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    The second law of thermodynamics is one of the most fundamental laws that govern our universe and is relevant to every scientific field studying the physical world. Nonetheless, the second law’s application makes constant reference to entropy, one of the most difficult concepts to work with, and this is the reason why they are discussed almost exclusively in highly specialized literature.


    Thermodynamic entropy has been rigorously examined by classical, statistical, and quantum mechanics, which provide several mathematical expressions for calculating it under diverse theoretical conditions. However, the concept of entropy is still difficult to grasp for students and even more for educated laymen. As a scientist in plant biology, I fall into the second category with regards to this subject. Indeed, I first wrote this introductory book for myself; to approach my work with greater awareness about its physicochemical implications, I felt I needed better insight into the thermodynamic considerations that underpin spontaneous processes and allow plants, as well as humans, to achieve and improve the capability to exploit the environment to their benefit. When I consulted the literature on this topic, I found that although there are very many papers and books on the subject, the thorough explanation that I was looking for was scattered throughout them. I then began taking notes, and when I was finally satisfied I realized that, once organized and suitably presented, they were potentially interesting for other people looking for detailed, but not too advanced, clarifications on entropy and the second law of thermodynamics. I believe that a better understanding of these concepts requires a more satisfactory verbal explanation than is generally provided, since, in my opinion, a verbal approach is the one closer to the understanding capability of students and non-experts. This is why this book is focused on providing a verbal account of entropy and the second law of thermodynamics. In this sense, I deem that, beside to the basic mathematical formulations, a consistent explanation in verbal terms can be very useful for the comprehension of the subject by people who do not have a full understanding of it yet. Thus, I eventually came out with the present work, targeted to students and non-experts who are specifically interested into this matter and have a basic knowledge of mathematics and chemistry.


    With this book I attempt to offer an account of thermodynamic entropy wherein verbal presentation is always a priority. Basic formal expressions are utilized to maintain a rigorous scientific approach to the matter, though I have always tried to explain their meaning. The essential outlines for a verbal account of thermodynamic entropy are summarized in the last chapter. Such an outline is how I wish I had been taught the core concepts of this matter when I was first introduced to it. Therefore, I hope it can be of help for a general introduction to the second law of thermodynamics and the basic concept of entropy. The main text of the present work aims to demonstrate the validity of the proposed verbal presentation from a rigorous, scientific point of view, but it also represents a resource for insights on specific topics since the verbal approach is adopted throughout the text. Several examples illustrate the concept of entropy in its different expressions. A number of notes provide further clarification or insight into the content in the main text and the reader may skip them on a first reading.


    With regard to the contents of the this work, I have highlighted that the best way to conceive thermodynamic entropy that I found in the literature was that of a function of “energy spreading and sharing” as suggested by physicist Harvey S. Leff. Herein I try to take this line of thought further to verbally unravel the concept of thermodynamic entropy and to provide a better verbal account of it. I propose that a useful definition of entropy is “a function of the system equilibration, stability and inertness”, and that the tendency to an overall increase of entropy set forth by the second law of thermodynamics should be meant as “the tendency to the most probable state”, that is, to a macroscopic state whose distribution of matter and energy is maximally probable (according to the probabilistic distributions of matter and energy, and also considering the eventual presence of constraints). Thus, with time, an isolated system settles into the most equilibrated, stable, and inert condition that is actually accessible. I have provided a wide overview to introduce the rationale for these definitions and to show that they are consistent throughout the various levels and applications of the concept of entropy. The key idea is to extract from known formal expressions of entropy the essential verbal outlines of this concept and to use them to elaborate a verbal presentation of entropy that can be of general utility to non-experts, as well as to educators.
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      Abstract


      Basic concepts are defined, such as what thermodynamics aims to, what a system is, which are the state functions that characterize it, what a process is.
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    Thermodynamics deals with the overall properties of macroscopic systems as defined by state functions (that is, physical properties that define the state of a body) such as: internal energy, E; temperature, T; volume, V; pressure, P; and number of particles1, N. In addition to these properties, which are easy to understand, macroscopic systems are also characterized by specific values of entropy, a further state function that is more difficult to comprehend. Entropy can be calculated in many diverse theoretical conditions by several mathematical expressions; however, the concept of entropy is still difficult to grasp for most non-experts. A troublesome aspect of entropy is that its expression appears to be very different depending upon the field of science: in classical thermodynamics, the field where it was first defined, the conceptualization of entropy is focused on heat transfer; in classical mechanics, where many of the first studies were performed, entropy appears to be linked to the capability of an engine to produce work; its nature was then more precisely explained by statistical mechanics, which deals with the microscopic structure of the thermodynamic systems and studies


    how their particles affect the macroscopic properties of these systems; finally, quantum mechanics, by focusing on the quantization of energy and particles states, showed that the probabilistic nature of entropy, already highlighted by statistical mechanics, is closely dependent on the non-continuous nature of the universe itself. This works aims to show that, eventually, all these different aspects of entropy, which are necessarily linked to each other, can be better understood by considering the probabilistic nature of entropy and how it affects the properties of macroscopic systems, as well as the processes by which they interact.


    A first exigency is then to define a macroscopic system. According to Battino et al. [2] a system is “any region of matter that we wish to discuss and investigate”. The surroundings consist of “all other matter in the universe that can have an effect on or interact with the system”. Thus, “the universe (in thermodynamics) consists of the system plus its surroundings”. The same authors notice that “there is always a boundary between the system and its surroundings and interactions between the two occur across this boundary, which may be real or hypothetical” [2]. In any case, a thermodynamic system, which typically includes some matter, is a part of the universe that is clearly defined and distinguishable from all the other parts of the universe. The presence of solid boundaries around the system is an obvious aid in the identification of the system, but it is not a necessary one. A gas inside a vessel is traditionally seen as a good, simple thermodynamic system. An aquarium can be another quite well defined thermodynamic system, although the presence of fish and other organisms would greatly complicate its thermodynamic properties and entropy in particular. The Earth, even though it is not surrounded by solid boundaries, represents a thermodynamic system too since it is something that is clearly defined and distinguishable by the remaining universe: beyond its stratosphere there is extended empty space that separates our planet from other systems. Although some energy and matter can move through the theoretical boundary that divides the Earth from empty space, these can be precisely identified as transfers of energy and matter from/to the Earth system, which maintains its identity. It can then be immediately noted that the identification of a system is essentially a theoretical step, since the Earth can contain innumerable smaller systems, e.g. vessels containing fluid, like an aquarium, but also each cell of a fish in an aquarium is clearly an enclosed system with physical boundaries.


    Hence, a system must be clearly delimited to be studied, but the rules that govern a system must also hold for any macroscopic parcel of matter with corresponding properties and conditions. Simply put, a system is just an identifiable parcel of the universe. It is worthy to note, therefore, that any parcel inside a system has, with the rest of the system, the same relationship that holds between an open system and its surroundings. So, for a system to be equilibrated it is necessary that all of its parcels, however sorted out, are equilibrated with the rest of the system, just like a thermodynamic system equilibrates with its surroundings if there is no insulating barrier between them.


    What is particularly relevant to the study of entropy is that the system that is under consideration has to be macroscopic, that is, it must include a huge number of particles. This is because of the above-mentioned probabilistic nature of entropy, which can really be appreciated when, in the presence of a large number of particles, the probabilities become determining for every feature of the system; that is, the intensive state functions of the system (i.e., those that do not depend on the system size, but, rather, on the distributions of particles and energy across the system), which emerge as overall properties from the statistical average behaviours of all the constituting particles, can be sharply defined and statistical fluctuations due to random effects of the particles are so small that they can be neglected. Of course, the concept of entropy holds true for every system, including very small ones consisting of only a few particles. However, some statistical approximations and mathematical simplifications that are ordinarily used for large systems, cannot be applied when dealing with very small ones. Notably, in every system, intensive state functions like temperature, density and pressure, which are widely used to characterize large systems, can undergo instantaneous fluctuations. However, whereas such fluctuations are negligible in large systems, as we will see, they become relevant for very small ones. In fact, in very small systems, intensive state functions can attain ample inhomogeneities across the system itself, or between the system and its external environment if they are connected, even at equilibrium. Hence, very small systems cannot be accurately described by single average values for these parameters, which, thus, lose their physical meaning. The exact probabilistic distributions of particles and energy have to be considered for these systems, whose physical description requires, therefore, mathematical formulations that are much more complicate and less intuitive. So, though the verbal account of the entropy that will be provided in the last chapter is always valid, the formulations that must be used for precise quantification of entropy changes are more intuitive when large systems, like the ones we commonly are used to deal with in everyday life, are considered.


    In addition, for the sake of simplicity, systems are also assumed to be at temperatures much higher than absolute zero, since some quantum effects that complicate the characterization of a macroscopic system arise at low temperatures, where the nature of the particles becomes more similar to that of a packet of waves than to an ideal, spherical, and dense unit of matter (actually, matter particles remain wavepackets even at high temperatures, but then they can be treated as if they were ideal, spherical, and dense units of matter).


    Thermodynamic systems can be classified according to their capability to interact with the outside. An isolated system neither transfers energy or matter with the rest of the universe nor it changes its volume; a closed system can transfer energy to/from the outside and/or change its volume; an adiabatic system can change its volume, but cannot exchange energy or matter with the outside environment; an open system can transfer both energy and matter with the rest of the universe and can change volume too.


    When studying the interaction of a thermodynamic system with its outside (obviously not in the case of an isolated system), it is important that the state functions of the system are known, and even the outside environment has to be clearly defined, since any interaction can cause a different result depending upon the conditions of the environment surrounding the system. Therefore, the state functions of the surroundings, at least those involved in the studied interaction, have to be defined as well. In many cases, temperature, pressure, or chemical potential for a given interaction must be defined for change in the system, specifically in the entropy, to be computed. Thus, the surroundings often act as a thermal reservoir that assures that the temperature remains constant. Analogously, in some processes, the pressure or the chemical potential is held constant. In this way, the interactions between a system and its surroundings can be measured and any change in the state functions can be properly accounted for. These interactions are called processes and are studied by thermodynamics to understand how the states of a system and its surroundings interact, as well as how physical processes generally occur. Clearly, in everyday phenomena, the theoretical and experimentally rigorous conditions assumed by thermodynamics do not commonly occur. Nevertheless, as is usual in science, results of experiments conducted in rigorously controlled conditions help us understand what factors are involved in a given phenomenon and thereby provide guidance to comprehend all similar phenomena that happen in the physical universe. Theoretical analysis assists us in defining to which actual instances such a general inference can be extended. Hence, if we understand how thermodynamic properties, and specifically entropy, affect systems and processes that are exactly defined from a theoretical point of view, we can then try to extend these findings to correctly interpret all the systems and processes of the universe.
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      Abstract


      The concept of entropy is introduced within the context of classical thermodynamics where it was first developed to answer the questions: What happens when heat spontaneously goes from hot bodies to cold ones? To figure out this change, the transfer process must have some peculiar features that make it reversible. First of all, to be studied, systems and processes must be conceptualised as occurring at equilibrium conditions, or in conditions close to equilibrium. A first description of equilibrium is provided.
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      The founding definition of entropy


      In classical thermodynamics, entropy was originally defined by Clausius’ equation [3]:
dS = δQ/T

      where dS is an infinitesimal change in the entropy2 (S) of a closed system at an absolute temperature T, consequent to a transfer of heat (δQ) that occurs at equilibrium conditions. This definition was prompted by the observation, among others, that heat is spontaneously transferred from hot to cold bodies and the direction and universality of this phenomenon could be explained by some change in the involved bodies. So, the transfer of heat has to result in a change in the


      bodies that necessarily drives heat transfer from hot to cold and not the reverse. Although theoretically correct, the adoption of heat transfer as a definition of entropy is troublesome for our intuitive comprehension, since it requires that the transfer has to be at a defined temperature, i.e. the temperature of the entire system has not to change, in other words, the transfer has to be isothermal. This is unfortunate because what typically happens when something is heated is just that its temperature increases. In fact, a transfer of heat is commonly expected to occur from a hot body to a cold one, but in the simple heat to temperature ratio pointed out by the Clausius’ equation only one temperature is considered. Which one should be used, the temperature of the hot body or that of the cold body? As we are presently using the Clausius’ equation to define the entropy of a system, if the temperature is diverse in the two bodies, or systems, their entropy changes are different as well, as we will see soon, and the entropy changes are separately calculated for each body, even though the amount of heat transferred from one system to the other is one and the same. However, what is relevant here is that the temperature of each body is changing. So, the question could be whether the initial temperature, the equilibrium temperature, or perhaps their mean should be used. Actually, when the process is not isothermal and therefore the overall transfer of heat is discrete rather than infinitesimal, infinitesimal transfers of heat can nevertheless be imagined to occur at each subsequent instant, that is, instantaneous transfers of heat can be considered, which are infinitesimal as well. Although this approach is theoretically correct, and it will be used later in this chapter to show what generically happens to the total entropy when the transfer is not isothermal, in this case the problem is that the temperature at which each heat transfer occurs is changing for the system itself and is therefore unknown, unless further assumptions can be done for modelling it. As these assumptions depend on the specific bodies, it is not desirable to consider them when dealing with the general principle of equivalence between heat transfer and entropy change. In addition, if the initial temperatures of the bodies are diverse, a gradient of thermal energy forms during the equilibration process (unless it is extremely or, better, infinitely slow, as we’ll see), thus generating inhomogeneities across the system itself, a problem that has already been remarked when discussing the size of the system and that greatly complicates the analysis of instantaneous changes. So, the problem with a non isothermal heat transfer is that the value of the Clausius’ equation is different for the two bodies, and it is indeterminate inasmuch the instantaneous temperatures of the bodies are unknown, or indefinable. Obviously, for each body the equation holds true at every instant, it is just a problem of not being able to calculate it for a generic body if its temperature changes during the heat transfer. This is bothering, since the differential Clausius’ equation just cannot be experimentally tested, or directly applied, in this situation. A theoretical solution to this methodological difficulty is based on the fact that the amount of transferred heat becomes smaller and smaller as the temperatures of the two bodies get closer. In the limit of the difference between the two temperatures becoming infinitesimal, even the amount of transferred heat becomes infinitesimal. If the difference of temperature that drives the transfer of heat is infinitesimal, the process is actually isothermal. Thus, the Clausius’ equation is always true, but it provides a definable and exact measure of the change of entropy of a body, or system, when it is generated at a given, unchanging, temperature of the system, and this condition is unfailingly guaranteed by considering an infinitesimal transfer of heat.


      A discrete version of the Clausius’ equation is even more problematic: for a discrete heat transfer, the T in the denominator of dS = δQ/T is not constant and, therefore, not only dS cannot be calculated using this simple ratio, but the Clausius’ equation itself does not hold true unless the process is isothermal. The reason for the isothermal requirement is that entropy is a non-linear function of temperature (it is logarithmic, for an ideal gas, as can be found out by integrating the Clausius’ equation) and therefore the actual instantaneous change of entropy is different at different temperatures3. Thus, since in many processes it is not possible for the temperature and thermal energy of an ideal gas, or other system, to change independently of one another, a change in the entropy of a system can be expressed properly in terms of the simple heat to temperature ratio only in differential terms, specifically, dS = δQ/T (and not ΔS = ΔQ/T, unless, as we are going to see, there is a way to buffer any change of T) or its equivalent [4].

    


    
      Heat capacity is required to calculate the entropy change in discrete heat transfers


      The classical kinetic theory of gases implies that the amount of thermal energy possessed by a mole of an ideal gas (i.e., a gaseous system) would be directly proportional to the system temperature, specifically, such a proportionality depends on cv, the constant volume heat capacity [4]. The heat capacity can be seen as the capacity of a body, or system, to accept heat, actually thermal energy, for its temperature to increase of one degree. So, a body with a large heat capacity needs a lot of heat, i.e. thermal energy, to increase its temperature. More formally, the heat capacity is the coefficient of proportionality between the temperature of a body and its internal energy when only thermal interactions are involved. Since, when the temperature increases, an ideal gas increases either its volume or its pressure, it is usually necessary to specify which one of these two state functions is allowed to change in the studied system, to properly characterize the system itself. The constant volume heat capacity, cv, relates changes in temperature to changes in internal energy. Thus,
dE = cv·dT

      and cv would be a constant. This equation can be expressed in the form;
dS = cv·dT/T = cv·dInT

      and integrated between two specific temperatures to yield;
ΔS = cv·ln(T2/T1)

      The same difficulties occur for a change of entropy consequent to a finite change in the system’s volume (and then in the concentration of the particles), which is given by the comparable expression;
ΔS = R·ln(V2/V1)

      which is obtained essentially in the same manner [4].


      So, as previously discussed, it is not possible to directly use the Clausius’ equation to calculate a discrete change of entropy if the temperature is changing because S does not change linearly to T. Discrete changes of entropy in a system, consequent to a discrete change of either temperature or volume, can instead be calculated from the logarithmic equations reported above, assuming the respective proportionality constants remain really unchanged. However, this approach introduces an additional parameter, precisely the proportionality constant, that, essentially in the case of the logarithmic equation for temperature change derived from the Clausius’ equation, is dependent on the specific system, or body. As said, this is undesirable for a general definition of entropy, which in the simple ratio established by the Clausius’ equation has one of its most general expressions and its founding definition. This difficulty (i.e., the isothermal requirement for the application of the Clausius’ equation) can be overcome in three ways: either the transfer of heat has to be infinitesimal, as seen, so that any change in the temperature is negligible (in other words, the entropy change at each temperature is calculated as the limit of entropy change when heat transfer tends to zero, i.e. as the local derivative of entropy vs. temperature and this is a more general form reflected in Clausius’ equation), or any change in the temperature consequent to heat transfer from the system to the surroundings is buffered because the latter act as a very large (theoretically infinite) thermal reservoir 4, or there must be some other reversible transformation (we will see below what is specifically meant for a transformation to be reversible) that maintains a constant temperature even if heat is added. In the latter case, some suitable heat-consuming process, like an isothermal expansion or a hypothetical phase transition that may use the heat to melt a solid phase without increasing the temperature, and without any volume change (the use of an ice/water system at 0°C is therefore only roughly suitable because when freezing water expands its volume; this is why ice is less dense than water and floats on the surface of water), can be coupled to the heat transfer to avoid a discrete heat transfer causing a change of the temperature of the system.


      In actual experiments, if the transfer of heat at each given temperature is (theoretically) infinitesimal, then the cumulative change of entropy occurring in the system as a consequence of a discrete, non-isothermal heat transfer (which would then require an infinitive time to be accomplished), can still be calculated from the integration of the heat transfer over the continuous change of temperature. However, as already mentioned, a fast heat transfer is problematic to deal with, because of the inhomogeneity of the thermal energy in the system that makes the system temperature indefinable. So, when dealing with real conditions, a very slow change, ideally occurring through a series of equilibrium states, is required for the heat transfer and then the entropy to be properly measured. That is, the process has to be reversible (shortly, this means it can go either direction). In fact, if a system is not in equilibrium it is not even possible to define its temperature [1].

    


    
      Reversibility


      At this point it is evidently necessary to clarify when a process is reversible and, subsequently, we will see why it needs to be so. To be reversible a process must be such that reversing the path at every stage of the process restores both the system and its surroundings to their initial conditions (as defined by the state functions)[5]. Typically, this occurs when a process is at equilibrium, meaning it can go one or the other way, indifferently. This means that any transfer between the system and its surroundings does not have a spontaneous or preferred direction, but it is a fluctuation of a dynamic equilibrium. In addition, a process at equilibrium is expected to stay at equilibrium and to go nowhere else. Nevertheless, a reversible process is intended as an ideal, discrete transfer that occurs through a series of equilibrium states and actually goes toward a given direction. How can a series of equilibrium states go toward a given direction? It can only happen if any change occurring in the system toward that direction does not affect the equilibrium itself. For example, if in a system at the phase transition of water (0 °C) there are two ice cubes, one small and the other big, the equilibrium is not affected if, because of random fluctuations of the dynamic equilibrium between the molecules of the ice and the water, very gradually the previously small ice cube becomes larger and the prior bigger one becomes smaller. It would be a transfer the equilibrium is indifferent to. In general, a transfer of energy or particles from/to a system, as well as from one form to another perfectly equivalent form, does not affect the overall equilibrium, even if it is macroscopic. Thus, a process is reversible if it causes a change from a given condition to another perfectly equipollent in energetic terms. As we will see, this means that there is no overall change of potentially available energy, even considering the possible inter-conversions between diverse forms of potential energy (gravitational, hydrostatic, PV, thermal, electrical, etc.). So, the essence of a reversible process is not that it stays at a given fixed state, but rather, that all forces are balanced, i.e. it is at equilibrium at each and every infinitesimal step [2, 3]. The series of equilibrium states that lead to change, or transfer, should then be theoretically infinite in mathematical terms and very slow in actual terms. What is fundamental is that a reversible process is intended to occur, but it cannot be guaranteed since any admissible change must not affect the equilibrium. Change could happen, but it could also not proceed toward the intended direction. If a process is to occur in a desired direction, then there must be an imbalance of forces, however small, to push it in that direction. Therefore, reversible processes are discussed from a purely theoretical point of view. Nonetheless, they can be approximated in practice.


      In practice, a reversible process can be approximated if some conditions are satisfied. Before anything else, the process has to be very slow, so that the system and its surroundings always approach a stationary state. In other words, a reversible process can be approximated by a sequence of states wherein any intensive state function (temperature, pressure, chemical potential) of the surroundings changes slowly enough to allow the system to continually adjust and equilibrate after each tiny change. This is often defined as a quasi-static process, and it goes in a given direction through a finite, or practically continuous, number of equilibrium states [2]. Actually, this ensures that both the process goes in a desired direction, and the system is almost in an equilibrium state with its surroundings throughout the process; however, it pays no attention to how the overall process is generated. Typically, the cause of the process occurring in the surroundings is ignored because the thought-experiment is aimed to evaluate the irreversible path for the system by itself, as a paradigm for irreversible processes in general. Causation is therefore abstracted away to avoid going back along an endless cascade of causal events.


      A quasi-static process is formally irreversible because all forces are not balanced at each and every finite step, since this is the only way to assure that the process ultimately proceeds in a given direction. Directionality, caused by this tiny unbalancing, is what distinguishes a quasi-static process from an ideal, reversible one. However, ultimately, the quasi-static finite stepwise process approaches the reversible one, because the process goes in one direction in a very slow manner so that at each instant it is almost balanced (that is, the system and its surroundings are almost balanced). A quasi-static process should virtually replicate in practice what a reversible process is in theory, at least as regards the system. In addition, if a system is not at equilibrium it is neither possible to exactly define its temperature nor to consider its thermal properties as homogeneous. Inhomogeneities in temperature obviously have a complex effect on any thermal process. In general, the value of an unknown state function can be computed only if the system is equilibrated (and homogeneous for that state function) and therefore any ongoing process can only be properly quantified if it is reversible.


      Thus, to precisely quantify the change of entropy that occurs in a heat transfer between a system and its surroundings (typically considered to act as a thermal reservoir ensuring a constant temperature T), theoretical considerations require that the transfer occurs at equilibrium conditions; a discrete change in entropy could be obtained through an infinite series of incremental steps, δQ, so that at each instant the system is at equilibrium and therefore:
ΔSsys = ∫δQ/T

      providing that the reversible heat transfer and the corresponding change of temperature are continuously monitored, the discrete entropy change can be calculated as a sum (integration) of (theoretically infinitesimal) steps. Notably, a series of equilibrium states occur only if the temperatures of the system and its surroundings are always equilibrated. In fact, heat flows from hot to cold and the flow rate goes to zero at equal temperatures [1]. In practice, this ideal reversible process can be approximated if the heat transfer, as well as any subsequent transformation aimed to keep the temperature constant, is very slow so that the system and its surroundings always are in an almost stationary state.


      Entropy is an extensive state function, i.e. it depends on the spatial extension of the system and on its overall actual state, and therefore it does not depend on the pathway followed to reach a given state whether the process is reversible or irreversible. However, irreversible processes increase the combined entropy of the system and its surroundings: a process that involves friction, or that is done quickly and generates turbulence in fluids, is irreversible also because some heat is dissipated into the surroundings thus that there is an overall increase of entropy (for example, when a falling body impacts the soil). Anyway, a change of entropy in a system that undergoes heat transfer is the same whether the transfer of heat is reversible or not, providing the end temperature is unchanged. So, reversibility does not affect the change in entropy of a system if its starting and final conditions are the same, but if the transfer is irreversible, that is, it occurs in non-equilibrium conditions, then there is a discrete difference in the temperature between the system and its surroundings. Thus, there is a direct transfer between a hot body and a cold body and the resulting changes of entropy in the two bodies (or system/surroundings) do not correspond. In fact, if the heat Q flows directly from a hot body at TH to a cold one at TC, the respective gain and loss of entropy for the two bodies are δQ/TC and -δQ/TH, thus that, as TH > TC, according to Clausius’ equation the decrease of entropy in the hot body is lower, as an absolute value, than the increase of entropy in the cold one. Thus, in a heat transfer, the changes of entropy in the two bodies compensate for each other only if the process is reversible and isothermal, otherwise, the increase of entropy in the cold body is higher than the decrease in the hot one and the overall entropy then increases. For a direct transfer of heat from hot to cold the total variation in entropy is:
dStot = δQ/TC - δQ/TH

      which is always positive [6]. Hence, only a reversible path provides a valid equivalency between the measured heat transfer and the entropy change in both a system and its surroundings. In general, for every kind of process and not only for heat transfers, there is always an increment of the overall entropy in going from a nonequilibrium to an equilibrium state. As a result, processes that are not reversible increase entropy. In a discrete but idealized and reversible transfer of heat to a system, ΔSsys = ΔQrev/T, but in a real, direct heat transfer to a cooler body ΔSsys > ΔQirrev/T, where T is the end temperature of equilibration (for example, with a thermal bath), because the temperature of equilibration must be higher than the one the system initially had for the transfer of heat to the system to be spontaneous and discrete. This is another way to show that the discrete version of the Clausius’ equation does not hold true if T changes.


      Definitively, for a process to be reversible means that it occurs under equilibrium conditions, that is, it involves some change or transformation that does not affect the overall equilibrium of the system. Otherwise, some additional change happens in the system when it moves to equilibrium and such a change alters the balance of the overall entropy. In addition, if and only if the system is at equilibrium are its state functions defined and homogenous throughout the system. This allows us to obtain exact measurements of the state functions and then to establish precise relationships between them.


      Classical thermodynamics looked for a state function that could describe what happens when heat spontaneously goes from hot bodies to cold ones. It was soon found that an increase of entropy is always associated with this process.
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      Abstract


      The idea of transferring energy from/to a system is expanded to include work in addition to heat. Work is an alternative form by which the energy of a system can be transferred.
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    Whereas in classical thermodynamics the interest was focused on heat transfers, in classical mechanics the attention was shifted toward the potentially much more applicative theme of the relationship between heat and work, with particular regard to how thermal energy can be used to produce work.


    It is useful, at this point, to examine in a more in-depth manner the concepts of heat and work as thermodynamic ways of transferring energy. The first law of thermodynamics is often formulated by stating that any change in the internal energy (i.e., the energy contained within a system, excluding the kinetic energy of motion of the whole system and the potential energy of the system as a whole due to external force fields, and, with the exception of nuclear reactions even the rest energy of the matter, E = mc2, is not considered because in common systems there is a clear distinction between matter and energy [7]) for a closed system is equal to the amount of heat supplied to the system, minus the amount of work done by the system on its surroundings. In other words, the energy is additive and an exact balance can be calculated when it is exchanged. Thus, the first law of thermodynamics
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