

[image: Image]

[image: image]

Javier Gómez Delgado es ingeniero superior en Informática con una extensa trayectoria como docente y profesional del desarrollo de aplicaciones desde 1987. Ha combinado roles técnicos con la formación y la gestión de equipos.

En el año 2000 se inicia en la web en Terra, y posteriormente en Telefónica lidera el Área de UX e Interfaz Gráfico, diseñando y creando interfaces utilizadas actualmente por los empleados de la compañía. Su carrera se ha centrado en la programación de sistemas, aplicaciones y páginas web.

Desde septiembre de 2022, es profesor en ESIC, donde imparte clases en titulaciones de DAW y DAM. Es autor de numerosos artículos y de los libros El desarrollo web desde el entorno cliente: Una visión Full Stack Developer (2023) y Diseño de interfaces para la web actual: De la estructura de la interfaz a la usabilidad (2024).

[image: image] http://javigomez.org

[image: image] javigomezdelgado

[image: image] javigomezdelgado

[image: image] @jagode67

[image: image] javier.gomezdelgado.7

[image: image] @javigomez.

[image: image]

Jesús García García-Doncel es Ingeniero Superior de Telecomunicaciones por la Universidad Politécnica de Madrid. Máster de Executive MBA por IE Business School y máster en Digital Business por el ICEMD-ESIC.

Profesional con más de 25 años de experiencia en multinacionales, tres años trabajando y viviendo en Inglaterra. Durante todo este tiempo, mantuvo contacto con la docencia y la investigación, tareas ambas a las que se dedica íntegramente en la actualidad como profesor docente investigador en ESIC University, donde imparte diferentes asignaturas en el ámbito de la ciencia en datos e inteligencia artificial.

Ha publicado libros técnicos con ESIC Editorial y McGraw-Hill. Es también inventor de una patente europea sobre gestión de derechos digitales en dispositivos móviles y webmaster del sitio web www.dat-science.com.

[image: image] jesgargardonpdi

[image: Image]

[image: Image]

Septiembre, 2025

Programación en Python: Más allá del código

Javier Gómez Delgado y Jesús García García-Doncel

Todos los derechos reservados.

Cualquier forma de reproducción, distribución, comunicación pública

o transformación de esta obra solo puede ser realizada con la autorización

de sus titulares, salvo las excepciones previstas por la ley.

Diríjase a CEDRO (Centro Español de Derechos Reprográficos)

si necesita fotocopiar o escanear algún fragmento de esta obra (www.cedro.org).

© 2025, Javier Gómez Delgado y Jesús García García-Doncel

© 2025, ESIC EDITORIAL

Avda. de Valdenigriales, s/n

28223 Pozuelo de Alarcón (Madrid)

Tel.: 91 452 41 00

www.esic.edu/editorial

@EsicEditorial

ISBN: 978-84-1192-189-3

Diseño de cubierta: Zita Moreno Puig

Maquetación: Balloon Comunicación

Lectura: Balloon Comunicación

Un libro de

[image: Image]

1

Introducción y entorno

1.1. Introducción

1.2. Instalación

1.3. Editores y entornos de Python

Objetivos de aprendizaje:

• Familiarizarse con los objetivos del lenguaje

• Conocer diferentes entornos de programación

• Poder elegir el IDE más adecuado

Palabras clave: IDLE, Visual Studio Code, PyCharm, Anaconda, Jupyter

1.1 Introducción

Podemos definir Python como un lenguaje de programación de alto nivel, interpretado, orientado a objetos, con semántica dinámica y de propósito general.

Su nombre viene por la afición de su creador (Guido van Rossum) por el grupo de humor británico Monty Python.

Este lenguaje nació a principios de los 90 con los siguientes objetivos:

- Debe ser fácil e intuitivo.

- De código abierto.

- Código comprensible como el inglés.

- Adecuado para cualquier tarea, permitiendo también desarrollos pequeños.

Hoy se considera ya un lenguaje maduro, con conceptos muy modernos, que ha recogido todas las ventajas de otros lenguajes anteriores.

Donde no llega Python es en la programación de bajo nivel, para la creación de controladores o motores gráficos, en donde se necesitan otros lenguajes capaces de comunicarse con dispositivos electrónicos.

Por ahora tampoco ha llegado a los dispositivos móviles, pero esto, posiblemente, se verá algún día.

Existen dos versiones principales de Python, llamadas Python 2 y Python 3. Son versiones incompatibles entre sí, por eso aún siguen existiendo ambas, ya que no es sencillo pasar una gran aplicación de Python 2 a Python 3. Para los nuevos proyectos siempre se debe de utilizar la última versión, Python 3.

¿Por qué utilizar Python?

Python es un lenguaje que tiene una sintaxis clara y cercana al lenguaje humano que permite utilizarse a través de varios paradigmas de programación, como orientación a objetos, programación funcional o programación procedural.

La comunidad de desarrolladores que hay detrás es muy activa, proporcionando gran cantidad de tutoriales y recursos. A su vez, proporcionan varias bibliotecas y frameworks utilizados para gran cantidad de necesidades.

También Python se puede utilizar en los tres sistemas operativos más extendidos (Windows, macOS y Linux) gracias a que es un lenguaje interpretado y con tipado dinámico.

Gracias a esa sintaxis sencilla, permite a los desarrolladores crear prototipos de forma rápida, siendo mucho más productivos, ya que se escriben menos líneas de código. A su vez, es fácilmente integrable con otros lenguajes como C, C++ o Java.

Por último, Python destaca por sus bibliotecas como PySpark y Dask para trabajar con grandes volúmenes de datos (big data) y otras que ayudan para el desarrollo en inteligencia artificial, ciencia de datos, automatización o desarrollo web.

Por otro lado, los puntos débiles son:

- Rendimiento: al ser interpretado, es más lento que lenguajes compilados como C++.

- Uso de memoria: consume más memoria que lenguajes como C.

- Móvil: hoy en día no hay buenas opciones para desarrollo en móviles.

1.2 Instalación

Python funciona en cualquier sistema operativo. En Linux es muy probable que ya esté instalado. Para comprobarlo, es tan sencillo como abrir una consola y escribir el comando python. El resultado será entrar en el shell de Python, en donde te permitirá escribir directamente las sentencias.

www.python.org Página oficial de Python

En la página oficial de Python (python.org), en la sección de downloads, se puede descargar la última versión de Python. El navegador ya conoce el sistema operativo y te redirige a la versión adecuada.

Un usuario de Windows se descargará el archivo .exe y ejecutará una instalación personalizada dejando todas las opciones por defecto, excepto la casilla de Agregar Python 3.x a PATH, que se tiene que seleccionar.

En macOS se debe descargar e instalar el archivo .pkg y, al igual que en Windows, realizar una instalación personalizada dejando todas las opciones por defecto.

Una vez que tenemos instalado Python, se va a necesitar una aplicación que nos permita editar, ejecutar y depurar los desarrollos realizados.

1.3 Editores y entornos de Python

IDLE

IDLE (Integrated Development and Learning Environment) es un sencillo editor que se instala junto con la versión de Python, y que nos va a permitir escribir pequeños programas. El acceso a esta aplicación se encuentra entre las aplicaciones que tenemos instaladas en el sistema.

Figura 1.1 IDLE

[image: Image]

Lo primero que vemos es la consola. En la opción de File, podemos crear un nuevo archivo y ejecutarlo. El resultado de la ejecución lo veremos sobre la consola.

Google Colab

Colaboratory de Google o más conocido como Google Colab (https://colab.research.google.com/) es un entorno gratuito de trabajo separado en cuadernos, siendo cada uno de ellos un programa diferente. Para trabajar con esta herramienta es necesario estar registrado en Google, y no hace falta tener instalado Python en nuestro ordenador. El código que nosotros colocamos sobre nuestro cuaderno se ejecutará sobre servidores de Google, a los cuales tenemos que conectarnos pulsando sobre el botón Conectar que aparece en la parte superior derecha de la web. Una vez conectado aparece el uso de la RAM y el disco del servidor al que estamos conectados.

En este momento ya podemos escribir código Python y ejecutarlo, y debajo veremos el resultado. Acercando el ratón debajo de la última ejecución se podrá añadir más código o texto, creando nuevas ejecuciones.

Todo este código se va a poder guardar como una copia en Drive o en GitHub para poder distribuirlo o reutilizarlo.

Al tener un servidor a nuestra disposición, también podemos guardar archivos en este para poder utilizarlos en nuestros programas. Para ello se pulsa sobre la carpeta en la barra de iconos de la izquierda.

Figura 1.2 Google Colab

[image: Image]

Visual Studio Code

Este editor de código e IDE (entorno de desarrollo integrado) creado por Microsoft es el más extendido y utilizado por gran número de desarrolladores para diferentes lenguajes. Se puede descargar desde su página principal (https://code.visualstudio.com/download) para Windows, Linux y Mac.

Existe una extensión de Python para Visual Studio Code que proporciona indicaciones visuales, como código por colores y la función autocompletar, junto con herramientas de depuración que ayudarán a escribir código de Python mejor y más rápido.

Para instalarla, en Visual Studio Code, en la barra de menús, seleccionar Ver/Extensiones para abrir la vista Extensiones.

En esta vista se verán las extensiones instaladas y las extensiones recomendadas.

Escribir Python en el cuadro de búsqueda situado en la parte superior de la vista Extensiones y seleccionar la extensión Python publicada por Microsoft, descrita como Python language suport…, normalmente es la primera de la lista. Los detalles sobre esa extensión aparecen en un panel con pestañas a la derecha.

En el panel Extensiones o en el panel principal, seleccionar Install.

En este momento ya se podrá crear un nuevo archivo con extensión .py y ejecutarlo dentro de este entorno.

También podemos ejecutarlo desde la consola poniendo el comando:

py a.py

Figura 1.3 Visual Studio Code

[image: Image]

Sobre Visual Studio podemos trabajar con Jupyter. Esta es otra extensión que va a permitir trabajar con cuadernos (al igual que se hace con Google Colab).

Para trabajar con cuadernos, creamos un nuevo archivo con extensión .ipynb

Se verá que cambia la visualización y podremos añadir código y ejecutarlo, y a su vez también podemos añadir texto (markdown).

Cuando ejecutamos por primera vez, nos puede preguntar qué versión de Python utilizamos, si tenemos varias instaladas, y pide permiso para instalar un paquete que necesita para sus ejecuciones.

Figura 1.4 Visual Studio con Jupyter PyCharm

[image: Image]

PyCharm

PyCharm es un entorno de desarrollo integrado (IDE) de Python, desarrollado por JetBrains, que ofrece una amplia gama de herramientas para desarrolladores de Python, todas ellas integradas en el entorno y adaptadas para la creación de programas en Python, web y ciencia de datos. Tiene integración con distintas bases de datos, Jupyter, Git, Conda, TensorFlow y algunos más para el manejo de datos. También se integra con Django, Flask para las webs. Algunas de estas integraciones solo están disponibles en la versión de pago.

Se puede instalar la versión gratuita Pycharm Community descargándola de la siguiente dirección: https://www.jetbrains.com/pycharm/download/

Una vez instalada, se ejecuta y se selecciona la opción de crear un nuevo proyecto. En la siguiente pantalla se introduce el nombre del proyecto y se selecciona el intérprete de Python que utilizar, que puede ser el que tengamos ya instalado o cualquier otro para utilizar en este proyecto. En este último caso, lo descargará antes de abrir el nuevo proyecto.

Figura 1.5 Nuevo proyecto en

[image: Image]

Una vez creado el proyecto, se puede crear un archivo Python. Para esto, se da clic derecho en el nombre del proyecto. Esto desplegará un menú contextual, se escoge New y Python File.

Por último, solicita el nombre del archivo y, a continuación, ya está disponible para escribir el código.

Dar clic en el icono de ejecución (triángulo verde en la parte superior); el resultado de esta ejecución se mostrará en una sección de Pycharm que se abre en la parte inferior de la pantalla.

Figura 1.6 PyCharm

[image: Image]

Cuando queremos trabajar con librerías que no vienen por defecto en el entorno, como pandas para el trabajo datos, se tendrá que instalar. Para ello, desde la consola se utiliza el comando pip y el nombre de la librería que se quiere instalar para luego utilizarla.

pip install pandas

Anaconda

Anaconda es una distribución de Python (no es necesario realizar una instalación previa de Python) que viene con las principales herramientas open source para realizar trabajos de data scientist.

Accediendo a la dirección https://www.anaconda.com/download se puede descargar e instalar Anaconda después de registrarse. Hay versiones para Windows, Mac y Linux.

Anaconda tiene incorporadas dos herramientas importantes, Jupyter Notebook como herramienta de notebooks y Spyder como IDE de programación.

El Notebook es una herramienta muy habitual en la ciencia de datos. Jupyter Notebook es una interfaz web de código abierto que permite la inclusión de texto, vídeo, audio, imágenes, así como la ejecución de código a través del navegador.

Esa capacidad de incluir código junto con imágenes y texto es lo que lo hace adecuado para el análisis de datos, pues permite llevar un hilo argumental a medida que se va llevando a cabo el estudio, la creación de modelos, la extracción de métricas, etc.

Sin embargo, los notebooks tienen una limitación: no permiten de modo fácil la puesta en producción de los programas. Para esto es mejor recurrir a un IDE como Spyder, más potente para la parte de desarrollo y menos para el análisis.

Los entornos en Anaconda, como también hace PyCharm, permiten tener diferentes proyectos con diferentes versiones de Python y librerías distintas. Lo ideal es tener un proyecto básico y, a partir de ahí, ir añadiendo las librerías necesarias al entorno.

Anaconda también incorpora Conda. Este es un gestor de paquetes que permite la creación de entornos y la instalación y actualización de las librerías.

Cuando se ejecuta Anaconda, lo primero que se ve es Anaconda Navigator. Aquí es en donde se ven todas las herramientas integradas con la plataforma.

Figura 1.7 Anaconda Navigator

[image: Image]

Para crear un entorno es necesario ir a la pestaña Environments, y hacer clic en Create. A continuación, instalar o actualizar los paquetes que se necesiten.

Una vez creado el entorno, se puede pulsar en el triángulo de la derecha y seleccionar la opción Open Terminal. De esta manera se accede a un terminal en donde si se escribe el comando Python, tenemos un modo de ejecución de lenguaje.

Para empezar a programar, se vuelve a la página de inicio y se lanza la ventana de Jupyter Notebook. Puede ser necesario instalarlo en el entorno, pulsando sobre la Home el botón Install dentro de Jupyter Notebook; a continuación, aparecerá el botón Launch.

Cuando arranca abre el navegador con nuestro sistema de ficheros posicionado en nuestro directorio personal. Con new/folder podemos crear una carpeta para meter el código. A su vez, se puede crear un nuevo archivo que creará un fichero con extensión .ipynb, propio de los cuadernos.

Una vez creado el documento, aparece lo que se denomina una celda, en donde se puede escribir código Python, guardándose ese código y su resultado dentro del cuaderno.

Figura 1.8 Jupyter Notebook

[image: Image]

Spyder es un IDE de código abierto que tiene integradas herramientas para el tratamiento de datos.

Para crear un nuevo programa se realiza sobre el menú Archivo/Nuevo archivo. En la parte de la izquierda se escriben las instrucciones del programa y al ejecutarlo (F5) el resultado se visualiza en la consola, y encima de ella los valores de las variables utilizadas.

Figura 1.9 Spyder

[image: Image]

La elección del entorno de desarrollo va a depender de las necesidades que tengamos para nuestro proyecto. Para un proyecto de Data Analytics en donde se quiera un entorno gratuito, Anaconda puede ser la mejor solución. En un entorno compacto y ligero para hacer un desarrollo de propósito general se puede optar por la versión gratuita de PyCharm. Si estamos acostumbrados en otros lenguajes a utilizar Visual Studio Code, esta puede ser la mejor solución.

Lo importante es que el programador se sienta cómodo con el entorno y se adapte bien a sus necesidades.

2

Variables, operadores y
sentencias input y print

2.1. Comentarios

2.2. Variables

2.3. Tipos de datos

2.4. Constantes

2.5. Valores infinitos

2.6. Tipo NaN (Not a Number)

2.7. Operaciones aritméticas

2.8. Operaciones de asignación

2.9. Operaciones de comparación

2.10. Operaciones lógicas

2.11. Operaciones de bit

2.12. Operaciones de otros módulos

2.13. Entrada de datos por teclado

2.14. Función print

2.15. Ejercicios

Objetivos de aprendizaje:

• Familiarizarse con los tipos de variables en Python

• Conocer las operaciones aritméticas, lógicas y de bit

• Pedir información por teclado

• Utilizar las opciones existentes para mostrar información a través print()

Palabras clave: operador cast, NaN, f-string

2.1 Comentarios

Los comentarios en un lenguaje de programación son fragmentos del texto en el código que no son ejecutados. Su intención es explicar el código para hacerlo más legible y proporcionar una ayuda a otros programadores.

Comentario de una línea

Es el más habitual y empieza por el símbolo almohadilla “#”. Se utiliza para breves explicaciones. Puede estar después del código escrito con intención de aclarar esa línea

Código 2.1 Comentarios una línea

#Declara una variable

X=5 #Asigna el valor 5

Comentarios de varias líneas

No hay un símbolo específico en Python para comentar varias líneas, y se suele utilizar # varias veces. Se puede utilizar docstrings (triples comillas) para comentar varias líneas, aunque esto está pensado para generar automáticamente documentación de las funciones, clases y métodos, más que para hacer comentarios.

Código 2.2 Comentarios multilínea

'''
Función calcula
Esta función realiza un cálculo
Recibe los parámetros
x:Operador 1
y:Operador 2
'''
def calcula(x,y):
 print (x+y)

2.2 Variables

¿Qué nos ofrecen las variables y sus operaciones?

Si tenemos que gestionar una tienda a través de un programa informático, será necesario registrar cierta información de cada producto, como un código, un precio de coste, un precio de venta, saber si está o no en promoción o un nombre de producto. A su vez, también necesitaremos calcular el margen de ganancia (precio de venta – precio de coste), y si está en promoción aplicaremos un descuento del 10%, y si el margen es menor del 20%, se alerta con un mensaje. Además, se querrá que cuando se visualice el total, solo aparezca con dos decimales. Toda esta información se tendrá que almacenar en el ordenador, realizar las operaciones necesarias y mostrarla de la forma más adecuada.

Variables

Las variables son contenedores que residen en memoria y son utilizados para almacenar valores de datos. Los tipos de datos que se almacenan pueden ser números (enteros, reales o complejos), cadenas de texto, booleanos (True o False), o colecciones de información (listas, tuplas, sets y diccionarios). Estos tipos de datos pueden aumentar por la utilización de diferentes módulos o librerías que implementan nuevos tipos, como nuevas clases de colecciones, o campos específicos para almacenamiento de fecha y hora.

En Python no es necesario definir el tipo, ya que asumirá el tipo de dato inferido por su contenido.

Las variables se crean cuando se les asigna un valor por primera vez. El nombre de una variable debe ser una palabra alfanumérica que comienza con una letra o un guion bajo “_”. Las variables son case-sensitive, lo que significa que "nombre" y "NOMBRE" son dos variables diferentes.

Aquí hay un ejemplo de cómo crear una variable en Python:

nombre = "Lara"

edad = 30

En este ejemplo, a la variable nombre se ha asignado la cadena “Lara" y a la variable edad se ha asignado el valor 30.

Se pueden realizar asignaciones múltiples de la siguiente manera.

x,y=10,4

m=n=15

Aquí hay un ejemplo de cómo usar una variable en Python para mostrarla por pantalla:

print("El nombre del usuario es", nombre)

Este código imprimirá la cadena "El nombre del usuario es Lara" en la pantalla.

Las variables en Python pueden cambiar de tipo dinámicamente, dependiendo del valor que se le asigne.

Código 2.3 Cambio dinámico de tipo de variable

#Cambio dinámico del tipo de variable

miVariable = "Hola"

print(miVariable)

miVariable = 10

print(miVariable)

Como se ha mencionado, una variable es una zona de memoria en donde se almacena la información. A través del método id() podremos conocer esa dirección de memoria.

Código 2.4 Dirección de memoria

x=3
print(id(x)) # Se muestra: 140723738371048

Aunque no sea necesario realizar una definición del tipo de una variable, Python sí maneja los tipos. Podemos ver el tipo de dato con el método type(). Los tipos que vamos a poder ver son los siguientes:

int: números enteros positivos y negativos.

float: números con decimales positivos y negativos.

str: secuencia de caracteres.

bool: solo puede contener el valor True o False.

tuple: secuencia inmutable de elementos (1,2,3).

list: secuencia mutable de elementos [1,2,3].

dict: mapa del tipo clave-valor.

set: colección desordenada de objetos únicos.

Código 2.5 Tipos de variables

x=3
print(type(x)) #se muestra <class 'int'>
y="Carlos"
print(type(y)) #se muestra <class 'str'>
z=True
print(type(z)) #se muestra <class 'bool'>

Conversión de tipos

Puede ser necesario que se necesite cambiar de tipo una variable para poder hacer alguna operación especifica. Para ello utilizamos el operador cast. El operador cast en Python, como en todos los lenguajes, cambia de tipo una variable, siempre que pueda. Es una función que tiene el mismo nombre que el tipo de datos al se quiere convertir. Se puede utilizar para convertir en numérico una cadena o para quitar decimales de otro número.

print(int("1")) #1
print(int(56.34)) #56
print(str(1)+str(2))#12
print(float(3)) #3.0

2.3 Tipos de datos

Tipo int

Este tipo de dato representa números enteros, tanto positivos como negativos. No tienen un límite fijo de tamaño, siempre y cuando haya memoria disponible.

Si se trabaja con números largos, difíciles de entender visualmente, se puede utilizar el guion bajo para separar entre grupo de tres dígitos.

num=5_258_256
print(num) #5258256

Tenemos dos métodos para convertir un número con decimales en un entero.

round(): redondea el número

math.trunc(): quita la parte decimal

Sistemas numéricos

En Python se puede trabajar con diferentes sistemas numéricos, hablamos del sistema decimal (base 10), binario (base 2), octal (base 8) y hexadecimal (base 16).

El sistema decimal es el sistema numérico predeterminado en Python y se utiliza para representar números cotidianos. No se necesita hacer nada especial para trabajar con números en este sistema.

Ejemplo de sistema decimal

num_decimal = 42

print(num_decimal) # Salida: 42

El sistema binario utiliza solo dos dígitos (0 y 1) para representar números. En Python, se puede representar números binarios utilizando el prefijo '0b’.

Ejemplo de sistema binario

num_binario = 0b1010

print(num_binario) # Salida: 10 (en decimal)

El sistema octal utiliza ocho dígitos (0 al 7) para representar números. En Python, se representan números octales utilizando el prefijo '0o’.

Ejemplo de sistema octal

num_octal = 0o52

print(num_octal) # Salida: 42 (en decimal)

El sistema hexadecimal utiliza dieciséis dígitos (0 al 9 y A al F) para representar números. En Python, se utiliza el prefijo ‘0x’ para representar números hexadecimales.

Ejemplo de sistema hexadecimal

num_hexadecimal = 0x2A

print(num_hexadecimal) # Salida: 42 (en decimal)

La representación habitual de estos números es en base 10, pero podemos realizar una representación de estos números en otras bases a través de los siguientes métodos:

- bin(x): representación binaria.

- oct(x): representación octal.

- hex(x): representación hexadecimal.

- int(x,base): convierte el número de la base especificada en decimal.

Código 2.6 Sistemas numéricos

num_decimal = 42
print(bin(num_decimal)) # Salida: '0b101010'
print(oct(num_decimal)) # Salida: '0o52'
print(hex(num_decimal)) # Salida: '0x2a'

num_binario = '0b1010'
print(int(num_binario, 2)) # Salida: 10 (en decimal)

num_hexadecimal = '0x2A'
print(int(num_hexadecimal, 16)) # Salida: 42 (en decimal)
Convertir un tipo entero, incluyendo base
print("Decimal", int('23', 10)) #Decimal 23
print("Binario", int('10111', 2)) #Binario 23
print("Octal", int('27', 8)) #Octal 23
print("Hexadecimal", int('17', 16)) #Hexadecimal 23
print("Base 5:", int('344', 5)) #Base 5: 99

Tipo float

Se utiliza para representar números de coma flotante, es decir, números con decimales tanto positivos como negativos. Generalmente son de 64 bits, llegando a 17 dígitos decimales.

Los números float se pueden escribir en notación científica.

x=10.4
y=15.0
z=1.32e3 #equivalente a 1320

También a través del método round() podemos ajustar la cantidad de decimales.

round(3.14159, 2) # 3.14

Es posible convertir a float una variable str a través del operador cast.

float_num = float("2.718") # 2.718

Se puede comparar números float con los operadores lógicos <,>,==,!=, pero si se maneja gran cantidad de decimales y debido a errores de redondeo, es mejor usar el método math.isclose().

Código 2.7 Comparando float

import math
a = 0.1 + 0.2
b = 0.3
print(a==b) #false
print(math.isclose(a, b)) #true

Tipo str

El tipo str es el que permite almacenar un conjunto de caracteres (cadenas). Python nos ofrece el operador + para realizar una concatenación de cadenas.

cadena="Javi"

print("Hola " + cadena) #Hola Javi

También nos ofrece el operador * para realizar una repetición de una cadena.

z="eco.."
print(z*3) #eco..eco..eco..

Si se quiere que una cadena con el operador + o el operador * realice una suma o una multiplicación, en vez de una concatenación o duplicación, se necesita utilizar el operador cast para convertir la variable a un tipo numérico antes de aplicar la operación.

Código 2.8 Operador cast con cadenas

cad1="1"
num1=int(cad1)
cad2="2"
num2=int(cad2)
print (cad1+cad2) #12
print (num1+num2) #3

En el caso que en un operador + o * tengamos tipos diferentes, aparecerá un error de ejecución.

Figura 2.1 Error de ejecución

[image: Image]

Tipo bool

El tipo booleano puede tomar solo dos valores True o False. Se utiliza para representar valores lógicos y está presente en todas las condiciones y bucles.

x=10
y=15
print (x>y) #False
print (y>x) #True

Un valor entero 0 se puede convertir a través de un operador cast a boolean como False, mientras que el resto de los valores, serán True.

Código 2.9 Operaciones con boolean

x=10
print(bool(x)) #True
x=0
print(bool(x)) #False

2.4 Constantes

En Python, a diferencia de otros lenguajes, no existe la definición de constante en donde se puede declarar e inicializar un valor que luego no pueda ser modificado. Lo que sí se hace en Python es que aquellas variables que se quieran considerar como constantes, denominarlas en mayúsculas, y en el caso de que sean varias palabras, separarlas con guiones bajos. Esto no evita su modificación, pero indica al programador que está tratando con un valor que debe ser constante.

Código 2.10 Constantes

PI = 3.14159

GRAVEDAD = 9.8

VELOCIDAD_DE_LA_LUZ = 299792458

2.5 Valores infinitos

Se pueden representar los valores infinitos utilizando el constructor float(), pasando como argumento la cadena “inf” para infinito positivo y “-inf” para infinito negativo.

Los resultados de las operaciones con el valor infinito siguen las reglas matemáticas, y pueden producir valores especiales como “NaN” (Not a Number).

Código 2.11 Operaciones con infinitos

infinito_positivo = float("inf")
print(infinito_positivo) # inf
print(float("-inf")) #-inf

Ejemplo de operaciones con infinito utilizando float()
x = 10
y = float("inf")

print(x / y) # Salida: 0.0
print(-x / y) # Salida: -0.0
print(y + y) # Salida: inf
print(y * 2) # Salida: inf
print(y / y) # Salida: NaN (Not a Number)

También se pueden representar valores infinitos utilizando la librería math o el módulo decimal.

Código 2.12 Utilizando el módulo math

import math

Infinito positivo con math.inf

infinito_positivo_math = math.inf

print(infinito_positivo_math) # Salida: inf

Infinito negativo con -math.inf

infinito_negativo_math = -math.inf

print(infinito_negativo_math) # Salida: -inf

Código 2.13 Utilizando el módulo decimal

from decimal import Decimal

Infinito positivo con Decimal('Infinity')

infinito_positivo_decimal = Decimal('Infinity')

print(infinito_positivo_decimal) # Salida: Infinity

Infinito negativo con Decimal('-Infinity')

infinito_negativo_decimal = Decimal('-Infinity')

print(infinito_negativo_decimal) # Salida: -Infinity

Es importante mencionar que el módulo decimal proporciona un control más preciso sobre la aritmética de punto fijo, lo que puede ser útil cuando se necesita alta precisión en cálculos. Sin embargo, en situaciones normales de cálculos matemáticos, el módulo math suele ser suficiente.

2.6 Tipo NaN (Not a Number)

Las formas de representar un NaN se realizan a través de la librería math o el módulo decimal.

Código 2.14 Tipo NaN

import math

Obtener NaN con math.nan

nan_value_math = math.nan

print(nan_value_math) # Salida: nan

from decimal import Decimal

Obtener NaN con Decimal('NaN')

nan_value_decimal = Decimal('NaN')

print(nan_value_decimal) # Salida: NaN

NaN es utilizado para representar resultados indefinidos o no válidos en operaciones matemáticas. Se pueden utilizar funciones como math.isnan() o Decimal.is_nan() para verificar si un valor es NaN antes de realizar operaciones con él.

Código 2.15 Math.isnan()

import math

from decimal import Decimal

nan_value_math = math.nan

nan_value_decimal = Decimal('NaN')

print(math.isnan(nan_value_math)) # Salida: True

print(nan_value_decimal.is_nan()) # Salida: True

print(math.isnan(42)) # Salida: False

print(Decimal(42).is_nan()) # Salida: False

2.7 Operaciones aritméticas

Las operaciones aritméticas existentes en Python son las siguientes:

Suma: +

r= 5 + 3 # 8

Resta: -

r=5 – 3 # 2

Multiplicación: *

r=5 * 4 # 20

División: /

r= 15 / 2 # 7.5

División entera: //

r= 15 // 2 # 7

Módulo (resto de una división): %

r=15%2 # 1

Potencia: **

r= 2 ** 3 # 8

2.8 Operaciones de asignación

Hay varios operadores de asignación que se pueden utilizar.

- Operador de asignación de un valor: =

- Operador para incrementar: +=

- Operador para decrementar: -=

- Operador multiplicador: *=

- Operador divisor: /=

Código 2.16 Operadores de asignación

miVar=10

print (miVar) #10

miVar = miVar + 1

print (miVar) #11

miVar += 1

print (miVar) #12

miVar -= 2

print (miVar) #10 miVar=miVar-2

miVar *= 3

print (miVar) #30 miVar=miVar*3

miVar /= 2

print (miVar) #15 miVar=miVar/2

2.9 Operaciones de comparación

Son aquellos operadores que se utilizan para devolver un valor booleano. Son las operaciones que se utilizan en condiciones o bucles.

- Menor que (<): devuelve True si el primer valor es menor que el segundo valor.

- Menor o igual que (<=): devuelve True si el primer valor es menor o igual que el segundo valor.

- Mayor que (>): devuelve True si el primer valor es mayor que el segundo valor.

- Mayor o igual que (>=): devuelve True si el primer valor es mayor o igual que el segundo valor.

- Igual a (==): devuelve True si los dos valores son iguales.

- Distinto de (!=): devuelve True si los dos valores son diferentes.

- In: está en la lista.

Código 2.17 Operadores de comparación

a=4
b=6
print(a==b) #False
print(a!=b) #True
print(a>b) #False
print(a>=b) #False
print(a<b) #True
print(a<=b) #True

Aparte de los operadores tradicionales también contamos con el operador in, el cual devuelve True si el valor de la variable está en la lista expresada entre corchetes. De la misma forma, pero al contrario, funciona el operador not in.

print(1 in [1,2,3]) #True
print(1 not in [1,2,3]) #False

2.10 Operaciones lógicas

Estos operadores se utilizan para combinar dos o más condiciones y devolver un valor booleano.

Los operadores lógicos son los siguientes:

- and: devuelve True si ambas condiciones son verdaderas.

- or: devuelve True si al menos una de las condiciones es verdadera.

- not: devuelve True si la condición es falsa y al revés.

Código 2.18 Operadores lógicos

a=True
b = True
print (a and b) #True
b = False
print (a or b) #True
print (not a) #False

Sintaxis simplificada del operador and

Cuando estamos analizando un rango, el operador and permite una simplificación, pudiendo omitir este operador si se coloca el valor a consultar en medio de la condición.

(a>=20 and a<30) se puede simplificar en (20<=a<30)

2.11 Operaciones de bit

Los operadores de bit permiten manipular los bits de las variables de manera individual. Corresponden a las operaciones lógicas de and, or, not y xor.

Como ya se ha mencionado anteriormente, para expresar un valor en binario, esta debe empezar con 0b.

& (ampersand) - conjunción a nivel de bits.

| (barra vertical) - disyunción a nivel de bits.

~ (virgulilla) - negación a nivel de bits (Windows: AltGr + 4 Mac: Alt/Option + ñ).

^ (acento circunflejo) - o exclusivo a nivel de bits (xor).

	Operaciones de bits (&,|,^, ~)

	A

	B

	A & B

	A | B

	A ^ B

	~A

	0

	0

	0

	0

	0

	1

	0

	1

	0

	1

	1

	1

	1

	0

	0

	1

	1

	0

	1

	1

	1

	1

	0

	0

Código 2.19 Operadores de bits

a=2
b=0b110
print(b) #6
print (bin(a)) #0b10
print (bin(b)) #0b110
print ("and:" , bin(a&b)) # and: 0b10
print ("or: " , bin(a|b)) # or: 0b110
print ("xor:" , bin(a^b)) # xor: 0b100
print ("not:", bin(~a)) # not: -0b11

El operador xor es utilizado en claves de encriptación, ya que permite realizar una encriptación simétrica de un valor con una misma llave. Operando dos veces una misma variable con el operador xor y una llave, se obtiene el valor original.

2.12 Operaciones de otros módulos

Módulo math

Podemos utilizar operaciones definidas por el lenguaje pero que no están presentes por defecto, sino que es necesario importarlas de las librerías donde están definidas. Un ejemplo de esto es el módulo math, que posee todas las operaciones matemáticas avanzadas.

Para importar este módulo se debe colocar en la primera línea de código la palabra clave from seguida del archivo donde están las funciones, y a continuación import y el nombre de la función a utilizar. Si se van a utilizar varias, se puede colocar asterisco (*) después del import y esto significa que se puede utilizar cualquier función de ese módulo, o sencillamente solo poner import math.

En el módulo math contamos con las siguientes operaciones:

Código 2.20 Operaciones de math

[image: Image]

Módulo random

El módulo random provee de los métodos para determinar valores aleatorios.

.random():número flotante entre 0 y 1.

.uniform(a, b): número decimal aleatorio entre a y b.

.randint(a, b): número entero aleatorio entre a y b (inclusive).

.randrange(start, stop, step): número aleatorio en el rango establecido y siguiendo la secuencia de step.

.choice(secuencia): elige un elemento aleatorio de una secuencia.

.choices(secuencia, k=n): k elementos aleatorios con posible repetición.

.sample(secuencia, k=n): k elementos aleatorios sin repetición.

.shuffle(lista): mezcla los elementos de una lista.

Código 2.21 Operaciones de random

import random

Números aleatorios
print(random.random()) # 0.1437
print(random.uniform(1, 10)) # 4.98
print(random.randint(1, 6)) # Tirada de un dado

print(random.randrange(10)) # Número aleatorio entre 0 y 9
print(random.randrange(1, 10))# Número aleatorio entre 1 y 9
print(random.randrange(0, 10, 2))# Número par aleatorio entre 0 y 8

Trabajar con listas
colores = ['rojo', 'verde', 'azul', 'amarillo']
print(random.choice(colores)) # Un color aleatorio
print(random.sample(colores, k=2)) # Dos colores diferentes
print(random.choices(colores, k=3)) # Tres colores (se pueden repetir)

Mezclar una lista
numeros = [1, 2, 3, 4, 5]
random.shuffle(numeros)
print(numeros) # Lista en orden aleatorio

Módulo string

Esta librería contiene una colección de constantes relacionadas con cadenas de texto. Los más importantes son:

string.ascii_letters: contiene todas las letras ASCII, tanto mayúsculas como minúsculas. ('abcdefghijklm….TUVWXYZ')

string.ascii_lowercase: contiene todas las letras ASCII minúsculas. ('abcdefghijklmnopqrstuvwxyz')

string.ascii_uppercase: contiene todas las letras ASCII mayúsculas. ('ABCDEFGHIJKLMNOPQRSTUVWXYZ')

string.digits: contiene todos los dígitos decimales. ('0123456789')

string.punctuation: contiene los caracteres de puntuación ASCII. ('!"#$%&\'()*+,-./:;<=>?@[\$$^_{|}~'`)

Módulo platform

Este módulo se utiliza para obtener información del sistema

.system(): sistema operativo ('Windows', 'Linux', 'Darwin' para Mac).

.release(): versión del sistema operativo.

.version(): versión detallada del sistema operativo.

.platform(): información completa de la plataforma.

.processor(): tipo de procesador.

.machine(): arquitectura de la máquina (x86_64, AMD64, etc.).

.architecture(): arquitectura y bits ('64bit', '32bit').

.python_version(): versión completa de Python.

.python_implementation(): implementación de Python (CPython, PyPy, etc).

.node(): nombre de la computadora en la red.

Código 2.22 Funciones de platform

import platform

print(f"Sistema Operativo: {platform.system()}")
print(f"Versión: {platform.release()}")
print(f"Versión Python: {platform.python_version()}")
print(f"Arquitectura: {platform.architecture()}")
print(f"Procesador: {platform.processor()}")
print(f"Nombre del equipo: {platform.node()}")

2.13 Entrada de datos por teclado

A través de la función input() podemos recoger datos por teclado para ser tratados en el programa. Todo ello a través de la consola.

var=input(“Mensaje”)

El usuario verá el mensaje en pantalla y a continuación podrá escribir la información. El valor de entrada siempre es de tipo str.

El siguiente código pide un nombre y lo muestra por pantalla:

Código 2.23 Input()

nombre = input("¿Cuál es tu nombre? ")

print("Hola", nombre)

Si se necesitan realizar operaciones matemáticas con los datos de entrada, se debe convertir a un tipo numérico.

Código 2.24 Conversión de tipos

x=input("Escribe el primer número: ") #se introduce un 5
y=input("Escribe el segundo número: ") #se introduce un 8
resultado = x + y
print ("Resultado:", resultado) #aparece 58
resultado=int(x)+ int(y)
print ("Resultado:", resultado) #aparece 13

2.14 Función print

Como ya se ha visto, esta función permite mostrar información por la consola.

La sintaxis completa de esta sentencia es la siguiente:

print(elementos, sep=" ", end="\n", file=None, flush=False)

• elementos: representa cualquier cantidad de argumentos que se quieran mostrar, separados por coma. Pueden ser cadenas de texto, variables, números o expresiones.

• sep (opcional): especifica el separador entre los objetos que se imprimen. Por defecto, es un espacio (" ").

• end (opcional): indica la cadena que se imprimirá al final. Por defecto, es un salto de línea ("\n"); se puede establecer como una cadena vacía ("") para imprimir sin saltar de línea.

• file (opcional): este argumento permite redirigir la salida a un archivo. Por defecto, imprime en la consola.

• flush (opcional): este argumento controla si el búfer de salida se vacía antes de que la función retorne. No es común usar esta opción.

Código 2.25 Opciones del print()

a="Hola"
b="Lara"
print (a,b,sep=" * ") #Hola * Lara
print("Sin salto de línea ", end="")
print("aquí") # Salida: Sin salto de línea aquí

A su vez, a través del método f-string se pueden expresar variables dentro de los literales. Esto se hace encerrando estas variables entre llaves y colocando una f antes de mostrar el literal.

Código 2.26 f-string

resultado = 2 + 3
print(f"La suma es {resultado}") # La suma es 5

Si se necesita imprimir varias líneas de texto, con el comando print() se puede hacer directamente a través del uso de la triple comilla.

Poniendo triples comillas permite incluir saltos de línea dentro de la cadena de texto, sin necesidad de incluir el carácter de escape \n. También tiene el comportamiento de las f-string.

Código 2.27 print() multilínea

a="María"
print ("""Esto es la primera línea
y esto la segunda""")

print(f"""Esto es un
mensaje para {a}""")

Para imprimir una cantidad determinada de decimales de un número de tipo float, se puede utilizar f-string.

Para indicar esta cantidad de decimales, dentro de las llaves donde se expresa la variable se pondrán dos puntos junto con un punto y la cantidad de decimales que se desea, y a continuación la letra f.

Código 2.28 Cantidad de decimales

Ejemplo utilizando f-string
num = 3.141592653589793
decimales_deseados = 3
Si queremos 3 decimales, por lo que usamos {:.3f}.
resultado_formateado = f"{num:.{decimales_deseados}f}"
print(resultado_formateado) #3.142
print(f"R:{num:.2f}") #R:3.14

Operadores < y > en f-string

Cuando se utilizan los símbolos de mayor y menor en un f-string, se conocen como especificadores de formato. Estos se utilizan para controlar cómo se formatea y alinea el texto.

Alineación:

• {variable:<10}: alinea a la izquierda en un campo de 10 caracteres.

• {variable:>10}: alinea a la derecha en un campo de 10 caracteres.

• {variable:^10}: centra en un campo de 10 caracteres.

Relleno:

Si el valor no ocupa todo el ancho especificado, se puede definir con qué carácter se rellenará el espacio restante.

• {variable:0>5}: rellena con ceros a la izquierda hasta completar 5 caracteres.

• {variable:_<5}: rellena con guiones bajos a la derecha hasta completar 5 caracteres.

2.15 Ejercicios

Ejercicio 1. Crear una variable de cada tipo (int, float, str, bool) e imprimir su tipo y valor.

Ejercicio 2. Calcular el área y perímetro de un rectángulo. Solicitar base y altura al usuario; calcular área y perímetro.

Ejercicio 3. Solicitar un número por pantalla y convertirlo a binario, octal y hexadecimal.

Ejercicio 4. Comparar dos números introducidos por el usuario. Realizar todas las comparaciones posibles entre ellos.

Ejercicio 5. Comprobar si un número introducido por el usuario está entre 0 y 100 usando and.

Ejercicio 6. Realizar operaciones de bits AND, OR y XOR entre dos números solicitados por pantalla.

Ejercicio 7. Pedir por pantalla el radio de un círculo y calcular el área usando pi y pow de math

Ejercicio 8. Generar una contraseña aleatoria de 8 caracteres.

Ejercicio 9. Crear un formato de factura donde muestre productos y precios con el siguiente formato.

FACTURA

Manzanas……. 2.50€

Peras………. 9.75€

Total………. 12.25€

Ejercicio 10. Generar 2 números aleatorios entre 1 y 100 y mostrar el número pi con 5 decimales.

3

Sentencias de control y bucles

3.1. Sentencia if/else/elif

3.2. Operador ternario

3.3. Match .. case

3.4. While

3.5. For

3.6. Range

3.7. Break y continue

3.8. Ejercicios

Objetivos de aprendizaje:

• Conocer las bifurcaciones

• Manejar los diferentes bucles

• Creación de rangos

Palabras clave: operador ternario, flag o bandera, bucle anidado, range

3.1 Sentencia if/else/elif

Las bifurcaciones, como son las sentencias if-else, se utilizan para tomar decisiones en situaciones donde hay más de una opción posible. Por ejemplo, en un cajero automático, si un usuario intenta retirar dinero, el sistema verifica si tiene saldo suficiente. Si lo tiene, permite sacar ese dinero, en caso contrario, rechaza la transacción. También se puede usar en el control de acceso a una discoteca, en donde si una persona tiene 18 años o más, puede entrar, en caso contrario se le niega la entrada.

Las sentencias if y else se utilizan para controlar este flujo del programa. Cuando la condición es verdadera, se ejecutan las sentencias debajo del if, mientras que si la condición es falsa, se ejecutan las instrucciones del else.

En todas las sentencias de bifurcación o repetición, después de la condición se deben colocar dos puntos (:) y el código que se deba ejecutar estará indentado.

Código 3.1 Sentencia if/esle

number = 15

if number > 10:

 print("El número es mayor que 10")

else:

 print("El número es menor o igual que 10")

#El número es mayor que 10

La sentencia elif se utiliza para incluir una condición adicional si la primera es falsa. Esta sentencia también puede tener su propia sentencia else u otra elif.

Código 3.2 Sentencia if/esle/elif

n=int(input("Introduce un número: "))
if n==0:
 print("Número 0")
elif n%2==0:
 print("Número par")
else:
 print("Número impar")

En las sentencias de comparación también se puede utilizar el operador in.

Código 3.3 If/else con un in

a=7
if a in [1,2,3]:
 print ("esta")
else:
 print("no esta")

Para realizar condiciones más complejas se utilizan operadores lógicos combinando las condiciones.

Código 3.4 Con operadores lógicos

edad=24
ciudad=28
if edad>=18 and ciudad==28:
 print ("es mayor de edad y de Madrid")
ciudad=8
if edad>=18 or ciudad == 28:
 print("es mayor de edad o de Madrid")

3.2 Operador ternario

El operador ternario, en cualquier lenguaje de programación, es una manera de expresar de forma concisa una expresión if/else.

La sintaxis en Python es:

Expresion1 if condicion else expression2

Un ejemplo para mostrar si una persona es mayor de edad sería:

print("adulto" if edad >= 18 else "menor")

Equivalente a:

if edad >= 18:

 print("adulto")

else:

 print("menor")

3.3 Match .. case

En la sentencia match, se recoge una expresión y se compara su valor con cada uno de los valores expresados en cada case. En el momento que encuentra un patrón coincidente, se ejecutan las sentencias que dependen de este. Solo se ejecuta para la primera coincidencia. En el último case se suele poner como condición un guion bajo, lo que significa que se ejecuta si no coincide con ningún case expresado anteriormente.

En las expresiones indicadas en los case se pueden utilizar operadores de comparación y operadores lógicos.

Código 3.5 match..case

match numero:
 case 1:
 print("El número es uno")
 case 2 | 3:
 print("El número es dos o tres")
 case numero if 4<= numero <=10:
 print("Mayor o igual a 4 y menor o igual a 10")
 case _:
 print("El número no está entre 1 y 10")

3.4 While

Los bucles sirven para repetir una acción hasta que se cumpla una condición. Un ejemplo puede ser cuando se introduce la contraseña en un sistema bancario, este sigue pidiéndola hasta que el usuario la introduzca correctamente.

De esta manera, la sentencia while permite repetir un bloque de código mientras la condición indicada sea verdadera.

Código 3.6 while

i=1
while i<5:
 print(i,end=".")
 i+=1
#1.2.3.4.

Hay que tener la precaución de que la condición en algún momento devuelva False; si siempre es True, el bucle se ejecutará indefinidamente.

El bucle while puede tener también la sentencia else. Esta se ejecutará una vez que la condición de salida se cumpla, siempre y cuando no se haya salido con una sentencia break.

OEBPS/images/f0020-02.jpg
o N

i AR Location | CAUsersigomez!eychamprajacs Pytbofroject
6 ofngo Create Gitepository | Createa walcome scipt
> Other

Interpretertype: | Projestveny | Basecorda Custom environmant

*

 ~\VippDatalLocel\Programs\Python\Pythen313\pyihon.exe o

& Pymmona126
& pymon3tie
& Pyton3 1011
& pymon3eia .
& Python38.10. .

OEBPS/images/f0018-01.jpg
[IDLE Shell 3130 =X
File Edit Shell Debug Options Window Help

i» apy = e G| S
devi: Fle £t Fomat Run_Options Window Help
print(" 2
H for i in LAt 1054
N print (i)
5
i
7
K v
o4 Cok0)
>>]

[

neS7 Cok:0

OEBPS/images/f0019-01.jpg
X i) £ python 0gmoe - o X
@ EXPLORER = ®apy x B~ @ -
v PYTHON ®apy>.. Run Python File
O #apy 1 print("Jevi®) =y

2 for i in range(1, 10):
89 print(i) |
4

OEBPS/images/f0023-01.jpg
= JUPYLer Untitled Lt Checkoeint: & minutes ago e

Fie G View fon Kemel Setings belp Trosod
@+ KOO > = ook ~ ppetab B 8 pyinon3ipphemet O =
(3¢ prist Chola")
hos
[for 4 in ronge(a,10): BrLaT R
prine(t)

OEBPS/images/f0031-01.jpg
File "C:\python\pyl\prul.py", line 21, in <module
print (cadltnum2)
et ons

TypeError: can only concatenate str (not "int") to str

OEBPS/images/f0022-01.jpg
() ANACONDA NAVIGATOR
& == -

[— s
O

=5 b A

X0en

OEBPS/images/au2.jpg

OEBPS/images/f0037-01.jpg
import math

Constantes

print(math.pi)# 3.1415926535
print(math.e)# 2.71828182845
print(math.inf) # Infinito
print(math.nan)# Not a Number

Funciones trigonométricas

math.sin(x) # Seno
math.cos(x) ~ # Coseno
math.tan(x) # Tangente
math.asin(x) # Arcoseno
math.acos(x) # Arcocoseno
math.atan(x) # Arcotangente

Funciones de redondeo
math.ceil(x) # Redondea hacia
arriba
math.floor(x)# Redondea hacia
abajo

math. trunc(x)# Trunca decimal
math.round(x) # Redondea al
entero mds cercano

Potencias y logaritmos
math.sqrt(x) # Raiz cuadrada
math.pow(x, y)# x elevado a y
math.exp(x) # e elevado a x
math.log(x) # Logaritmo natural
math.1og10(x)#Logaritmo base 10
math.log2(x)# Logaritmo base 2

Funciones hiperbélicas
math.sinh(x) # Seno hiperbélico
math. cosh(x)#Coseno hiperbolico
math.tanh(x)#Tangente
hiperbélica

Funciones utiles

math.fabs(x) # Valor absoluto
math.factorial(n) # Factorial
e n

math.gcd(a, b)
divisor

math. degrees (x)
radianes a grados
math. radians (x)
grados a radianes
math.dist(p,) # Distancia
euclidiana entre dos puntos

Mdximo comin

Convierte

Convierte

OEBPS/images/ic3.jpg

OEBPS/images/ic5.jpg

OEBPS/images/halftitle.jpg
p—

e

e

Programacién en Python
Mas alla del codigo

OEBPS/images/f0020-01.jpg
R w o s

ipynb
2 holapy

€ £ wdio oo

Qvekome % holapy B o

® s>

+ Code + Makdown | > Run Al O Restart
ol e

B print (“"Libreta")

W o

|- vibreea

Texto de saludo

F Code + Markdown
Adi Code Cel

ardones

OEBPS/images/f0021-01.jpg
B rome
o 7 B Chenan
> [B2.ven bty root

> M ExtermalLibaies

=* Scratches nd Consoes
@
o W wew s
® %"
B
(=M}
o
g T Proces tinisted with exic cone o

R B

e,
prist (1)

222 CRIF UTF-8 4spaces Python 313 (pyh)

&

OEBPS/images/f0007-01.jpg
s arial

OEBPS/images/au1.jpg

OEBPS/images/ic4.jpg

OEBPS/images/ic6.jpg

OEBPS/images/title.jpg
Madrid, 2025

Javier Gémez Delgado

Jesos Garcia Garcia-Doncel

Programacién en Python

Més alla del codigo

'esic

sl Eciterial

OEBPS/images/ic1.jpg

OEBPS/images/cover.jpg
Javier Gomez Delgado
Jestis Garcia Garcia-Doncel

PROGRAMACION
ENPYTHON

MAS ALLA DEL CODIGO

nnnnnnnn

OEBPS/images/f0018-02.jpg
3]| 40

e st 2o i e

1) o Cveta i)

5 s

|| mopey eme
[P o e

5 0 et 20
et

OEBPS/images/f0023-02.jpg
L
5

OEBPS/images/ic2.jpg

