
[image: image]



Ultimate
Microservices
with Go

[image: ]

Combine the Power of Microservices with Go to
Build Highly Scalable, Maintainable, and
Efficient Systems

[image: ]

Nir Shtein


[image: ]


www.orangeava.com





Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: April 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,

N1 7AA, United Kingdom

ISBN: 978-81-97223-98-3

www.orangeava.com





Dedicated To

My Beloved Mom:

Anat Shtein

All the People Who Supported Me Along the Way

To You, Dear Reader, for Making This
Journey Worthwhile






About the Author



Nir Shtein is a multifaceted engineer, lecturer, public speaker, and author with a deep focus on open-source software (OSS), Kubernetes, Golang, DevOps, and backend engineering. He has imparted his knowledge through lectures, articles, and podcasts and has held various leadership positions, including Academy Lecturer, Tech Lead, Team Lead, and Software Engineer.

Throughout his career, Nir has transitioned from working in large corporations to dynamic early-stage startups, embraced academic roles, and developed distinctive open-source projects. He has been an active participant in Accelerate programs, further enriching his professional experience.

Over the years, Nir has delivered lectures on an international scale and authored several articles that have reached a global audience. He has contributed to numerous OSS projects, with his most successful project amassing over 100,000 users.

In addition to his professional achievements, Nir has mentored many individuals, guiding them into the high-tech industry and helping them to kickstart their careers. Beyond work, he enjoys reading, listening to podcasts, engaging in sports, cooking, and exploring new places, constantly seeking new experiences and knowledge.






About the Technical Reviewers



Noopur Tanwar is a professional in Software Development, specializing in backend development and mobile app development, with a focus on Microservices. She has worked in various industries such as automobiles, telecommunications, retail, and transport. With expertise in languages such as Java, Kotlin, and Golang, Noopur possesses a strong understanding of their technical concepts and idiomatic coding practices. Her experience in software development could provide insights into how technology is portrayed in literature.

Currently, Noopur works as a Senior Backend Developer in Golang at Quest Global, where she is working on developing APIs for the Jio App. Her work contributes towards making code more readable, maintainable, scalable, and reliable across the organization. Noopur’s passion lies in writing code that is not only functional but also solve problems efficiently and elegantly. This passion drives her to constantly strive for improvement, to meticulously refine every piece of code she works on, and to explore new technologies and methodologies.

Gaurav Arora is a Microsoft MVP award recipient. He serves as a Mentor of Change with AIM NITI Aayog, Government of India, and as a Business Coach with Business Blaster, Government of NCT of Delhi. Additionally, he is a lifetime member of the Computer Society of India (CSI) and serves as an advisory member and senior mentor at IndiaMentor. Gaurav is certified as a Scrum trainer and coach, ITIL-F certified, and PRINCE-F and PRINCE-P certified. He is also an open-source developer and contributes to the Microsoft TechNet community. Gaurav has authored books across various technologies and has recently been recognized as a world record holder for writing books on exceptional technologies.






Acknowledgements



Writing Ultimate Microservices with Go has been an incredible journey, and I owe immense gratitude to the individuals who have been instrumental in making this book a reality. This project could not have been achieved without the steadfast support, wisdom, and expertise graciously provided by so many.

Firstly, I would like to thank everyone involved in writing this book in one way or another. I discussed the content of this book with colleagues, employees, friends, and managers—people who mainly supported me in sharing my knowledge and leveraging it into this book. Special thanks to the technical reviewers, whose thorough assessments and valuable feedback significantly improved the book. Their commitment and knowledge were crucial in polishing the content and guaranteeing its precision.

I am grateful for the constant support from my family. A special acknowledgment goes to my mother, Anat Shtein, whose encouragement and understanding have strengthened me during this writing journey. I also extend heartfelt thanks to my father, Ron Shtein, for his unwavering support throughout this project.

Lastly, thank you, the readers, for selecting this book as your guide on this learning journey.






Preface



Welcome to a fantastic journey through the world of microservices architecture with the Go programming language. This book is intended for developers looking to broaden their understanding and grasp the bigger picture of microservices. It emphasizes the importance of holistic comprehension over specific technical details, especially in an era when AI can automate many simple tasks.

The objective is to provide a panoramic view of microservices architecture and its practical applications rather than diving into every detail. The aim of the book is to equip you with the foundational knowledge and skills to develop robust services in Go, architect scalable systems, and ensure their successful deployment to production.

Throughout this book, we will explore the essentials of Go programming, delve into advanced topics, and navigate the complexities of building and deploying microservices. We will emphasize the strong connection between microservices, Go, RESTful APIs, and Kubernetes, covering key areas such as service communication, API design, container orchestration, security, and observability.

By the end of this journey, you will have a solid grasp of architecting and implementing microservices using Go, preparing you to tackle the challenges of efficiently bringing your services to production. This book is not just a guide but a stepping stone to continue developing your skillset and exploring new horizons in the ever-evolving world of software development.

Chapter 1. Introduction to Microservices: The chapter explores the evolution of microservices from alternative architectures, highlighting their benefits and drawbacks. We also examine the rising popularity of microservices and the synergy between Go and microservices, showcasing how Go's simplicity and efficiency complement microservice-based applications.

Chapter 2. Usability of Go: The chapter delves into the reasons behind Go's creation, its core principles, and the typical experience of a Go developer. We explore Go's simplicity, minimalist design, suitability for cloud environments, maintainability, and ease of transitioning from onboarding to production. Additionally, we'll examine Go's vibrant ecosystem, including its communities and extensive support network.

Chapter 3. Go Essentials: The chapter equips you with the essential knowledge and tools necessary to become proficient in the Go programming language.

Chapter 4. Embarking on the Go Journey: The chapter delves deeper into Go's advanced topics and principles, building upon the essentials previously covered. We will explore a few Go best practices, techniques, generics, and contexts.

Chapter 5. Unlocking Go's Concurrency Power: The chapter continues our exploration of advanced Go topics by unlocking the language's powerful concurrency features. We'll delve into the world of Goroutines and Channels. Additionally, we'll cover the Pub/Sub pattern, Channel Closing Principle, strategies for avoiding Goroutine leaks, and more.

Chapter 6. Core Elements of Microservices: The chapter dives into the core components of microservices architecture, shedding light on the elements that transform a standard architecture into a microservices-oriented one.

Chapter 7. Building RESTful API: The chapter delves deeper into the development of RESTful APIs, building on the foundations laid in the previous chapter. We'll start with an overview of the RESTful approach and its constraints. We'll discuss essential API capabilities using Go, including documentation, versioning, caching, and so on.

Chapter 8. Introduction to Kubernetes: The chapter introduces Kubernetes, providing developers with the basic tools and knowledge to work effectively with this powerful container orchestration platform.

Chapter 9. Deploying to Production: This chapter focuses on safely delivering production services from a developer's perspective rather than the operational side. We'll explore the challenges and obstacles developers face during the deployment process.

Chapter 10. Next Steps in Production: This chapter addresses the crucial phase after deploying your application to production: maintaining the service and managing potential failures. We'll explore strategies for monitoring and ensuring observability, utilizing logs, metrics, and tracing to gain insights into the system's behavior.

It is advised not to stop here and strive to learn and gain more knowledge. Today, it is essential to keep learning and discovering new topics and tools because the software industry is moving at breakneck speed.

Happy reading and continuous learning!






Downloading the code
bundles and colored images



Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/OrangeAVA/Ultimate-Microservices-with-Go


[image: ]


The code bundles and images of the book are also hosted on
https://rebrand.ly/bprpy51


[image: ]


In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.






DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.









CHAPTER 1


Introduction to Microservices



Introduction

In this chapter, we will explore the world of microservices, a revolutionary architectural style that has transformed how we build and deploy software in the modern era. Microservices offer a granular approach to software development, where applications are broken down into smaller, independent services, each responsible for a specific function. This modular structure promotes agility, scalability, and resilience, enabling organizations to adapt to changing market demands and technological advancements rapidly.

During this chapter and throughout the book, we will overview the trends and coupled relations of the two major topics of this book: Microservices architecture and the Golang programming language. We will see their strong correlation, why it happens, and how.

This chapter will provide a concise overview of the contemporary method used in constructing architectures—the microservices architect. We will compare it to other architectures, and we will see when it is beneficial to use this architecture and when Microservices create adverse effects.

Structure

In this chapter, we will discuss the following topics:


	Brief History of Microservices

	Monolithic, SOA, and Serverless

	Benefits of Microservices

	Drawbacks of Microservices

	Popularity of Microservices

	
Popularity of Golang

	Combination of Go and Microservices



Brief History of Microservices

Let’s start by saying that many people claim they have the right to invent the microservices architecture. According to Wikipedia, the first person who mentioned something similar to microservices was Fred George in 2004. He worked on architecture that he called “Bayesian Principles”. In 2005, Peter Rodgers introduced the term “Micro-Web services” at the Web Services Edge conference. Many individuals can claim that they invented it because there isn’t a clear definition of a microservices architecture. Since then, many people have presented things that look like or feel like microservices. It is important not to confuse between microservices and SOA, which we will later detail the difference between them. Since then, its popularity increased over the years and accelerated between 2014 and 2015 (Figure 1.1).


[image: ]


Figure 1.1: Microservices searches over the web by Google Trends

A note on Google Analytics: This is a great free online tool. It can primarily be utilized for entertainment, as observing trends is fascinating. It is highly valued for exploring subjects and aggregating information.

Monolithic, SOA, and Serverless

It is helpful to know the other alternatives to some terms or technologies to have a clear understanding of them. The common architecture styles used for a while from the early days of the software industry are Monolithic, “Service-Oriented Architects,” aka SOA, and some other architecture we won’t elaborate on in this book.

Monolithic

“Mono” from ancient Greek means solo, single. As the name suggests, this architecture is structured as a single block of code deployed on a single platform. Usually, in a monolith architecture, there are three main parts - storage (DB), web app with client-side, and backend that acts as server-side, which contains all the business logic, data layer, and everything (Figure 1.2).


[image: ]


Figure 1.2: Simple Monolith Structure

DAL is an acronym for Data Access Layer. This software middleware is responsible for giving software layers that have direct access to the DB and provide tools like retries, error handling, cache, and so on.

As we can see from the simple diagram, this architecture is straightforward. However, all the components are strongly interdependent.

In a nutshell, these are the pros and cons of a monolith:

Pros


	Simple to develop and simple to deliver to production.

	Minimum amount of hops: No need to communicate between one service to another, and we can save a lot of time by decreasing the latency, which leads to better performance.

	Very easy to implement the DRY principle (don’t repeat yourself) — due to the single codebase.



Cons


	
Spaghetti code: As the codebase is extending, the code has more potential to be cumbersome.

	
Harder to troubleshoot and debug: Navigating a large codebase can be challenging. Even harder to find a malicious bug that caused a side effect in a hidden function somewhere.

	
IDE: The integrated development environment (IDE) is overwhelmed. Note that there is an approach for writing microservices in a Monorepo, a single repository for all the services.

	
Easy to gain legacy code and technologies: We are afraid to change core functionalities, infrastructure, and technologies in a large codebase. These changes can dramatically affect the application because keeping old code and old technologies is convenient.



Nowadays, microservices architecture is the most famous in the market, and people tend to reject monolith architecture because they think it is outdated. However, Monolith architecture can benefit in various use cases.

SOA

SOA stands for Service-Oriented Architecture. While the name might be misleading compared to microservices, they do have commonalities. However, there are a lot of differences between them. SOA is an architectural style that organizes software systems as a collection of loosely coupled and reusable services. In SOA architecture, there are two main parts - providers and consumers. The provider and consumer can be on the same deployable component/application/server. This is the significant difference between SOA and microservices. This approach was developed in the early 90s. In those times, the operation part of software engineering was more intricate. We had specialized teams focused on infrastructure, security, databases, and so on.

We would place the SOA architecture between the monolith architecture and the microservices architecture at the decomposition level. Monolithic architecture behaves as a single unit, while microservices architecture behaves as a fine-grained division.


[image: ]


Figure 1.3: Simple SOA Structure

In a nutshell, these are the pros and cons of SOA:

Pros


	
Reusability: Reusability is the core of this approach. It allows us to separate concerns at the service/API level and reuse infrastructure, such as hardware, network, OS, and more.

	
Separation of concerns: It isn’t fine-grained as microservices. Still, it allows us to parallel and deliver our service/API without depending on other teams.



Cons


	
Side effects: Issues in shared components can affect other components. For example, if the consumer or provider consumes too many resources, if some environment variables change, or any other side effects, all of these can easily affect all existing services.

	
Performance Overhead: The additional layers of abstraction and communication protocols in SOA can introduce performance overhead. Service invocations across different components and networks may cause latency, potentially impacting response times, and overall system performance. The concerns of network issues are also the same concerns for DBs.

	
Complexity : Implementing SOA can introduce complexity to our services.



Serverless

This architectural approach is the most modern architecture from the ones we presented here.

Naturally, the cloud’s creation led to a serverless architect’s creation. The core of this approach is to extract infrastructure concerns and leave us with doing the things that matter - business logic. As the name implies, this is “server” + “less” - meaning no server exists. Of course, there is infrastructure and a server somewhere that runs the code. But we are not responsible for managing this server. The cloud vendor is responsible for all that work. Examples of such technologies are the Functions service of GCP or Lambda of AWS. And many more services/products aim to support the serverless architecture.

Before examining the pros and cons of serverless architecture, we want to discuss two core concepts: FaaS and Bass.


	
FaaS: Stands for functions as a service. We write our function/API endpoint and let the cloud do all the other work.

	
BaaS : Stands for backend as a service. We can concentrate solely on developing and maintaining the clients and not on storage, database management, networking, and other infrastructure aspects.





[image: ]


Figure 1.4: Simple Serverless Structure

As we can see from the diagram, we, as developers, only wrote the green blocks (Function), and the cloud vendor provided all the yellow blocks (third-party service/DB).

Pros


	
Highly efficient development process: The development process is highly efficient, with rapid initial development. Infrastructure concerns are no longer a burden, as the serverless architecture seamlessly manages them.

	
Easy to scale: The scaling process is very straightforward - the only things we should worry about are the resources a function uses.



Cons


	
Vendor lock: Once we use a specific vendor, all the configurations and settings are specifically for our services. Transferring to another vendor can be very painful.

	
Edge cases: There are some scenarios when we want to do something but can’t due to the limitations of the vendor services that we use.

	
Monitoring: Since we rely on the vendor to take care of the infrastructure, we also need to rely upon him to provide monitoring tools or integrate other SaaS/OSS monitoring tools.



The cost of serverless architecture is controversial. In serverless architecture, we pay per usage, usually for CPU and memory. We have a lean billing model, and the method of using it is simple. More than that, it goes without saying that we save money on fewer DevOps, operations, and infrastructure engineers. However, other opinions say doing these things ourselves will save money, arguing that we don’t have the flexibility to utilize our specific architecture and operation.


Benefits of Microservices


The following figure generally describes how microservices look, and we already can see the difference between this architecture and the other architectures.


[image: ]


Figure 1.5: Simple Microservices Structure

Independent Workloads

By design, microservices architecture splits the architecture into separated services/ APIs/ components. These services are delivered and packaged individually within self-contained deployable units. The self-contained units principle is one of the significant differences between SOA and microservices. The separation of many workloads decreases the size of the codebase, which leads to more minor services.

Minor services mean lean binary, fast build, and so on. Another significant effect is that each workload doesn’t affect other workloads. We know the dependencies in advance, and this makes it effortless to deliver services as containers. Containerization is the best practice when it comes to microservices. Both of These concepts deliver the same goal—separation of concerns.

Since the codebase is divided per service, there is no shared code (usually). Each team can work independently on its code without disrupting other teams. A separated codebase leads to breakneck initial development speed. Another effect is that each team can test its services without considering other teams’ services.

Easy to Scale

Let’s start by talking about vertical scale (scale up). Vertical scale means adding more resources (bigger machines). However, there isn’t always a direct correlation between resource consumption and the ability of the service to handle more load. Microservices architecture has become much more helpful when we want to perform horizontal scale (scale out). It is seamless to perform scale-out, just increasing the number of replicated machines/containers for the wanted machine.

Plug and Play

An exciting way to look at microservices is as a honeycomb structure. Each bee builds its cell. It is also elementary to replace one cell with another. The ability to replace a service with another service can become handy when we want to remodel our architecture, experiment with new technologies, or perform some tests in the current architecture. Also, the rollback/rollout processes become simple and easy.

Fault Tolerance

Failure is a typical scenario that always happens, and we should be prepared for this. We aren’t living in a perfect world where the code is perfect and the server has a 100% success rate. The microservices architecture made this preparation easier because of the loose coupling between the services. Each service can fail without affecting the other services. Also note that there are many other things to consider when talking about failure (retries, graceful shutdown, and more), and we will talk about that. But at least microservices set a ground base to handle failure properly without considering other services, making the work easier.

Increase Agility

In a nutshell, Agile - is the ability to work fast and to be flexible. There is a vast theory and techniques regarding how to be Agile, and we’ll discuss it further in this book.

Each service has its codebase. A team can be responsible for one or more services without relying on or depending on other teams, which is a crucial capability for working with the Agile methodology. Also, when a new member joins the team, onboarding becomes effortless. They don’t need to learn all the service codes, only the services their team is responsible for.

Drawbacks of Microservices

Here are the drawbacks of microservices:

Operations Overheads

As we discussed before, the primary benefit of microservices is that each workload/deployment is independent and delivered separately from other services. We saw all the enormous advantages of this. But there is another side to the coin. To allow each service to deliver as a separate deployment, we need to support it from the operation side.

There are many things to consider for each service — service configuration, packaging, separate tests, separate deliverable units, and so on. These examples emphasize that working with microservices requires much operation work compared to monolith or SOA.

Complexity

Naturally, with the increase in services and workloads comes the complexity of managing them all. The previous drawback of operation overhead is that it is just a specific use case of the complexity of microservices. Also, managing data and consistency becomes harder — the data is distributed among each service because each service has its database.

Each team can write its services using its favorite or most relevant programming language. This ability has benefits and disadvantages. The operation must create, maintain, and tackle operations issues for all these programming languages.

Moreover, switching developers between teams will be harder when each service is written in other programming languages.

It isn’t a coincidence that we chose to write in this book about Kubernetes and how we will deploy the microservices architect on Kubernetes and not on other platform/s. The primary reason is that Kubernetes is coming to solve this complexity problem.

Hard to Troubleshoot

It is a continuation of the previous point. Due to the complexity of microservices, it is harder to gain visibility above it and create full observability. Many obstacles prevent us from reaching good visibility.

Popularity of Microservices

Various trends happened that led microservices to be so popular.

The first and oldest of them is the Agile methodology. Although it is a pretty old methodology, Agile gained popularity merely when the Agile Manifesto was published (there is a link to it in the references). We highly recommend reading it; it exists in many languages and is very simple to read. Note that it doesn’t contain actual practices such as Scrum and Kanban. The Agile Manifesto is considered the doctrine of the Agile methodology.

The Agile Manifesto makes us fast and flexible, so the microservices approach suits those reasons. It is easier and faster to deliver small software than one big piece, which the microservices architect allows us to do.

The cloud computing industry is the second trend after the Agile Manifesto. The leading cloud vendor, AWS, launched in 2002. And from there, this is history; nowadays, using cloud computing is the go-to for many companies and projects.

As we mentioned before, one of the significant disadvantages of using microservices architecture is the operations overhead that comes with it. In my opinion, this is the main reason why microservices weren’t prevalent before. The ROI (aka for range of investment) was not worth it! Cloud computing technologies have made our lives much more straightforward in many ways, but the major one is the operations area. So suddenly, building microservices architecture using cloud computing resources sounds like a good ROI.

The next trend we want to look at is the Docker Engine.

Generally, containerization was invented long before docker. Docker was a critical player that led us to use containerization; nowadays, it is so easy and accessible. Docker was launched in 2013 and was very popular right away. Figure 1.6 shows Docker searches trend by Google Trends:


[image: ]


Figure 1.6: Docker searches over the web by Google Trends

One of the core benefits of microservices is that they can deliver independent workloads/deployment. Docker aims to deliver software as isolated containers. Microservices aim to deliver isolated software, and no matter how, running containers using the docker engine is perfect.

The last trend we want to talk about is DevOps methodology. It is weird to call it methodology, but this is what it is. Nowadays, it has become a job title. There are also very similar jobs that do similar things, such as SRE, Production Engineer, and more. Again, as we mentioned before, the major drawback of microservices is the operations overhead. The DevOps methodology comes to solve it, or at least to decrease it.

Popularity of Golang

A metric we can follow to see the popularity of Go is the increase in Golang users—developers, or we should call them Gophers. The nickname for Golang developers is Gophers. The gopher is an animal that counts as the official mascot of the Golang programming language. Here is a friendly dashboard from StackOverflow insights where we can see the percentage of developers who want to learn Golang and become professional developers in Go.


[image: ]


Figure 1.7: Most wanted languages by StackOverflow insights

Moreover, another metric we would love to follow is the number of packages written in Go. This number of packages written in Go has already passed 1 Million packages (the data from July 2023). We link to an excellent website that collects data regarding open-source insights in the references at the end of the chapter. We highly recommend taking a look at it. If we compare the age and amount of packages written in Go versus other languages like Java, Python, or C#, Go leads right after JavaScript. That is unbelievable. The crazy amount of packages writing in Go came from the strong Golang community.

Conclusion

In this chapter, we took a short trip around microservices. We observed its history and what were the trends (Agile, cloud computing, Docker, DevOps) that led microservices to be so popular nowadays. We learned about the alternatives for microservices such as SOA, Monolith, and serverless. There are other alternatives in the market, but these are the most popular ones. We compared microservices’ pros and cons and other architectures’ pros and cons.

In the next chapter, we will talk about the usability of Golang. We will discuss the community and detail why we think and why the community thinks Go has become so popular in recent years. We will cover the ecosystem around Go and deep dive into why this language was invented in the first place. And what is the history from there until today? Finally, we will discuss the pros and cons of using Go.

References


	https://deps.dev/

	https://insights.stackoverflow.com/survey/2021?_ga=2.236209345.190202062.1628102352-126161871.1625855113#most-loved-dreaded-and-wanted-language-want

	https://trends.google.com/trends/explore?date=all&q=microservices&hl=en-GB

	https://agilemanifesto.org/

	https://trends.google.com/trends/explore?date=all&q=docker&hl=en-GB




OEBPS/images/Figure-1.5.jpg


OEBPS/images/Figure-1.7.jpg


OEBPS/images/Figure-1.6.jpg


OEBPS/images/Figure-1.1.jpg


OEBPS/images/cover.jpg


OEBPS/images/Figure-1.2.jpg


OEBPS/images/Figure-1.3.jpg


OEBPS/images/Figure-1.4.jpg


OEBPS/nav.xhtml


Table of Contents



		Cover Page


		Title Page


		Copyright Page


		Dedication Page


		About the Author


		About the Technical Reviewers


		Acknowledgements


		Preface


		Errata


		Table of Contents


		1. Introduction to Microservices

		Introduction


		Structure


		Brief History of Microservices


		Monolithic, SOA, and Serverless

		Monolithic


		SOA


		Serverless






		Benefits of Microservices

		Independent Workloads


		Easy to Scale


		Plug and Play


		Fault Tolerance


		Increase Agility






		Drawbacks of Microservices

		Operations Overheads


		Complexity


		Hard to Troubleshoot






		Popularity of Microservices


		Popularity of Golang


		Conclusion


		References






		2. Usability of Go

		Introduction


		Structure


		Invention of Go


		Core Principles and Paradigms

		Go Paradigms


		Go Properties






		Simplicity and Minimalist Design Approach


		A Fast Language Suitable for the Cloud

		Fast Compiling


		Bearing a Resemblance to C


		Concurrency Approach






		Maintainability of Go

		Compatibility


		Go Simplicity


		Error Handling






		From Onboarding to Production


		Go’s Ecosystem — The Communities and Beyond


		Conclusion


		References






		3. Go Essentials

		Introduction


		Structure


		Basic Overview of Golang

		Hello World


		Variables


		Primitive Data Types


		Comments


		Operators


		If statement


		Loops


		Arrays


		Slices


		Functions


		Maps


		Switch


		Consts


		Other Language Specifications






		Packages


		Project Structure


		Structs


		Composition


		Interfaces


		Conclusion


		References






		4. Embarking on the Go Journey

		Introduction


		Structure


		Functional Options Pattern


		Generics


		Understanding Context in Go


		Errors — Talking About Error Propagation

		Error Handling: Difference between Go and Other Languages


		Errors are Here to Tell a Story


		Conventions






		Testing - Best Practices, Mocking, and Fuzzy Tests

		Mocking


		Fuzzy Testing






		Microservices Testing

		Performing Benchmark


		Race Detector






		Conclusion


		References






		5. Unlocking Go’s Concurrency Power

		Introduction


		Structure


		Goroutines


		Channels - Buffered vs. Unbuffered

		Closing a Channel


		Range Over a Channel


		Selecting a Channel


		Channels Directions


		Synchronization Between Goroutines


		Leveraging Channel Strength






		Sync Package

		WaitGroups


		Locks


		Singleton in Golang - Once.Do


		Low-Level Routines






		Pub/Sub


		Channel Closing Principle


		Avoiding Goroutine Leak

		Forgotten Sender


		Abandoned Receiver


		Detecting Goroutine Leak






		Fan In Fan Out Pattern

		Fan Out


		Fan In






		Conclusion


		References






		6. Core Elements of Microservices

		Introduction


		Structure


		Communication Between Services

		API Calls


		Message Brokers


		gRPC






		API Gateway


		Service Discovery

		Client-Side Discovery


		Server-Side Discovery


		Service Registry






		Load Balancer


		Database per Service


		Backends for Frontends


		External Configuration


		Service Mesh


		Event-Driven Architecture

		Event Versus Message


		Event Sourcing


		CQRS






		Conclusion


		References






		7. Building RESTful API

		Introduction


		Structure


		A Brief About the RESTful Approach

		Resource and Representation


		Constraints


		Client–Server


		Uniform Interface


		Stateless


		Layered System


		Cacheable


		Code on Demand






		Designing an API

		Capabilities


		Documentation: Swagger and OpenAPI


		API Folder Structure


		Resources Methods






		Crafting a Server

		Gin Gonic Setup


		Chains of Responsibilities


		CORS






		API Capabilities

		Pagination


		Rate Limit


		Panic Recovery


		Graceful Shutdown


		Filter and Sort


		Filter


		Sort






		Caching


		Conventions


		Versioning and Deprecation

		Versioning Strategies


		Versioning Best Practices


		Deprecation






		Common Pitfalls


		Conclusion


		References






		8. Introduction to Kubernetes

		Introduction


		Structure


		Kubernetes Adoption


		Kubernetes Essential Tools

		Kind


		Kubectl


		Kubectx






		Basic Resources

		Node


		Namespace


		Pod






		Workload Management

		Deployment


		DaemonSet


		StatefulSet


		Job


		CronJob






		Important Resources

		ConfigMap


		Secret


		HPA


		Ingress






		Readiness and Liveness Probes


		Resources Allocations


		Kubernetes Best Practices

		Maintaining Good YAML Hygiene


		Logging — Specifically for Kubernetes


		Environments Management


		Proper Monitoring






		Conclusion


		References






		9. Deploying to Production

		Introduction


		Structure


		CI/CD


		Design of Failures

		Timeouts


		Retries


		Fallback


		Circuit Breaker


		Closed


		Open


		Half-Open


		Bulkhead






		Security

		Authentication


		Authorization






		Feature Toggling


		Rollouts

		Basic Deployment


		Rolling Update


		Blue-Green Deployment


		Multi-Service Rollout


		Canary Deployment






		Rollbacks


		Conclusion


		References






		10. Next Steps in Production

		Introduction


		Structure


		Monitoring


		Observability

		Logs


		Metrics


		Tracing






		Production Troubleshooting

		The Power of Theory






		Profiling

		PGO


		Performance Issues






		Alerting

		Performance Metrics






		Conclusion


		References






		Index







Guide



		Title Page


		Copyright Page


		Table of Contents


		1. Introduction to Microservices








OEBPS/images/logo.jpg


OEBPS/images/line.jpg


OEBPS/images/qr1.jpg


OEBPS/images/qr.jpg


