site. The book covers project templates in Jira and explains the importance of creating the right project. Additionally, it covers all concepts related to Jira Administration and customization with examples.

This book covers both types of projects, whether they are managed by administrators or teams. It explores all the concepts related to Agile project management, reporting, and tracking Agile metrics. The content includes backlog management, sprint operations, insights provided by Jira, and harnessing the power of Jira filters. The book highlights the importance of automation in Jira and the concept of using smart values in automation rules. It also provides use cases and step-by-step guides for administrator tasks. Additionally, it covers the Advanced Roadmap, useful for capacity planning and tracking cross-project work in large organizations. Furthermore, it explains the significance of adding plugin applications to expand the functionality of Jira software and how to purchase such software from the Atlassian Marketplace.

This book is divided into 12 chapters. They will cover Agile fundamentals, Jira Cloud basics, complete Jira Administration with examples, multiple use cases, and step-by-step processes. Learners will be able to use Jira software more efficiently and will find administration easier and more interesting. The details are as mentioned below.

Chapter 1: The book will start with an introduction to Agile, providing an overview of Agile frameworks, the difference between Agile and waterfall methodology and explaining the basics of Scrum and Kanban frameworks. It will then take you through Jira concepts, various products in the Atlassian ecosystem and Jira Terminology, and explain why it is famous.

Chapter 2: This chapter will cover the understanding of project definition and creating various projects using standard templates in Jira. It will also provide detailed information about the differences between team-managed and company-managed projects. Additionally, the chapter will offer details on customizing a template and provide an overview of the available templates.

Chapter 3: It will cover user creation, groups, and permissions from the administrator’s perspective. The chapter will include use cases, adding users, project roles in company-managed projects, and details about various permissions in Jira. These permissions help create and customize permission schemes.

Chapter 4: This chapter will cover the creation of issues, creating a product backlog, sprint boards, and all related operations and customizations. It will encompass all the features of Agile boards, sprint operations, creating epics and versions. The chapter will also cover understanding Jira Insights on backlog and board.

Chapter 5: This chapter will cover how to add issue types and issue type schemes as an administrator. It will include information about issue status, resolutions, priority, and issue type hierarchy levels. The chapter will guide you on creating sub-task issue types, issue operations, associating an issue type with a project, and understanding issue type schemes.

Chapter 6: This chapter will focus on creating new custom fields, ways to customize fields on the screen, and details about the types of custom fields available in Jira. It will also explain how to add context to the fields, locked custom fields, and field configuration schemes with examples. Lastly, it will cover creating screens, screen schemes, issue-type screen schemes, and use cases, providing step-by-step explanations with examples for each topic.

Chapter 7: This chapter begins with an understanding of workflows and their components. It covers the steps to create, edit, and delete workflows, including global transitions, adding screens to set resolution, advanced workflow features, and a comparison between active and inactive workflows. Each concept in this chapter is explained with examples, highlighting common mistakes to avoid while creating workflows and providing relevant use cases.

Chapter 8: This chapter starts by explaining basic and advanced search methods and how to create and save filters. It provides insights into Jira’s built-in filters, managing subscriptions, various filter operations, and JQL with examples. The chapter then covers dashboards, explaining how to add gadgets, customize dashboards according to your needs, and use the wallboards feature. It covers the types of reports available in Jira and provides detailed explanations of all Agile reports. Finally, it gives an overview of Atlassian Analytics.

Chapter 9: This chapter begins with an understanding of and accessing automation rules in Jira, including various elements of automation rules. It covers the usage of automation templates, the automation playground, and the performance insights on automation rules executed. The chapter guides you through the steps to create automation rules and provides multiple examples of rules. Finally, it discusses a few use cases of automation rules.

Chapter 10: This chapter starts with understanding team-managed projects, their features, and how to set them up. It includes information on adding people, roles, access levels, and Agile features. The chapter then covers issue types in team-managed projects, creating custom issue types, configuring workflows, and defining statuses, transitions, and transition properties. It also discusses adding/removing workflow rules, Agile board features, managing backlogs, understanding insights, and the Timeline view. Lastly, it addresses reports, migrating from team-managed to company-managed projects and vice versa, and provides use cases related to team-managed projects.

Chapter 11: This chapter begins with tips for Product Owners, Scrum Masters, and Software Developers. It covers creating projects with sample data, creating a project with multiple boards, and importing issues in Jira. Additionally, it discusses various Administrator roles in Jira, understanding Advanced Roadmap, viewing a sample plan, creating a plan, Timeline View, Dependency Report, setting up teams, creating releases, creating cross-project releases, adding filters, and configuring issue hierarchies above Epics in Advanced Roadmap. Finally, it provides an overview of JIRA Product Discovery and includes use cases.

Chapter 12: This chapter starts with an introduction to the Atlassian Marketplace, guiding readers on selecting plugins and explaining key terms of the applications listed on the marketplace. It also covers how to install plugins and provides an overview of Admin-tools plugins. Lastly, it offers an overview of popular plugins and important use cases.

Get a Free eBook

We hope you are enjoying your recently purchased book! Your feedback is incredibly valuable to us, and to all other readers looking for great books.

If you found this book helpful or enjoyable, we would truly appreciate it, if you could take a moment to leave a short review with a 5 star rating on Amazon. It helps us grow, and lets other readers discover our books.

As a thank you, we would love to send you a free digital copy of this book, and a 30% discount code on your next cart value on our official websites:

www.orangeava.com

www.orangeava.in (For Indian Subcontinent)

[image:] Here's how:

Leave a review for the book on Amazon.

Take a screenshot of your review, and send an email to info@orangeava.com (it can be just the confirmation screen).

Once, we receive your screenshot, we will send you the digital file, within 24 hours.

Thank you so much for your support - it means a lot to us!

Colored Images

Please follow the link to download the
Colored Images of the book:

https://rebrand.ly/418456

You can find code bundles of our books on our official Github Repository.
Go to the following link to explore further:
https://github.com/ava-orange-educaiton

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Getting Started with Agile, Jira, and Jira Terminologies

Introduction

This chapter will cover the basics of Agile methodology, including the history of Agile and how it differs from the waterfall approach. We will then understand Scrum and Kanban, two popular methodologies of software development. We will explore Jira, different Jira products, and reasons why Jira is being used by different industries. At the end of the chapter, we will cover Jira terminology commonly used in the field.

Structure

In this chapter, we will discuss the following topics:

	History of Agile

	The difference between Waterfall and Agile

	Agile Mindset

	4 Values and 12 Principles of Agile

	Various Agile Frameworks

	Defining Scrum

	Scrum Roles, Ceremonies, and Artifacts

	Defining Kanban

	Kanban practices, principles, benefits, and disadvantages

	
Creating User Stories and Product backlogs

	Estimating and prioritizing work in Agile

	Agile metrics and performance tracking

	About Jira

	Step-by-step guide to creating a Jira site

	Jira’s popularity

	Jira Terminology

History of Agile

Back in the 1990s, products were not solely dominated by software applications. They were a combination of hardware and software products. It is important to note that software was becoming increasingly complex and important in its own right. This is one of the factors that led to the need for a new way of developing software. It used to take more than a few years to complete the development cycle and launch a product. By the time it was handed over to the customer, their requirements had changed due to the long lead time and the products had already entered the market. In addition to that, some of the features were of no use to the customers. In software development, there were many processes to be followed, and a lot of documentation was required to be done as a part of the process.

As the years passed, software projects were becoming more important, and it was felt that a new process or new way of developing software was required by everyone. The same thing was experienced in other industries such as automotive, aerospace, healthcare, and many others.

Many industries, beyond software development, faced challenges with long project cycles. Issues such as change in customer requirements, late feedback, increased cost, time spent on documentation, and most importantly, how to deliver continuously were challenges faced by project teams. The need for a more responsive and iterative approach became evident as businesses sought to stay competitive in rapidly evolving markets.

Toyota’s introduction of the Toyota Production System (TPS), which revolutionized manufacturing, was the beginning of the foundations of Agile. It was founded between 1945 and 1975 by Japanese industrial engineers. TPS prioritized flexibility, waste minimization, and ongoing improvement. To encourage flexibility and effectiveness in software development, agile techniques drew inspiration from TPS and adopted its ideas. While Agile drew inspiration from TPS, it was not directly founded during that period; instead, it was formalized in 2001 with the Agile Manifesto.

Evolution Toward the Agile Manifesto

1980s: In the early 1980s, the seeds of Agile methodology were sown with the emergence of lightweight software development approaches. The Waterfall model, a sequential and document-heavy methodology, dominated the scene. However, cracks begin to show as projects face delays, scope changes, and poor communication.

1990s - Iterative and Incremental Practices: As the 1990s dawned, software practitioners started experimenting with iterative and incremental practices.

Late 1990s - Crystal and DSDM: Towards the late 1990s, two notable methodologies, Crystal and Dynamic Systems Development Method (DSDM), emerged.

1990s - Extreme Programming (XP): In the late 1990s, Kent Beck introduced Extreme Programming (XP).

2001-The Agile Manifesto Takes Shape: In 2001, 17 people from the software industry met at a place, and they agreed upon a way of working which is known as the Agile Manifesto. There were people from the software industry who were following Scrum, XP, FDD, and many different methodologies. They did not like the word Lightweight for this new methodology and agreed and decided to name it Agile, meaning responding to change.

Implementing an Agile way of working organization-wide is known as Business Agility. It refers to an organization’s ability to adapt quickly to market changes, seize opportunities, and deliver value to customers. It enables businesses to respond quickly to changing customer needs. It is implemented by many organizations worldwide to stay ahead in today’s dynamic business environment.

Difference between Waterfall and Agile

Agile and waterfall project management strategies are two separate approaches to project management. In the waterfall model, the next phase starts only after the earlier phase is completed. In waterfall methodology, requirements gathering, design, development, testing, and deployment phases are accomplished in sequence. It emphasizes extensive planning, documentation, and a fixed scope, making it suitable for projects with well-defined requirements and limited changes. It is therefore considered to be rigid and not able to manage unplanned changes.

Agile, on the other hand, is a flexible and iterative strategy that emphasizes adaptive planning and collaboration. It divides work into discrete sprints or iterations, allowing for continual feedback and adjustments. Agile values change and encourage client participation throughout the project. It encourages self-organizing teams and frequent communication, and focuses on providing incremental value. Agile teams use documentation to communicate and collaborate, but they don’t produce as much documentation as waterfall teams.

Table 1.1 illustrates the difference between Waterfall and Agile Methodology:

	
Aspects

	
Waterfall Methodology

	
Agile Methodology

	
Project Phases

	
Distinct phases – requirements, design, development, and more

	
Continuous cycles - sprints

	
Development Approach

	
Sequential and linear

	
Iterative and incremental

	
Project roles

	
Specific roles are assigned for each phase (for example, Business Analyst, Designer, Developer, Tester, Project Manager)

	
Product owner, Scrum Master, Development teams

	
Quality Assurance

	
Testing at the end of the cycle

	
Continuous testing and quality assurance

	
Team Structure

	
Hierarchical with predefined roles

	
Cross-functional self-organizing teams

	
Communication

	
Less customer involvement

	
Close collaboration with customers

	
Documentation

	
Extensive documentation throughout

	
Documentation as needed

	
Flexibility

	
Limited flexibility to changes in requirements

	
Welcomes changes in requirements throughout the project

	
Feedback

	
Limited customer feedback during development

	
Regular customer involvement and feedback

	
Delivery time

	
Longer delivery time

	
Shorter delivery time

	
Change Implementation

	
Difficult to accommodate changes

	
Welcomes changes, even in later stages of development

	
Risk Management

	
Addressed in early planning, may not handle unforeseen risks well

	
Ongoing risk management

	
Project outcome

	
Well-defined scope and deliverables

	
Evolving scope and adaptable deliverables

	
Suitability

	
Projects with stable and known requirements

	
Projects with dynamic or evolving requirements

Table 1.1: Waterfall vs. Agile methodology

Agile Mindset

Being agile is more about beliefs, values, attitudes, and behaviors. For example, in a game of Rugby, the entire team works towards achieving a goal by adapting to the situation, collaborating, and with the “everyone is equal” attitude. It can be applied to any industry and any functional group, such as marketing, human resources, operations, and more. It is a way of working in which one must co-create, explore new ideas, experiment and experience, innovate, and remain adaptable.

4 Values and 12 Principles of Agile

In the 1990s, there was a period when projects were frequently delayed due to lengthy processes and sequential approaches to software development. The released products did not meet customer expectations due to the time lag, resulting in numerous order cancellations. These frustrations led to the creation of the Agile Manifesto by 17 leaders. This manifesto includes 12 principles and 4 values, which we will cover in this section.

4 Agile Values

There are multiple Agile methodologies, each of which applies the four values of the Agile Manifesto in different ways to guide teams in developing good quality software.

	
Individuals and Interactions over Processes and Tools
In the waterfall model, more importance was given to rigid processes. Even after spending a lot of time following these processes, the final software products were not of the best quality and error-free. It is possible to design and develop innovative software products if more importance is given to smart and competent people who can sit together, discuss, share, and solve problems. Processes should be followed, but they need to be simplified. Tools have to be customized to follow processes easily and make the development faster.

	
Working Software over Comprehensive Documentation
There was a time when very detailed documents were prepared for the features, requirements, test cases, diagrams, and releases. This was not helpful to provide value to the customer, and it used to delay the product releases. Delayed releases and obsolete features were the cause of the loss of business. More importance is given to working software, which is provided to the customer, and based on the feedback, further development is done. As per Agile Manifesto, providing value first is of more importance than creating outdated documents.

	
Customer Collaboration over Contract Negotiation
In the old ways of project development, customers used to come into the picture at the beginning, once during the development cycle, and finally at the end. The products were developed based on what is written in the contract documents. In an agile way of working, customers come into the picture to provide feedback on a small piece of software, and based on the feedback and their actual needs, further development is carried out. This way it is possible to do immediate corrections if it is going in the wrong direction with the help of a customer. Continuous interaction with the customer is helpful to find out the right needs than what is written in the legal documents.

	
Responding to Change over Following a Plan
Traditionally, plans were prepared well in advance. However, it was not possible to incorporate any changes in that plan. Even a small change in the requirement was considered impossible. When a plan is made with agility in mind, it provides direction initially. Based on a rough plan, product development is started and then there is a scope for change. A small change in specification is discussed by all the stakeholders and taken up as an opportunity rather than an obstacle.

Agile Principles

The 12 principles act as guiding principles for the Agile methodologies. They outline a culture that embraces change and emphasizes customer-centric product development. These principles emphasize the importance of aligning new products with business needs:

	
Customer Satisfaction through Early and Continuous Delivery
By iteratively delivering working software, the customer is satisfied as he is getting some valuable features early in the cycle. At the same time, in every release cycle, he is going to receive something new which makes the customer happy.

	
Welcome Changing Requirements, Even Late in Development
In this dynamic world, everything changes continuously. Similarly, by incorporating changes in the requirements during the entire software development life-cycle, one can create the right products. By doing so, the final released software application is aligned with the actual and evolving requirements of the customer. Agile allows scope for changes even late in the development process.

	
Deliver Working Software Frequently
This principle recommends delivering new versions in a shorter time span, as opposed to the earlier longer time span. By doing this, the number of bugs per release is significantly reduced, leading to an overall improvement in the success of the software release. The release cycles are measured in the number of days rather than months.

	
Collaborate Daily between Business People and Developers
In the Agile way of working, there are no barriers to communication between business teams and developers. Business teams must communicate about the business requirements, any changes from the customer’s side, and also whether these changes can be managed or not by the developers. By collaborating with developers, any misunderstandings can be avoided. Business analysts have to convert any business language to a language that developers can understand. Even if the teams are geographically far from each other, providing feedback on a daily basis helps in getting good outcomes.

	
Motivated Individuals
It is about creating a conducive work culture and keeping the workforce motivated. Every member is allowed, trusted, and encouraged to give new ideas and find better ways of designing new products. If the team members are motivated, they can eventually create innovative architectures, designs, and products.

	
Face-to-face Conversations
Communication is the key to success. The same thing is emphasized in Agile. It could be physical meetings in the office or video conference meetings where people can communicate efficiently. Developers and teams must communicate daily to understand the initial and evolving requirements.

	
Measure of Progress through Working Software
Customers want a working and good quality product. It is the measurement of the overall performance of the team. The software is considered to be of good quality based on the feedback from the end-user.

	
Promote Sustainable Development
The teams should work at the same pace irrespective of the number of changes introduced. Any member or employee should not be burdened by the work more than his/her capacity. Otherwise, it can result in burnout of the teams and hence can affect the quality of the product.

	
Continuous Attention to Technical Excellence
Agile emphasizes on the good design of the product. This is a must-have for each and every team. It ensures that the software application is adaptable, maintainable, and scalable for future enhancements.

	
Simplicity
This principle suggests keeping the processes simple. Simplicity does not mean skipping important processes but it means avoiding complexity in design and coding. A working software product with less number of features is better than a problematic product having multiple features.

	
Self-organizing Teams
If the teams are empowered and autonomous, they can get better results. The agile teams consider themselves accountable and are ready to take responsibility for their work. Teamwork, Commitment collaboration, and Competency are the core skills to become more agile. The teams require a coach or a mentor but not a manager.

	
Regularly Reflect on Continuous Improvement
During the meeting, teams reflect on how they can improve the processes, productivity, and performance by making small changes. It is a continuous process to create a culture of continuous learning and working on improvement areas.

Various Agile Frameworks

We have covered Agile Scrum and Kanban in this chapter, among the many Agile frameworks listed as follows:

	
Kanban: We have covered the details of this framework in the next section.

	
Scrum: We have covered the details of this framework in the next section.

	
Feature-Driven Development (FDD): FDD is a software development methodology that follows an iterative and incremental approach. In FDD, the development process is broken down into manageable pieces —features— and then it is built incrementally. In this process, an overall model is developed, followed by creating a feature list, feature-wise planning, features-based design, and features development.
In FDD, the development process is structured around feature teams. Each of these teams is assigned the responsibility of delivering specific features. This way, the development effort is divided into smaller, more manageable tasks, making it easier to track progress and ensure that each feature is developed effectively. It maintains the iterative approach.

One of the important characteristics of FDD is its emphasis on collaboration. It promotes close interaction among team members, stakeholders, and clients. It helps to understand the project requirements correctly.

It also emphasizes well-defined processes. To summarize, it is a structured and flexible approach to software development.

	
Extreme Programming: Extreme Programming (XP) is an Agile software development methodology that promotes collaboration, adaptability, and high-quality code. It emphasizes practices like continuous testing, pair programming, and frequent releases. With a focus on customer involvement and iterative development, XP makes sure that software remains responsive to changing requirements. By fostering teamwork, automation, and streamlined processes, XP enables developers to deliver reliable software efficiently while maintaining a sustainable work pace. Extreme Programming is suitable for teams working on dynamic projects with evolving requirements.

	
Adaptive Software Development (ASD): ASD is a software development approach that embraces change as an inherent part of the process. ASD involves three distinct phases: speculation, collaboration, and learning. Speculation includes creating a preliminary plan based on what’s known, while collaboration encourages open communication and active participation from both the development team and stakeholders. The learning phase emphasizes adapting the plan based on new information and insights gained throughout the process. ASD recognizes that software projects often encounter unexpected shifts and encourages a flexible and iterative approach to development, ensuring that the end result aligns closely with evolving needs and requirements.

	
Dynamic Systems Development Method (DSDM): It is an Agile methodology that focuses on delivering functional solutions within a fixed timeframe and budget. DSDM divides development into specific time-bound phases, promoting regular user involvement and feedback. It encourages collaboration between developers, users, and business representatives to ensure that the software aligns with business needs. DSDM emphasizes the importance of delivering the most valuable features first, and it provides a set of principles and practices to guide teams in building high-quality solutions while accommodating changes. Overall, DSDM provides a structured framework for Agile software development, aiming to strike a balance between fixed constraints and adaptability.

	
Scrumban: Scrumban is a hybrid approach that combines the practices of both Scrum and Kanban methodologies. In Scrumban, teams use Scrum’s structured framework but add elements from Kanban to enhance flexibility and continuous improvement. This allows teams to transition smoothly between planned iterations (sprints) and a more flow-based approach. Scrumban is especially useful for teams that are already familiar with Scrum and want to introduce Kanban’s focus on optimizing workflow and minimizing bottlenecks. Scrumban can be implemented when a company wants to allow more flexibility to the teams or for a team facing problems implementing scrum.

Defining Scrum

Scrum is an Agile project management framework to create solutions for complex problems. It can be compared to the game of Rugby in which the goal is set and achieved by working on the principles of collaboration, teamwork, transparency, and agility. In scrum, work is divided into small time intervals called sprints, which can last for 1–4 weeks. The work items are also divided into small chunks called stories, tasks, and more. Each sprint begins with a planning meeting where the priority of the tasks to be taken is decided. The team meets daily to discuss the tasks done, tasks to be taken up, and to report any obstacles in completing the tasks planned to achieve the sprint goal. The teams are empowered, motivated, and work collaboratively to adapt to changing requirements at the same pace.

Scrum Roles, Ceremonies, and Artifacts

This section explains scrum roles, ceremonies, and artifacts.

In scrum methodology, there are three defined roles: scrum master, product owner, and the development team, which collaborate with each other:

	
Scrum Master
Scrum Master is a facilitator and a scrum expert. He makes sure that everybody in the team understands how the team has to collaborate, set the sprint goal, and achieve the same. He helps the team to remove any impediments and leads the scrum meetings.

	
Scrum Team
The scrum team is a team of developers and testers working together, collaborating, and working towards achieving the sprint goal. Team members can communicate with the product owner to understand the product specifications and task priorities. The team follows the guidance provided by the scrum master in case of any obstacles such as resources, server availability, or any other problems faced during the sprint.

	
Product Owner
Product owner is the single point of contact between the customer/end user and the scrum team. He manages the product backlog, helps in sprint planning, and participates in scrum meetings. He is also responsible for product backlog grooming and deciding the priorities of the user stories.

Scrum ceremonies provide opportunities for planning, tracking, and feedback. During these ceremonies, scrum teams interact with each other to understand the requirements, plan sprints, communicate about the obstacles, demonstrate the working software, and move forward with the lessons learned and action plan.

	
Sprint planning
It is a collaborative planning done by the product owner, scrum master, and development team. They discuss the priorities and decide which tasks to be included in the sprint backlog. During this ceremony, the team decides the sprint goal, which means deciding what they will deliver/develop in this sprint. The team estimates the effort required for each task and creates a plan to achieve the sprint goal.

	
Daily Stand-up
It is conducted daily in which team members and the scrum master discuss the progress done.

Points to discuss in Daily Scrum are as follows:

	What did I do yesterday as per the current sprint plan?

	What will I do today to meet the Sprint goal?

	Share about any impediment that prevents me/team towards completing the ongoing task in the sprint.

The members discuss the work done on the tasks, which task they will be taking up next, and share any impediments with the scrum master. It builds a culture of transparency, collaboration, and accountability among the team.

	
Sprint Review
It is done at the end of the sprint. In this ceremony, team members demonstrate the features and functionality developed to the stakeholders. Based on the feedback from the stakeholders, improvements can be made in the next sprint.

	
Sprint Retrospective
This ceremony is held to reflect on the completed sprint. In this ceremony, what went well, what could be improved, and actions to be taken are discussed. The team and developers identify the areas for improvement. A culture of continuous improvement and learning is created by conducting this ceremony.

There are three main artifacts in Scrum: Product backlog, Sprint backlog, and Increment.

	
Product Backlog
Product backlog is a list of features, bugs, and any other type of requirements to develop a product and is managed by the product owner.

	It is a complete list of items to design and develop the product.

	It is an ordered list and evolves continuously.

	The product owner is fully responsible for this artifact.

	It includes features, functionalities, fixes, and any other details required.

	
Sprint Backlog
Sprint Backlog is a complete list of tasks to be taken up in the next sprints and is managed collectively by everyone on the team.

	It is a complete list of work items to be taken up in a sprint.

	It is a detailed list that includes estimation and who will work on what details.

	It is updated or maintained by the developers.

	
Increment
In scrum methodology, increment is the combination of the software developed earlier plus the software developed in the recent sprint, which is integrated, tested, and ready to be released.

	It is work that is complete and meets the definition of done.

	It must be a working feature/functionality that can be used by the customer.

	An increment does not necessarily equal a release.

Agile scrum artifacts are the details used by the team and stakeholders. It is generated during the planning, breaking the tasks, working on the sprints, and at the end of the sprint. There are also other artifacts such as the definition of done and the Burndown chart.

Creating User Stories and Product Backlogs

User stories are a way of writing customer requirements in a simple language that anyone can understand. The number of such user stories, along with other tasks and features, are added to create the product backlog. The product backlog can be visualized and prioritized in a project management tool and is regularly updated by product owners to meet new business needs.

User Stories

	It is a document that contains information about the product requirements of the end-user in an understandable format.

	It contains information such as a description of the user, what exactly the user wants from that feature/functionality, and how the user will benefit from that feature.

	For example: As a user, I can find important items on the board by using the customizable “Quick Filters” so that I don’t have to search for those issues every time and work efficiently.

	For each and every user story, there is an acceptance criteria written, which makes sure the specific conditions are met. Based on the criteria, it is accepted as a working functionality or else it gets rejected.

	User stories can be divided into sub-tasks to simplify the work by the developers.

	It is user-centric and a new way of writing requirements in Agile methodology.

	User stories will evolve based on received feedback, providing clear specifications for both technical and non-technical team members.

Product Backlog

	A product backlog is a prioritized list of features, functionalities, improvements, suggestions, and bugs in detail.

	It is a bucket of tasks from which one can take up tasks and create a sprint backlog based on the priority decided by the scrum team.

	It is continuously refined during the development cycle and tasks can be added and modified based on the change in the requirements and other conditions.

	Priority of the work items is decided based on the value it provides to the customer.

	It is created and maintained by the product owner and is updated to meet the final objective of the product to be developed.

	The team and product owner estimate the tasks in the product backlog and break them down based on the complexity of the tasks.

	In a project management tool, it can be viewed on boards and then moved to the sprint backlog based on priority.

Defining Kanban

Kanban, derived from the Japanese word for signboard, was originally implemented by Toyota in Japan as part of their manufacturing processes. This innovative system served as a signaling mechanism, effectively enhancing the efficiency of their manufacturing units by visualizing bottlenecks within the system.

Kanban is a Pull system. In this method, work is done when there is a demand. Known as Just In Time (JIT), Kanban methodology employs a board where tasks or work items progress from left to right as the work unfolds. This concept has been embraced not only by manufacturing but also by software development teams. On a Kanban board, tasks are categorized into three main statuses: To do, where prioritization occurs before moving on to design, coding, testing, and release tasks in progress; and finally, tasks are moved to the Done status, signifying completion.

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewer

		Acknowledgements

		Preface

		Get a Free eBook

		Errata

		Table of Contents

		1. Getting Started with Agile, Jira, and Jira Terminologies

		Introduction

		Structure

		History of Agile

		Difference between Waterfall and Agile

		Agile Mindset

		4 Values and 12 Principles of Agile

		4 Agile Values

		Agile Principles

		Various Agile Frameworks

		Defining Scrum

		Scrum Roles, Ceremonies, and Artifacts

		Creating User Stories and Product Backlogs

		Defining Kanban

		Approaching Kanban

		Comparison of Scrum and Kanban Frameworks

		Estimating and prioritizing work in Agile

		Agile metrics and performance tracking

		About Jira

		A step-by-step guide to creating a Jira site ١٨

		Different Jira products

		Jira’s Popularity

		Conclusion

		Terminologies

		2. Working with Project Templates

		Introduction

		Structure

		Defining a Project in Jira Software

		Definition and Purpose of Project Templates

		Benefits of Using Project Templates in Jira

		Step-by-Step Guide to Creating a Project

		Choosing the Right Project Type: Team-managed vs Company-managed Projects

		The Difference between Company-managed and Team-managed Projects

		Factors to Consider While Choosing Team-managed Projects

		Factors to consider while choosing Company-managed Projects

		Exploring different Project Template Types and their Purpose

		Configuring Projects

		Examples of Successful Project Template Implementation and Configuration

		Agile Scrum Software Development Template

		Important Permissions

		Managing Projects

		People

		Permissions

		Notifications

		Automation

		Features

		Workflows

		Screens

		Fields

		Components

		Development Tools

		Scrum Boards

		Agile Metrics

		IT Service Management (ITSM) Project Template

		Creating an ITSM Project

		Configuring Project Settings

		Defining Request Types and Forms

		Establishing Service Level Agreements (SLAs)

		Creating Custom Queues and Workflows

		Assigning and Managing Tickets

		Monitoring and Report Generation

		Important Use-cases

		Conclusion

		3. Creating Users, Groups, Roles, and Understanding Permissions

		Introduction

		Structure

		Creating Users

		Invite Statuses in Jira

		Creating Groups

		Creating Project Roles

		Example of Creating a Project Role

		Groups vs Project Roles

		Understanding Permissions and Access Control

		Global Permissions

		Examples of Global Permissions

		Project Permissions

		Examples of Project Permissions

		Issue Permissions

		Voters and Watchers Permissions

		Comments Permissions

		Time Tracking Permissions

		Attachments permissions

		Jira Admin Helper to Troubleshoot Permissions

		Issue Security Permissions

		Permission Schemes

		Associating a Permission Scheme with a Project

		Conclusion

		Points to Remember

		Important links for reference:

		4. Managing Backlog, Sprints, and Boards

		Introduction

		Structure

		Steps to create an issue

		Different ways to create issues and product backlog

		Creating and grooming scrum product backlog

		Creating and grooming the Kanban product backlog

		Creating epic and version

		Product backlog vs. sprint backlog

		Sprint operations

		Creating and customizing scrum and Kanban boards

		Customizing scrum board

		Customizing Kanban board

		Scrum board vs. Kanban board

		Conclusion

		Points to remember

		Use cases with References

		5. Understanding Issue types and Issue type Schemes

		Introduction

		Structure

		Understanding issues

		Issue-Status, Priority and Resolutions

		Understanding Parent and Child issues and issue-type hierarchy

		Creating issue-type hierarchy levels

		Examples of Jira Products Issue types

		Understanding issue types with an Example

		Configuring issue types

		Creating Sub-task Issue type

		Understanding Issue-type schemes

		Associating an issue-type scheme with a project

		Understanding Issue Operations

		Components

		Issue Management Best Practices

		Conclusion

		Points to Remember

		Use cases with Reference Links

		6. Customizing Fields, Field Configuration schemes, Screens, and Screen schemes

		Introduction

		Structure

		Understanding Fields and Creating Custom Fields

		Types of Custom Fields in Jira with Examples

		Adding Context to a Custom Field

		Locked Custom Fields

		Understanding Field Configuration

		Field Configuration Scheme with an Example

		Understanding Screens

		Creating Screen Schemes, Issue-type Screen Schemes, and associating them with a Project

		Use Cases of Screens and Screen schemes

		Conclusion

		Points to Remember

		References

		7. Configuring Workflows in Jira in Agile Projects

		Introduction

		Structure

		Components of Workflow

		Creating a Workflow with Example

		Editing, Viewing, and Deleting a Workflow

		Global transitions

		Associating a Workflow with an Issue type

		Adding a resolve issue screen to Workflow transition

		Workflow Schemes

		Conditions, Post-functions, Validators, and Triggers

		Active vs. Inactive workflows

		Workflows and Agile Boards

		Mistakes to avoid while creating workflows

		Conclusion

		Points to Remember

		Links for Reference and Use Cases

		8. Filters, Dashboards, and Agile Reporting

		Introduction

		Structure

		Understanding Basic search and Advanced search in Jira

		Creating Jira filters

		Step-by-step guide to create and save a Jira filter

		Jira’s built-in filters

		Managing subscription, editing permissions, updating, copying, deleting filters

		Working with search results

		Creating filters using advanced search

		Step-by-step process to create an advanced filter

		Understanding JQL Functions, Fields, Keywords, and Operators

		Examples of important JQL for everyone

		Understanding the importance of Dashboards

		Step-by-step process to create a Dashboard and add Gadget

		Choosing a Dashboard Layout

		Copying, Sharing, and Deleting Dashboard

		Adding and Customizing Gadgets to a Dashboard

		Example Dashboards and Gadgets

		Creating a Wallboard

		Introduction to Reports

		Steps to accessing Reports in Jira

		Understanding Agile reports

		Reports for Scrum Teams

		Reports for Kanban Teams

		Other Reports

		Introduction and Overview of Atlassian Analytics

		Conclusion

		Points to Remember

		References

		9. Jira Automation Rules

		Introduction

		Structure

		Understanding Automation Rules and its Importance

		Accessing the Automation Rules on Jira Board

		Knowing and Understanding Elements of Automation Rules

		Triggers

		Conditions

		Actions

		Rule Branching

		Smart Values

		Owner

		Rule Actor

		Scope

		Allowing Rule Trigger

		Notify on Error

		Audit Log

		Debugging Rules

		Templates and Jira Automation Library

		Jira Automation Playground

		Checking Usage

		Performance Insights

		Import and Export Jira Automation Rules

		Steps to Create an Automation Rule with Example

		Essential Learning Examples

		Conclusion

		Points to Remember

		Links for Reference and Use Cases

		Resources

		10. Managing Team- Managed Projects

		Introduction

		Structure

		Understanding Team-managed projects

		Setting up Team-managed projects

		Adding People, Roles, and Access levels

		Enabling Agile Features

		Issue types in Team-managed project

		Creating custom issue types

		Configuring an issue types’ workflow

		Defining Status

		Creating Transitions

		Transition Properties

		Adding or Removing Workflow rules

		Managing Backlog

		Sprint operations

		Agile Board Features

		Understanding Insights

		Timeline View

		Reports

		Migrating from team to company-managed projects

		Conclusion

		Points to Remember

		References and Use Cases

		11. Jira Best practices and Must-know Features in Advanced Roadmaps

		Introduction

		Structure

		Dos and Don’ts for Product Owner

		Dos and Don’ts for Scrum Master

		Dos and Don’ts for Software Developers

		Must-learn Features for Jira Admins

		Importing issues in Jira

		Creating a project with Sample data

		Creating a project with multiple boards

		Understanding Various Administrator Roles in Jira

		Understanding Advanced Roadmap

		Viewing a Sample Plan

		Timeline View

		Creating a Plan

		Dependency Report

		Setting up Teams

		Creating Releases

		Creating Cross-project Releases

		Adding Filters

		Configuring issues hierarchy above epics

		Overview of Jira Product Discovery

		All Ideas View

		Impact Assessment View

		Impact vs. Effort View

		Roadmap View

		Timeline View

		Delivery Status View

		Conclusion

		Points to Remember

		References and Use Cases

		12. Atlassian Marketplace and Plugins

		Introduction

		Structure

		Atlassian Marketplace

		Selecting Applications from Atlassian Marketplace

		Understanding Key Terminology of the Applications

		Steps to Enable and Install Plugins

		Admin-tool Plugins for Jira Administrators

		Script Runner for Jira

		Jira Miscellaneous Workflow Extensions

		JSU Automation Suite for Jira workflow

		Popular Plugins

		Custom Charts for Jira Reports and Time in Status

		X-ray Test Management for Jira

		Zephyr Scale-Test Management for Jira

		Conclusion

		Points to Remember

		References and Use Cases

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Getting Started with Agile, Jira, and Jira Terminologies

OEBPS/images/logo.jpg

OEBPS/images/line.jpg

OEBPS/images/cover.jpg
AVA

Agile Administration
with

Solutions for Agile Project Administration
Using Dashboards, Automation Rules, and
Plugin Integration with Jira

N

2P

Yogita Chhaya

OEBPS/images/tick.jpg

