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We are currently in the era of personalized therapy, which has a direct impact on oncologic therapies. The emphasis on precision medicine is driving the field of molecular diagnostics and creating the burgeoning arena of imaging proteomics and genomics. This issue of Magnetic Resonance Imaging Clinics of North America is incredibly timed with the recent announcement of the Precision Medicine Initiative by the National Institutes of Health. The role of imaging in modern oncology will clearly be impactful as oncologic diagnostics and therapeutics become more targeted and personalized. This issue provides state-of-the-art reviews of numerous current techniques, such as diffusion-weighted imaging, dynamic contrast-enhanced MR imaging, blood-oxygen–dependent level, and MR spectroscopy. This issue also has articles covering evolving techniques, such as chemical exchange saturation transfer, hyperpolarized MR imaging, MR elastography, and various nanoparticles.


I wish to thank Dr Antonio Luna for his wonderful contribution and all of the authors for their superb efforts. The timing of this issue could not have been better, and it creates an excellent roadmap of the potential role of MR imaging in the era of Precision Medicine.
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Treatment of oncologic patients has recently changed to personalized therapy, driven by both the development of new-targeted drugs and an increasing use of genetic and molecular diagnostics. Now, cancer is considered a heterogeneous and multifocal disease with different cell clones involved, and unique and specific features in each patient. Furthermore, cancer changes constantly due to random mutations and genetic interactions with the microenvironment. Additionally, cancer reacts to the specific therapies, demonstrating secondary changes, which determine variable response patterns with time.


Imaging is used for the “in vivo” phenotyping of this diversity of cancer. In this setting, functional and molecular information from imaging techniques, classically provided by nuclear medicine, and specifically PET, has been considered essential to understand the insights of cancer and its microenvironment, and the changes induced with therapy. MR imaging has emerged with the potential to represent different tumor characteristics using a multiparametric protocol. Combining morphologic and functional sequences, MR imaging is able to inform different tumor hallmarks, such as cellularity, microstructure, metabolism, angiogenesis, and hypoxia. All of this quantitative information helps to perform precision diagnostics, which can create impact as tailored treatment to the individual patient. Now, the radiologist must integrate these numeric biomarkers in our classical descriptive reports and learn how to transmit them to clinicians, and to become a central part of multidisciplinary oncologic teams. In addition, research in collaboration with informatics, biotechnologists, and engineers is needed to expand its clinical role. Hence, all of these steps are necessary for radiologists to advance in the goal of improving the personalized care of oncologic patients in this new molecular era as functional imaging information, specifically MR imaging, can create a paradigm shift in the diagnosis and therapy of different tumors.


Thanks to an enthusiastic group of researchers, this issue resumes the role of MR imaging in modern oncology, revealing its potential role in personalized medicine and clinical trials of oncologic drugs. A succinct technical overview of the most “popular” functional sequences, such as diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MR imaging, and molecular one (meaning sequence), such as MR spectroscopy, are also performed. In addition, novel MR imaging probes, such as chemical exchange saturation transfer MR imaging, hyperpolarized MR imaging, blood-oxygen–dependent level, MR elastography, specific contrast, such as hepatobiliary contrast agents, superparamagnetic particles of iron oxide, or activatable nanoparticles, are also reviewed. A deeper understanding of the clinical use of all of these techniques can be obtained in the specific articles that deal with the applications of functional and molecular MR imaging in the detection, characterization, and therapy monitoring of malignancies in the brain and the body.










Functional MR Imaging Techniques in Oncology in the Era of Personalized Medicine

Matthias R. Benz, MDa,b,*, Hebert Alberto Vargas, MDa and Evis Sala, MD, PhDa,    aDepartment of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,    bClinic of Radiology and Nuclear Medicine, University of Basel Hospital, Petersgraben 4, Basel 4031, Switzerland,    *Corresponding author. Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Petersgraben 4, Basel 4031, Switzerland. E-mail: matthias.benz@usb.ch






DW and DCE MR imaging contribute significantly to diagnosis, treatment planning, response assessment, and prognosis in personalized cancer medicine. Nevertheless, the need for further standardization of these techniques needs to be addressed. Whole-body DW MR imaging is an exciting field; however, future studies need to investigate in more depth the biologic significance of the findings depicted, their prognostic relevance, and cost-effectiveness in comparison with MDCT and PET/CT. New MR imaging probes, such as targeted or activatable contrast agents and dynamic nuclear hyperpolarization, show great promise to further improve the care of patients with cancer in the near future.

Keywords

DWI; DCE; Hepatobiliary contrast agent; SPIO; MRS; DNP

Key points



• Several functional MR imaging techniques are being used to detect biological processes in vivo, for example, to evaluate tissue organization with diffusion-weighted imaging, to assess tumor vascularity with dynamic contrast-enhanced MR imaging or tumor metabolites using magnetic resonance spectroscopy or dynamic nuclear polarization.

• The most important strength of functional MR imaging is its capacity for whole-body imaging, to capture whole-tumor heterogeneity in vivo, and the noninvasive assessment of changes over time.

• Standardization of these imaging techniques needs to be addressed in the future.





Introduction

The National Cancer Institute defines personalized cancer medicine as “a form of medicine that uses […] specific information about a person’s tumor to help diagnose, plan treatment, find out how well treatment is working, or make a prognosis.”1 Functional imaging allows visual analysis and quantification of biological processes in vivo, such as tumor metabolism, chemical composition, and blood flow. Its most important strength in comparison with other laboratory-based tests of tumor biology is its capacity for whole-body imaging, to capture whole-tumor heterogeneity in vivo, and the noninvasive assessment of (treatment-related) changes over time. Genetic tumor analysis based on single/few tumor biopsy samples may not reflect intratumoral heterogeneity and phenotypic diversity. A study in primary renal carcinoma and associated metastatic sites revealed that intratumoral heterogeneity can lead to underestimation of the tumor genomic landscape represented from single tumor biopsy samples2 and thus may contribute to treatment failure.


Multiple functional/molecular imaging technologies are available,3,4 with PET/computed tomography (PET/CT), single-photon emission computed tomography (SPECT), and MR imaging being represented in clinical routine. Because these modalities image different biologic processes, they have the potential to be used in conjunction rather than in competition with one another. Irrespective of their field of application, the advantages of MR imaging in comparison with PET and SPECT relate to its high spatial and temporal resolution, the superior soft tissue contrast, the capacity of multiparametric imaging, and the lack of ionizing radiation, which is relevant in vulnerable populations, such as children and women of child-bearing age,5 but might be less relevant in adult patients with cancer who undergo chemotherapy and/or radiation therapy.


Several functional MR imaging techniques are being used to, for example, evaluate tissue organization with diffusion-weighted imaging (DWI), to assess tumor vascularity with dynamic contrast-enhanced (DCE) MR imaging, and to detect tumor metabolites using magnetic resonance spectroscopy (MRS)/spectroscopic imaging (MRSI) or dynamic nuclear polarization (DNP). In addition, several specific and nonspecific MR contrast agents are clinically applicable or under investigation.3,4 On T2*-weighted imaging, hypoxia can be detected based on an increase in the transverse relaxation rate of water caused by the paramagnetic effect of endogenous deoxyhemoglobin using blood oxygen level–dependent (BOLD) MR. This technique has been used for imaging tumor hypoxia and treatment response.6–8


Radiogenomics is another exiting field that aims to correlate cancer-imaging features and genetic data for the evaluation of imaging biomarkers. For example, imaging features extracted from MR imaging have been shown to be correlated with gene expression in breast cancer9 and glioblastoma.10 Texture analysis describes mathematical parameters computed from the distribution of pixels and is a noninvasive method of assessing heterogeneity within the tumor. Features derived by texture analysis have, for example, been shown to act as a potential imaging biomarker of tumoral response to neoadjuvant chemotherapy/radiation therapy in rectal cancer.11

Diffusion-weighted imaging

DWI uses the incoherent 3-dimensional motion of water molecules in vivo (Brownian motion) to generate contrast. The degree of water diffusion within intracellular and extracellular fluid and between intracellular and extracellular compartments is impeded by tissue cellularity, intracellular elements, membranes, and macromolecules.12 The motion of water molecules, for example, in tumor tissue, cytotoxic edema, abscess, and fibrosis is more restricted and displays higher DWI signal intensity. The apparent diffusion coefficient (ADC) is a measure of the magnitude of diffusion and is lower in tissue with restricted diffusion compared with normal parenchyma (Fig. 1). ADC is expressed in units of mm2/s.


[image: image]
Fig. 1 Pretreatment transverse T2-weighted image (A) showed a tumor focus in the left peripheral zone (arrow). The patient was treated with radiation therapy. MR imaging was performed 2 years later due to rising prostate-specific antigen (PSA). A discrete abnormality was difficult to appreciate on the transverse T2-weighted images at this time (B); however, the ADC map (b-values of b = 0, 1000 s/mm2) (C) and the fused T2-weighted and DW MR images (D) clearly depict the presence of recurrent tumor (arrows).



Diffusion-based contrast primarily depends on the selection of b-values (the degree of diffusion weighting that is applied during image acquisition), with improved contrast-to-noise ratio at higher b-values, at the expense of lower signal-to-noise ratios.


In general, malignant tumors exhibit higher DWI signal and lower ADC values compared with normal/reactive tissue or benign tumors. DWI has been shown to improve detection and diagnostic accuracy in several primary malignancies; for example, in prostate13 or endometrial14 cancer. DWI in conjunction with morphologic MR imaging sequences improves detection of metastatic spread to the peritoneal cavity,15 in particular in gynecologic malignancies with a reported sensitivity and specificity for the detection of peritoneal implants of 90.0% and 95.5%, respectively.16


In several studies, lower ADC values have been associated with a more aggressive tumor.17–20 However, DWI signal intensity and ADC values are dependent on histologic characteristics, such as tumor type, tumor grade/differentiation, and extent of necrosis.12 False negatives may occur particularly in well-differentiated tumors, in cystic or necrotic lesions. Abscess and infection might cause false-positive findings.


Low pretreatment tumor ADC has been found to predict a favorable treatment response; for example, in colorectal and gastric carcinomas.21,22 This observation might be explained by the relationship between tumor necrosis and unfavorable patient outcomes.


Successful treatment is generally reflected by decreases in signal intensity on high b value images and corresponding increases in ADC values due to treatment-induced necrosis, edema, or cellular lysis; all of them induce an increase in water diffusion in the extracellular space. However, transient early decreases in ADC values can be seen after treatment.23


The development of echoplanar imaging, high gradient amplitudes, multichannel coils, and parallel imaging facilitated DWI to be extended to whole-body imaging23 (Fig. 2). Whole-body DW MR imaging is an exciting field to image systemic disease, such as multiple myeloma, lymphoma, and leukemia, but also solid tumors with associated metastatic spread, particularly those involving the skeleton. Whole-body DWI can provide complementary information to CT, PET/CT, and SPECT or might be able to replace tests using ionizing radiation. However, published data on staging/restaging accuracy and treatment response assessment are limited. Whole-body DWI for tumor staging has some limitations, especially with regard to the limited anatomic coverage for intravenous contrast-enhanced sequences. Some solutions have been proposed. For example, Klenk and colleagues24 used ferumoxytol (AMAG Pharmaceuticals, Inc, Waltham, MA) enhanced whole-body DWI for staging of children and young adults with malignant lymphoma and sarcoma in comparison with 18F-fluorodeoxyglucose (FDG) PET/CT. Ferumoxytol increases the signal intensity on T1-weighted images and decreases the signal intensity on T2-weighted images (hereby improving the contrast between tumor and the reticuloendothelial system). The fusion of ferumoxytol-enhanced whole-body DWI scans with ferumoxytol-enhanced anatomic T1-weighted scans provided diagnostic images very similar to an 18F-FDG PET/CT scan with equivalent sensitivities, specificities, and staging results of both imaging modalities.24


[image: image]
Fig. 2 Bone scan (A), 18F-sodium fluoride PET (B), 18F-FDG PET (C), whole-body DW MR (D), T1-weighted MR (E), and b50/900 fused MR (F) of a patient with metastasized prostate cancer. All scans readily depicted a bone metastasis in the right pubic bone (right arrows on all images). 18F-sodium fluoride PET (B) and whole-body DW MR (D/F) detected an additional T1 low signal lesion in the left pubic bone suspicious for metastatic disease (left arrows on B, D–F). Degenerative 18F-sodium fluoride avidity of the spine (B).



Short-term and midterm test-retest variability of repeated ADC measurements in a healthy population has been reported to be not significant with a mean coefficient of variation of 14%.25 However, the investigators suggest that treatment effects of less than approximately 27% (1.96 × coefficient of variation) will not be meaningfully detectable.25 Interestingly, this definition of tumor response is very similar to what was reported in several studies investigating metabolic tumor response by 18F-FDG PET and which was suggested as a cutoff in the recently introduced PET Response Criteria In Solid Tumors (PERCIST) criteria.26


The lack of standardization and the limited published data on interscanner variability hinder the comparison of DWI results between studies. A recent prospective study27 evaluated the variability of ADC values in various anatomic regions in the upper abdomen measured with systems from different vendors and with different field strengths. The investigators found no significant differences between ADC values measured at 1.5 T and at 3.0 T in any anatomic region. However, in 2 of 7 regions at 1.5 T (left and right liver lobes) and in 4 of 7 regions at 3.0 T (left liver lobe, pancreas, and renal cortex and medulla), intervendor differences were significant.



Dynamic contrast-enhanced MR imaging and MR contrast agents


Perfusion Imaging

Extracellular paramagnetic gadolinium-based contrast agents (EGBCA) distribute nonspecifically in the blood plasma and interstitial space and are administered to reduce the T1 relaxation time of nearby protons, and therewith increase the signal intensity on T1-weighted images. In oncologic imaging, DCE MR imaging uses a bolus injection of EGBCA to acquire multiple serial images as the contrast agent passes through tissue to obtain information on altered blood flow and vascularization of tumors. The perfusion data extracted from DCE MR imaging can be investigated qualitatively (visual), in a semiquantitative or quantitative manner to obtain data on enhancement fraction and permeability, respectively. Most of the pharmacologic models used for the quantitative approach are based on determining the rate of contrast exchange between blood plasma and extracellular space using transfer rate constants, such as Ktrans (forward volume transfer constant) and kep (reverse reflux rate constant between extracellular space and plasma).


The absence of enhancement is a strong predictor of benignity in several tumors, for example, in breast cancer,28 whereas the semiquantitative enhancement criterion that suggests malignancy is a rapid initial enhancement (Fig. 3). Quantitative DCE MR imaging also allows differentiation of malignant from benign tumors, as has been shown for example, in adnexal masses.29 On the other hand, qualitative DCE MR imaging time curve type analysis was found to perform poorly for the differentiation of prostate cancer from healthy prostatic tissue.30 DCE is currently considered to add relatively little incremental value to the combination of T2-weighted and DWI for the detection of prostate cancer, as reflected in the recently updated Prostate Imaging and Reporting and Data Systems: Version 2 (PIRADS v2.0), which ascribed DCE a minor role in determining the PIRADS Assessment Category when T2-weighted and DWI are of diagnostic quality.31 The addition of DCE MR imaging to T2-weighted and DWI also did not contribute significant incremental value in the detection of locally recurrent prostate cancer after radiation therapy.32


[image: image]
Fig. 3 Patient with rising PSA after radical prostatectomy. Hypointense lesion in the right acetabulum (arrowhead) and enlarged left internal iliac lymph node (arrow) are suspicious for metastatic disease on T1-weighted MR imaging (A). DWI (B) and fused T2-weighted and DWI data (C) show hyperintense signal in the right acetabulum (arrowhead) as well as in the left internal iliac lymph node (arrow). DCE MR imaging (D) shows early contrast media uptake of both lesions (arrowhead and arrow). The parametric map (E) and the time-signal intensity curve (F) confirm the early contrast media uptake (arrow in E).



Anatomic tumor size measurements using standard World Health Organization, Response Evaluation Criteria In Solid Tumors (RECIST), and RECIST 1.1 criteria33 have limitations, particularly in assessing early treatment response and in assessing the effects of molecularly targeted therapies and antiangiogenic strategies that stabilize disease rather than induce fast tumor shrinkage. DCE MR imaging parameters can serve as predictive biomarkers and enable early treatment response assessment in patients who undergo treatment with antiangiogenic drugs and other therapies.34–38 However, the clinical application of the potentially powerful biomarkers derived from DCE MR imaging has been limited by the lack of standardization to permit interscanner/interinstitutional comparison of DCE MR imaging studies. Initiatives such as the Quantitative Imaging Biomarker Alliance39 will help to address these issues in the future.

Hepatobiliary Contrast Agents

Three hepatobiliary contrast agents (HBCAs) have been developed for liver MR imaging: gadoxetic acid (Gd-EOB-DTPA; Eovist [Bayer, USA], Primovist [Bayer, Germany]), gadobenate dimeglumine (Gd-BOPTA; MultiHance [Bracco, Italy]), and mangafodipir trisodium (Mn-DPDP; Teslascan [GE Healthcare, USA]; marketing status: discontinued). Gd-BOPTA and Gd-EOB-DTPA are taken up to varying degrees by functioning hepatocytes via organic anion transporters and are subsequently excreted in the bile (Fig. 4). The relatively stronger hepatic signal intensity and biliary tree enhancement of Gd-EOB-DTPA in comparison with Gd-BOPTA results due to approximately 50% and 3% to 5% of excretion via the bile route, respectively.40 T1 shortening of the liver and biliary tree results in an increased difference in signal intensity for nonhepatocellular lesions compared with normal liver background. Therefore, HBCAs allow dynamic imaging in the arterial phase (20 s post injection [p.i.]), portal venous phase (60–70 s p.i.) and late venous phase (2–3 min p.i.), as well as liver-specific imaging with regard to a lesion’s hepatocyte function and hepatocyte content during the hepatobiliary phase (20 min p.i.).41 The results of several studies have shown that MR imaging with HBCA depicts more metastatic lesions in the liver than contrast-enhanced MR imaging with EGBCA and adds diagnostic information and confidence.42,43 Gd-BOPTA and Gd-EOB-DTPA have been shown to be equivalent to EGBCA dynamic imaging for lesion characterization.44,45 However, the relatively short bolus transit time due to the lower approved dose of Gd-EOB-DTPA (0.025 mmol/kg) in comparison with conventional EGBCA (1.0 mmol/kg) may result in weaker arterial enhancement of liver lesions and impaired lesion characterization. Therefore, the acquisition of the arterial phase needs specific attention and might benefit from modified injection strategies.46,47 In addition, acute self-limiting dyspnea was observed significantly more often using gadoxetate disodium compared with gadobenate dimeglumine and might affect arterial-phase MR image quality.48


[image: image]
Fig. 4 Hypervascular hepatic tumor (A), no washout of extracellular contrast agent (B) but hypointense on delayed hepatobiliary phase with Eovist (C). The biopsy was consistent with adrenocortical metastasis. (Courtesy of Dr Richard Kinh Gian Do, Memorial Sloan Kettering Cancer Center, New York, NY.)



Superparamagnetic Particles of Iron Oxide

Superparamagnetic particles of iron oxide (SPIOs) are composed of a crystalline iron oxide core (ferri [Fe3+] magnetic and ferro [Fe2+] magnetic material in the form of maghemite [γFe2O3] and magnetite [Fe3O4]) and a stabilizing coating material, usually made of low molecular weight dextran. SPIOs are divided into different classes according to their global size: standard SPIOs (SSPIOs) have a diameter of greater than 50 nm, whereas SPIOs with a diameter of less than 50 nm are referred to as ultra small particles of iron oxide (USPIO). Due to their shortening of T2/T2* they are also known as negative, that is, signal eliminating, contrast agents with darkening of the contrast-enhanced tissue at a given echo time. However, enhancement on T1-weighted images also can be seen with the smaller nanoparticles. Various SPIOs have been tested in clinical and preclinical settings.49


The passive uptake of SPIOs in the mononuclear phagocyte system or reticuloendothelial system after intravenous application has been shown to increase the sensitivity of detecting metastasis in the liver,50 the spleen,51 lymph nodes,52 and bone marrow.53

Other MR Imaging Agents

Nanoparticles also can be targeted toward specific receptors or molecules by conjugating specific ligands to their surface, such as antibodies, peptides, or small molecules.3


Activatable MR contrast agents are able to induce an imaging signal only when a particular disease state is present.54,55


Due to the 100% natural abundance and relatively high sensitivity of 19F for MR imaging (83% to that of protons), 19F MR imaging has been used in preclinical and clinical studies to track drug biodistribution,56 and to assess regional tumor hypoxia among others.57


Another example is chemical exchange saturation transfer (CEST) agents, in which contrast enhancement is based on selectively reducing the magnetization of the water signal, with only minimal effect on its longitudinal relaxation rate.58


Multimodality probes aim to combine MR imaging with nuclear or optical imaging to obtain high spatial resolution and high sensitivity or enable preoperative staging and intraoperative molecular imaging.3




Imaging of tumor metabolites using “traditional” magnetic resonance spectroscopy/spectroscopic imaging and dynamic nuclear polarization


“Traditional” Magnetic Resonance Spectroscopy

MRS/MRSI permits noninvasive acquisition of signals from cancer metabolites. Accessible nuclei are, for example, 1H, 31P, 23Na, 19F, 13C,59 with differences in detectability and signal intensity related to variations in signal susceptibility, percentage isotope concentration, and tissue concentration. Clinical MRS/MRSI studies use signals from 1H nuclei of compounds in tissue because 1H nuclei provide the largest signal, and do not require hardware modification to the scanner.60 The major metabolites evaluated in 1H MRS include choline (cell membrane marker), creatine (energy marker), lipids (tissue breakdown and cell death), lactate (metabolic acidosis), and in the brain N-acetyl aspartate (normal neuronal marker).61


The metabolic fingerprints of several malignancies have been studied; however, the main field of investigation is the brain (Fig. 5), followed by prostate and breast imaging. Most brain tumors manifest with relative reduction of N-acetyl aspartate and elevation of choline. MRS in brain tumors has been shown to be a useful tool in the initial diagnosis, tumor grading, imaging-guided biopsy, and treatment response assessment.62,63 Elevated choline signal, however, also can be observed in other tumors, such as prostate cancer64 and breast cancer.65 Early studies in prostate cancer reported an ability of MRS to help differentiate cancer from benign/necrotic tissue66–68; however, a prospective multicenter study, conducted by the American College of Radiology Imaging Network (ACRIN), reported that the addition of MR spectroscopic imaging to anatomic MR imaging did not improve the accuracy for localization of peripheral zone prostate cancer.69 In breast cancer, a prospective single-center study reported that MRS in addition to DCE MR imaging and DWI improves the accuracy of breast cancer diagnosis.70 The evaluation of MRS using newer platforms with improved spatial and temporal resolution and comparisons to current standard of care functional techniques, such as DWI, is warranted.


[image: image]
Fig. 5 Single-voxel spectroscopy in a fluid-attenuated inversion recovery hyperintense isocitrate dehydrogenase (IDH) mutant low-grade astrocytoma. The tumor (A) shows high choline (Cho, a cell membrane marker) at 3.2 ppm, low creatine (Cr, an energy marker) at 3.0 ppm, low N-acetylaspartate (NAA, a neuronal marker) at 2.0 ppm, and inverted lipid/lactate (LL, an anaerobic glycolysis marker) at 1.3 ppm. The high Cho and LL are consistent with malignancy. Using a variable TE1/TE2, a small 2HG (2-hydroxyglutarate, an oncometabolite formed exclusively by IDH mutant tumors) peak is also present at 2.25 ppm. Compare with normal spectrum seen in contralateral brain (B) with absent 2HG peak. (Courtesy of Dr Robert J. Young, Memorial Sloan Kettering Cancer Center, New York, NY.)



Dynamic Nuclear Polarization (Hyperpolarization)

MR imaging signal intensity is proportional to the spin polarization (the difference in the fraction of nuclei aligned with or against an applied magnetic field). Because polarization is typically very small on the order of 0.0001% to 0.0005% depending on the nucleus and field, nuclei other than protons (with its high concentration in water and fat, which overcomes poor polarization) are difficult to image using standard techniques.71 Hyperpolarization refers to a procedure that drives nuclei (such as 15N or 13C), temporarily, into a significant redistribution of the ordinary population of energy levels to gain signals 10,000-fold or more.71


After the administration of a hyperpolarized agent (such as [1-13C] pyruvate) the agent’s delivery as well as its metabolic substrates can be monitored using MR imaging.


Measurements of hyperpolarized 13C label flux between pyruvate and lactate in lymphoma-bearing72 and glioblastoma-bearing73 mice has been shown to be able to detect response to chemotherapy. In addition, the amount of hyperpolarized lactate measured after injection of hyperpolarized [1- 13C] pyruvate showed great potential as a new biomarker capable of noninvasively grading prostate cancer in mice.74


The first in-man imaging study of MR imaging with hyperpolarized [1- 13C] pyruvate in 31 patients with untreated biopsy-proven prostate cancer75 confirmed the safety of the agent (no dose-limiting toxicities were observed) and showed elevated [1- 13C] lactate/[1- 13C] pyruvate ratio in regions of biopsy-proven prostate cancer.75


Summary: functional MR imaging today and tomorrow

DW and DCE MR imaging already contribute significantly to several aspects of personalized cancer medicine, namely diagnosis, treatment planning, response assessment, and prognosis. Nevertheless, the need for further standardization of these imaging techniques is beyond question, and needs to be addressed. Whole-body DWI is an exciting field; however, future studies need to investigate in more depth the biologic significance of the findings depicted, their prognostic relevance, and cost-effectiveness in comparison with MDCT and PET/CT. New MR imaging probes, such as targeted or activatable contrast agents and dynamic nuclear hyperpolarization, show great promise to further improve the care of patients with cancer in the near future.
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The authors discuss eight areas of quantitative MR imaging that are currently used (RECIST, DCE-MR imaging, DSC-MR imaging, diffusion MR imaging) in clinical trials or emerging (CEST, elastography, hyperpolarized MR imaging, multiparameter MR imaging) as promising techniques in diagnosing cancer and assessing or predicting response of cancer to therapy. Illustrative applications of the techniques in the clinical setting are summarized before describing the current limitations of the methods.
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Key points



• The fundamental limitations of RECIST (Response Evaluation Criteria in Solid Tumors) must be addressed by more quantitative imaging methods; MR imaging offers many existing and emerging methods to fill this need.

• DCE-MR imaging, DSC-MR imaging, and diffusion MR imaging have advanced to the point where they can offer quantitative insights into tumor characteristics, and these techniques are now frequently used in clinical trials either alone or in concert.

• Magnetic resonance (MR) elastography, CEST (chemical exchange saturation transfer), and hyperpolarized MR imaging are 3 emerging techniques that can offer insights complementary to those provided by the diffusion and perfusion MR imaging methods.

• The ability to acquire multiple data types in a single MR imaging session provides the opportunity to combine these methods in a multiparametric approach, which has been shown to have increased clinical value over single parameter methods.





Incorporating quantitative MR imaging in clinical trials

The last decade has seen tremendous interest and research effort devoted to the use of quantitative imaging within oncology.1,2 Quantitative imaging techniques can measure various properties within medical images that might serve as reliable surrogates for various pathophysiological processes with which to personalize cancer therapy and accelerate drug development.3 Furthermore, the prospect of combining several quantitative imaging measures for establishing radiologic phenotypes predictive of clinical trajectories is particularly appealing, and MR imaging has emerged as a promising modality for this purpose.4 MR imaging continues to be a mainstay for conventional size-based tumor assessments (ie, the Response Evaluation Criteria in Solid Tumors, RECIST; see next section) that are standard efficacy endpoints within clinical trials and increasingly common in routine, standard-of-care settings. Moreover, MR imaging applications that can quantitatively report on various aspects of tumor biology, including perfusion, cellularity, metabolism, and protein deposition, offer the potential to supplement and enhance conventional anatomic information, which when used alone provides an incomplete assessment of solid tumors.5 This review spotlights some of the leading technological developments in MR imaging that are laying the groundwork for quantitative MR imaging to transition from being viewed as an advanced research paradigm to becoming a widely established clinical reality for the cancer community. This transition presents a number of unique challenges as well as exciting opportunities for imaging science.


There are several key steps for the development and evaluation of a particular quantitative imaging measure before it can be considered a true biomarker and safely incorporated into clinical practice6 (Box 1). Perhaps one of the most essential tools for the evaluation of biomarkers is the multicenter clinical trial. Over the last several years, the National Cancer Institute (NCI) has spearheaded efforts to coordinate multicenter biomarker studies for imaging. The NCI’s Quantitative Imaging Network currently includes 17 Centers of Imaging Excellence in the United States, several of which are actively engaged in validation of imaging based biomarkers.7 Other groups, including the Radiological Society of North America Quantitative Imaging Biomarker Alliance1 and the American College of Radiology Imaging Network, recently merged with the Eastern Cooperative Oncology Group to form ECOG-ACRIN,8 have also been rigorously pursuing multicenter quantitative imaging clinical trials. These groups have developed their own clinical trial designs and workflows, image acquisition and analysis procedures, and regulatory processes. There are also efforts to harmonize procedures and practices across these groups in order to arrive at a comprehensive set of standards for the clinical validation and implementation of quantitative imaging biomarkers. The authors draw from collective insights to emphasize a few key commonalities with their own experiences and discuss some administrative, regulatory, and logistical considerations facing trials of a putative MR imaging biomarker.




Box 1


Key steps for the development and evaluation of quantitative imaging measures


1. Validation tests the accuracy, precision, repeatability, and reproducibility of the biomarker measurement.

2. Qualification establishes the biomarker as a surrogate for tumor pathophysiology, response to therapy, or other clinical endpoint of interest.

3. Utilization examines the performance and implementation of the biomarker within the specific context of its proposed use, especially across multiple institutions and clinical settings.



Adapted from Refs.2,9,10





One of the most crucial aspects of successful integration of MR imaging biomarker research with an oncology clinical trial will be the level of engagement and collaboration the imaging scientists and radiologists have with the medical oncologists and clinical trial sponsors. Investigator-initiated trials offer certain advantages in this regard relative to industry-sponsored trials, because the latter often requires a higher level of engagement and a greater emphasis on allocating resources for data management and regulatory compliance. Furthermore, because these studies are frequently designed at the industrial sponsor months—or years—before academic investigators become aware of it, integrating an advanced imaging technique can be difficult. Regardless of the type of trial, there are several characteristics pertaining to the design and execution of an MR-based imaging biomarker study that need to be considered within the context of a therapeutic oncology trial. Ideally, the biomarker study design would be rationally tailored to address a clearly defined clinical problem (eg, predicting which patients will benefit from neoadjuvant therapy) and would test the ability of a candidate MR imaging technique, or group of techniques, to predict or correlate with a desired clinical outcome (eg, pathologic complete response). The predictive value of a particular imaging measure will likely vary depending on the choice of clinical endpoint. When progression-free or overall survival (OS) is a primary endpoint, incorporation of multiple strategically chosen imaging time points during follow-up is recommended (Box 2).




Box 2


Helpful factors when determining the timing of follow-up scans


1. The expected mechanism, onset, and duration of action of the therapeutic agent or intervention under investigation in the clinical trial.

2. The schedule of events (ie, timing of biomarker scan should coincide whenever possible with the patient’s clinical appointments) within the trial.

3. Potential interference from use of contrast media in other clinical trial radiological procedures.

4. Interscan interval in relation to reimbursement policies of the sponsor, patient’s insurance provider, or Centers for Medicate and Medicaid Services.





The first scientific body to review, advise, and ultimately approve an imaging-based biomarker study is the institutions’ Scientific Review Committee (SRC), which consists of clinicians, basic scientists, biostatisticians, nurses, pharmacists, and other medical professionals whose primary mission is to scrutinize the scientific merit and clinical prioritization of a new study in the context of an institution’s existing menu of studies. For most institutions, a new clinical trial protocol will undergo review by the SRC before it is reviewed by the local Institutional Review Board (IRB). A critical aspect of the SRC review entails thorough scrutiny of the statistical methodology proposed in the study. Before protocol submission, it is highly worthwhile, and at some institutions required, to meet with a qualified biostatistician, particularly one well versed in the analysis of imaging data, to ensure that the aims and study design are in keeping with a sound statistical framework appropriate for the development of imaging biomarkers.11 Studies must be demonstrated as having accrual goals capable of satisfying a predefined level of statistical power (typically, 80%) to determine the predictive association between the MR biomarker or biomarkers in question and the primary clinical endpoint. Sample sizes must also be justified on the basis of historical accrual data within identical or very similar patient populations and clinical settings. Feedback from the SRC is one of the primary opportunities for constructive criticism so that the aims, design, and future conduct of a study are consistent with institutional standards for statistical rigor, clinical relevance, and scientific quality.


Once SRC approval is obtained, the next step in opening a new imaging study is protocol review and approval by the local IRB. Although scientific rigor and clinical relevance are the primary concerns in SRC review, the IRB is typically most focused on ensuring that the study meets all federal, state, and local policies pertaining to patient safety and confidentiality. For MR imaging studies, one of the most important aspects of IRB review will be centered on the patient screening process to ensure compatibility with the large magnetic field the patient will encounter as part of the imaging procedure. The IRB will verify that prospective patients will be given every means necessary to disclose the presence of ferromagnetic materials and will also allow designated key study personnel to access the prospective patient’s medical record to verify MR compatibility of implants; this is especially important in patients with cancer receiving chemotherapy or other procedures (biopsy, surgery), because vascular access ports, biopsy marker clips, and stents are constructed of materials whose MR compatibility can vary widely. The IRB will heavily scrutinize methods for verifying the manufacturer and model number for an implant or device in question. Rigorous rating standards from the American Society for Testing and Materials (ASTM) International exist for virtually all implantable biomaterials and have been approved by the US Food and Drug Administration. The IRB will mandate that only implanted materials having an ASTM rating of “MR Safe” at the particular field strength in question are included within the study. Implants having a rating of “MR Conditional” are often excluded, but there are instances where a particular MR imaging environment with specific conditions may be acceptable. For example, at 3.0 T, the only implants or devices currently accepted on study are those classified as MR Conditional 6 (ASTM Standard F2503).12


While the IRB is reviewing the imaging protocol, there are several steps that can be taken to help ensure no delays are experienced in opening to accrual. Like therapeutic trials, studies devoted to validating a perspective imaging biomarker should be nationally registered at ClinicalTrials.gov and/or the NCI. At many institutions, national study registration is required of all clinical studies as a matter of local policy, and recent changes to the registration rules put forward by the International Committee of Medical Journal Editors now necessitate registration even for noninterventional imaging studies. Another critical logistical step before opening to accrual is to ensure that all imaging-related study materials have been distributed to the appropriate study personnel. The most convenient venue for such interactions is the Site Initiation Visit, where imaging scientists, clinicians, research nurses, and others can meet to review key aspects of the study to establish an adequate recruitment plan and clinical workflow. This Site Initiation Visit is particularly important in situations whereby the acquisition of imaging data is to occur on dedicated research scanners in facilities that are separated from the cancer clinics where recruitment will take place, because the processes and procedures involved in advanced imaging studies are often unfamiliar to clinical staff.

Current use of MR imaging for clinical trials

In modern clinical oncology practice, MR imaging is widely used as a tool for cancer screening, lesion detection, lesion characterization, and therapy monitoring. Within cancer clinical trials, MR imaging is used for assessing response to treatment, although its role varies depending on the anatomic site of disease. For many clinical trials in solid malignancies, MR imaging may play a secondary role to computed tomography (CT) and may be used only when there is a contraindication to iodinated intravenous contrast media. For certain tumor types (eg, brain and head/neck cancers), MR imaging may be the preferred modality for response assessment due to its excellent soft tissue contrast resolution.


When MR imaging is used for treatment response assessment, most current cancer clinical trials use one of several standardized response assessment guidelines based on changes in gross lesion size. These guidelines specify how to identify and measure target lesions at baseline imaging before therapy, how to evaluate disease burden at follow-up time points following initiation of treatment, and how to place patients into response categories at successive time points over the course of the clinical trial.13 The most widely used response assessment guideline, incorporated into most modern solid tumor clinical trials, is RECIST.14 Because its emphasis is on changes in tumor size measurement over time, RECIST necessitates high-spatial resolution MR imaging techniques optimized for capturing anatomic detail.


Measuring changes in tumor size on anatomic imaging has been the mainstay of imaging-based response assessment for decades15 and is supported by research linking tumor shrinkage in early-stage trials with subsequent survival benefits.16–19 However, an exclusive focus on anatomic imaging has recently been called into question with the emergence of functional imaging techniques that provide information on tumor status beyond lesion size. These techniques, many of which are MR-based and are described later, offer the promise of reporting on response at an earlier time point than traditional tumor size-based approaches, which may lag weeks to months behind a physiologic tumor response. Functional imaging techniques may also succeed in better capturing and measuring the antitumor efficacy of newer targeted agents, the cytostatic effects of which may be underestimated by traditional size-based approaches.

Quantitative MR imaging techniques currently available for clinical trials

Three techniques are focused on that have advanced to the point where they are frequently used in clinical trials to report on therapeutic response. In the section entitled “Emerging MR Imaging Methods for Cancer,” 4 emerging techniques are described.

Dynamic Susceptibility Contrast MR Imaging

Abnormal angiogenesis is a common characteristic of malignant brain tumors, and dynamic susceptibility contrast MR imaging (DSC-MR imaging) is frequently used to noninvasively interrogate the hemodynamic features of the expanding vascular network. In DSC-MR imaging, dynamic MR images are acquired before and after an intravenous bolus injection of a contrast agent (CA), which is typically one of several clinically approved gadolinium chelates. As the CA passes through tissue, it decreases the relaxation times (T1, T2, and T2∗) of tissue water and the associated MR imaging signal intensity. The magnitude of the change in the relaxation rate is determined by the concentration of the CA and the geometry of the tissue structures containing the CA. Pharmacokinetic models can be applied to DSC-MR imaging data to estimate blood volume, blood flow, and mean transit time.20–22


Given the known association between brain tumor pathologic abnormality and angiogenesis, early DSC-MR imaging studies demonstrated the clinical utility of this technique by verifying a positive correlation between tumor blood volume and brain tumor grade.21,23–27 As an example, Boxerman and colleagues25 found relative blood volume values (ie, relative to normal appearing white matter) of 1.52, 2.84, and 3.96 in a cohort of patients with World Health Organization grades II (n = 11), III (n = 9), and IV (n = 23), respectively. Furthermore, the correlation between blood volume and tumor grade was significant (r = 0.60; P<.0001). It was noted that designating tumor grade based on blood volume maps alone, however, may be confounded by intragrade variability, particularly between grades III and IV.


Although such diagnostic studies served to support the consideration of DSC-MR imaging in brain tumor patient management, its clinical potential was more fully realized when studies emerged demonstrating its prognostic capabilities. Law and colleagues28 investigated the ability of pretreatment blood volume maps to predict clinical response (complete response, stable disease, progressive disease [PD], and death) in patients with low-grade gliomas undergoing standard-of-care treatments. The patients with lesions exhibiting blood volume values less than 1.75 (relative to normal appearing white matter) had a median time to progression of 4620 days, whereas those with values higher than 1.75 had a median time to progression of 245 days. An important conclusion in this study is that while DSC-MR imaging may have low specificity for diagnosing low-grade gliomas, it has a much higher specificity for predicting clinical endpoints in patients receiving standard treatment regimens.


In the context of routine therapy and clinical trials, standard MR imaging techniques are unable to reliably differentiate between PD and pseudoprogression (PsP). Because of the heightened angiogenic response in recurring gliomas, DSC-MR imaging–derived cerebral blood volume (CBV) maps have been explored as a means to overcome this limitation.29–31 In a phase II clinical trial of temozolomide, paclitaxel poliglumex, and concurrent radiation, the mean CBV measured at initial progressive enhancement and the change in CBV after therapy were used to distinguish PD and PsP.29 The single time point CBV values acquired after therapy were similar between patients exhibiting PsP and PD (2.35 vs 2.17, P = .67). However, changes in CBV between follow-up examinations were significantly different between PsS and PD (−0.84 and 0.84, P = .001) as were the trends in CBV (negative vs positive slope; P = .04). It was concluded that longitudinal changes in posttherapy CBV values may be more useful for tracking treatment response than static values (Fig. 1).


[image: image]
Fig. 1 Example of DSC-MR imaging–based assessment of bevacizumab-induced CBV changes in recurrent high-grade glioma. Two weeks of bevacizumab treatment reduced CA extravasation and the enhancing tumor volume (left column). Treatment also decreased CBV throughout most of the enhancing tumor, with a mean tumor decrease of 22% (right column).



The identification of early predictors of clinical endpoints (eg, OS) could reduce the duration and cost of clinical trials. Toward this end, the predictive potential of DSC-MR imaging in glioblastoma multiforme (GBM) patients was recently evaluated in ACRIN 6677/RTOG 0625, a multicenter, randomized, phase II trial of bevacizumab with irinotecan or temozolomide.32 Changes in tumor CBV before and at 2, 8 and 16 weeks after treatment initiation were correlated with OS. Significant decreases in CBV at 2 weeks were observed in patients with an OS greater than 1 year, whereas patients with increases in tumor CBV were found to have significantly shorter OS. This trial highlights the potential of CBV as a prognostic biomarker of treatment response in recurrent GBM patients, particularly in the context of therapeutic agents targeting angiogenic pathways.


With the increasing use of DSC-MR imaging in clinical trials and routine practice, there is growing interest in the field to standardize image acquisition and postprocessing strategies.33 Although there is a general consensus on the most robust acquisition strategies (eg, pulse sequence type and parameters, CBV quantification, correction techniques for CA leakage effects), current efforts aim to address the challenges of harmonizing these techniques across MR imaging vendors and data analysis packages.

Dynamic Contrast-Enhanced MR Imaging

DCE-MR imaging acquires heavily T1-weighted images before, during, and after injection of a CA leading to an increase in signal intensity on T1-weighted images yielding a time-intensity curve reflecting the delivery and retention of CA within the tissue of interest. DCE-MR imaging is a class of techniques characterized by whether a qualitative, semiquantitative, or quantitative approach is used for data analysis. A qualitative analysis examines the shape (eg, plateau or persistent) of the time-intensity curve,34,35 while a semi-quantitative analysis provides values such as the area under the curve (AUC), enhancement, time to peak, and wash-in/wash-out slopes.34,36 A quantitative analysis fits the time-intensity curve to pharmacokinetic models to extract parameters that reflect physiologic characteristics, such as tumor vessel perfusion and permeability and tissue volume fractions.36 Although applying quantitative models to the DCE-MR imaging data is more complex than qualitative or semiquantitative approaches, the extracted parameters provide (in principle) a more direct measure of vascular characteristics. The Tofts-Kety model is most frequently used and considers the CA distributed between 2 compartments, the blood/plasma space (Cp) and the tissue space (Ct).37 In 1999, Tofts and colleagues38 standardized quantitative DCE-MR imaging notation where Ktrans is the volume transfer constant between Cp and Ct, kep is the redistribution rate constant between Ct and Cp, and the plasma and tissue volume fractions are denoted as vp and ve, respectively.


DCE-MR imaging has played a role in the assessment of anticancer therapies as well as in the prediction of eventual response in a variety of cancers39–43 (Fig. 2). An early report using DCE-MR imaging as a study endpoint in a phase I clinical trial was in 2002 when 5,6-dimethylxanthenone-4-acetic acid was used to treat patients with advanced solid tumors.44 Despite the small sample size, significant reductions in the AUC were reported in 9 of the 16 patients at 24 hours after the first dose.44 More recently, DCE-MR imaging was investigated in a phase I trial of patients with prostate cancer treated with cediranib. In most of the patients, Dahut and colleagues45 observed rapid and sustained reductions in AUC and Ktrans from baseline up to 2 or more cycles of therapy. In addition, Ktrans at baseline was associated with progression-free survival, suggesting that DCE-MR imaging may also be a predictive biomarker of clinical outcome.45 DCE-MR imaging was found to be predictive of pathologic complete response (pCR) in patients with stage II/III breast cancer undergoing neoadjuvant chemotherapy. Li and colleagues46 found that after one cycle of therapy, kep predicted pCR with a sensitivity and specificity of 0.83 and 0.65, respectively.


[image: image]
Fig. 2 Representative example of DCE-MR imaging used in a clinical trial investigating the efficacy of a novel PI3K inhibitor in combination with cisplatin. Quantitative MR imaging data were collected at baseline and after 2 weeks of therapy in a patient with metastatic triple-negative breast cancer. Note that there is no appreciable difference in tumor size between imaging time points; however, the decrease in Ktrans suggests a decrease vascular perfusion and permeability. ve appears to be unchanged after treatment.



Even with these successes, several limitations of DCE-MR imaging have been identified41,47,48 emphasizing the need for its systematic evaluation in assessing treatment response and predicting clinical outcomes. Accuracy and precision of the estimated quantitative parameters can be affected by the estimation of the arterial input function, spatial and temporal resolutions, pharmacokinetic models, and curve fitting strategies. On the subject of model fitting, Huang and colleagues49 were the first to compare 12 DCE-MR imaging software tools in a multicenter data analysis challenge. Ktrans, kep, ve, and vp from 10 patients before and after the first cycle of neoadjuvant chemotherapy (BAC) were analyzed using site-specific models and algorithms. Although considerable parameter variations were observed, agreement in parameter percentage change was better than that in absolute parameters. Further systematic evaluations assessing reproducibility, evaluating efficacy in a specific patient population and therapy, and finally, expanding into a multicenter study are required. Reproducibility studies are important in order to establish the range outside of which any observed changes would be due to therapy and not measurement error.50,51 The reproducibility of several semiquantitative and quantitative parameters has been investigated in patients with solid tumors.51,52 Although there have been some excellent efforts at evaluating semiquantitative DCE-MR imaging in a large multicenter trial (see Ref.53), more studies are needed before DCE-MR imaging can be fully used in routine clinical care.

Diffusion-Weighted Imaging

In diffusion-weighted imaging (DWI), the image contrast reflects the distance water molecules can migrate or diffuse from their original spatial position over a short time interval due to random, thermally induced motion (ie, Brownian motion). By acquiring 2 or more images with different degrees of diffusion weighting (obtained by applying the diffusion sensitizing gradients with different amplitudes on successive image acquisitions), an estimate of the amount of molecular water diffusion, termed the apparent diffusion coefficient (ADC), can be calculated at each voxel using the equation


S=S0⋅exp(−b⋅ADC) [1]


[image: image] [1]


where S is the signal intensity measured with application of a diffusion-sensitizing gradient, S0 is the signal intensity with no diffusion-sensitizing gradient, and b is a composite variable reflecting various acquisition parameters (including the strength of the gradient pulse, duration of the pulse, and interval between pulses).54 For a more extensive review of the physics of DWI, the reader is referred to Ref.55


Cancers often exhibit significantly reduced ADC values when compared with healthy tissues, a finding typically attributed to the increased cell density of many malignancies.56 With treatment, intratumoral ADC values typically increase, presumably because of decreases in cell density consequent to apoptosis and cell death, with concomitant disruption of cell membranes, allowing water molecules to diffuse more freely. This basic paradigm—low tumor ADC values before treatment followed by rising tumor ADC values with effective treatment—provides the basic model for DWI as a technique for response assessment (Fig. 3 for an illustrative example).


[image: image]
Fig. 3 Changes in ADC in response to neoadjuvant therapy in breast cancer can be measured early in the course of therapy. Shown here are examples of ADC maps acquired before the start of therapy (left column) and after one cycle of therapy (right column) for a patient who went on to have a pCR (top row) and a patient who did not respond (bottom row). ADC values are shown in units of μm2/ms.



One of the potential advantages of DWI for evaluating treatment response over standard response criteria, such as RECIST, is that it is sensitive to changes occurring at the cellular level before changes in gross tumor size. Recent studies have demonstrated changes in ADC after a single cycle of neoadjuvant treatment for breast cancer, and these changes correlate with pathologic outcome.46,57 Changes in ADC 1 month after transcatheter arterial chemoembolization were predictive of progression-free survival in hepatocelluar carcinoma.58 DWI also provides a means of evaluating the response of antiangiogenic drugs. For example, studies of patients receiving bevacizumab for newly diagnosed59 and for recurrent glioblastoma60 both demonstrated that characteristics of the tumor ADC histograms at early time points in treatment may be useful for determining patient outcome.


Even with these promising results, there still remain several challenges that must be overcome before DWI is routinely used in the clinical setting. The standard image acquisition techniques used to acquire DWIs are susceptible to image artifacts.55 In the ACRIN 6677/RTOG 0625 trial,61 only 47% of the 123 patients had high-quality diffusion data free of image distortion, and only 68% were considered usable. The complex physiologic factors that affect ADC measurements are also a limitation. It is generally assumed that the measured ADC primarily reflects tumor cellularity; however, there are several biological processes (eg, edema and perfusion) that can affect ADC values. Ellingson and colleagues61 hypothesized that the increase in ADC they measured in patients who showed early disease progression was an indicator that the drug was not effectively reducing vascular edema rather than a change in tumor cellularity. Data analysis methods must be validated as well. Analyses using mean tumor ADC alone may not be able to predict patient response as well as more advanced analysis methods, such as functional diffusion mapping57 or multiparametric analyses46 (see section entitled Multiparameter MR Imaging Methods).


In summary, DWI is a valuable tool for quantitative imaging and treatment assessment, relying only on endogenous contrast mechanisms. It can be applied in a variety of applications and disease sites. Future work includes standardizing protocols, improving image quality, and performing additional multicenter trials.




Emerging MR imaging methods for cancer


Chemical Exchange Saturation Transfer MR Imaging

Chemical exchange saturation transfer (CEST) is a technique enabling indirect detection of tissue metabolites via exchangeable protons. The exchangeable protons that resonate at a frequency distinct from bulk water protons are selectively saturated via many off-resonance (with respect to water protons) pulses before imaging.62 The saturated species are thought to interact with the magnetization of the bulk water through direct chemical exchange, which reduces the observed water signal. Of particular interest for cancer imaging is the amide proton transfer (APT) metric (Fig. 4), reflective of the concentration of amide protons and their exchange rate with the free proton pool.63 This APT metric has been used to assess physical and physiologic characteristics of the tissue microenvironment, such as temperature, pH, and metabolite concentration.64–66


[image: image]
Fig. 4 The figure displays APT maps in patients with breast cancer who underwent MR imaging examination at 3 T before (top row) and after a single cycle (bottom row) of neoadjuvant therapy. (A) T2-weighted images on the left and APT maps on the right for a patient who achieved a pCR at the end of therapy. (B) Similar results for a patient that had residual disease at the conclusion of neoadjuvant therapy. The mean APT values decreased by 27% for the responder (A), whereas this metric increased by 78% for the nonresponder (B).



A z-spectrum, which is the measured water signal, S(Δω), normalized by the signal without saturation (S0) plotted as a function the offset frequency (Δω) of the saturating irradiation, is used to assess the CEST effects present in a tissue.67 The z-spectrum is characterized by a symmetric direct saturation around the water frequency (Δω = 0 ppm) and aberrations from this symmetry at the resonances of the exchangeable protons, particularly that due to APT (Δω = 3.5 ppm). These asymmetries are quantified via magnetization transfer ratio (MTR) asymmetry analysis68 calculated by subtracting the right (−Δω) and left (Δω) signal intensity ratios:


MTRasym(Δω)=MTR(Δω)−MTR(−Δω)=Ssat(−Δω)/S0−Ssat(Δω)/S0 [2]



[image: image] [2]




which can be used to examine the z-spectra asymmetry caused by the APT (Δω = 3.5 ppm), termed APTasym:


APTasym=Ssat(−3.5ppm)/S0−Ssat(3.5ppm)/S0 [3]



[image: image] [3]




The APTasym was initially applied in humans to assess amide proton content (thought to be proportional to mobile protein or peptides64) and their exchange rate (thought to be reflective of tissue pH)64,66,69 in brain tumors at 3 T.70 This study, as well as those following71 including migration to 7 T,72,73 demonstrate that APTasym is increased in glioma relative to surrounding tissue. This increase in APT contrast is hypothesized to be a result of tumor cells accumulating defective proteins at a higher rate than normal while also experiencing alterations in pH due to hypoxia.74 Contrary to MR spectroscopy (MRS), CEST MR imaging has sufficient sensitivity to allow imaging due to the signal enhancement, which facilitates clinical translation. Preclinical75 and clinical70,71 studies indicate the ability to distinguish tumor from edema as well as perform tumor grading.71,76


APTasym is a unique contrast offering complementary information to that provided by standard clinical MR imaging measures; however, it is not without limitations. For example, CEST imaging in vivo is a complex technique because of interferences with direct water saturation (spillover effect77), the involvement of other exchanging pools,78 in particular, macromolecular systems (magnetization transfer79), and nuclear Overhauser effects.80 Moreover, there is a strong dependence of the measured effects on the sequence parameters of radiofrequency irradiation for selective saturation, which makes the comparison of results obtained at different laboratories difficult.81

Hyperpolarized MR Imaging

MR hyperpolarization technology allows increasing nuclear spin polarization to the order unity (or 100%) significantly above the equilibrium P level; thus, the process of hyperpolarization enables unprecedented MR imaging sensitivity gains by more than 10,000-fold, which is achieved through transient manipulation with the agent molecule. The hyperpolarized substrate molecule can be administered via intravenous injection or inhalation (typically as a bolus) into a living organism.82 There are multiple biomedical hyperpolarization technologies that have already demonstrated their potential in humans82,83: dissolution Dynamic Nuclear Polarization (d-DNP),84 Parahydrogen Induced Polarization,85,86 Signal Amplification by Reversible Exchange (SABRE),87 and Spin Exchange Optical Pumping.88 The main goal of the hyperpolarization process is to produce a sufficiently large batch of hyperpolarized contrast agent (HCA) with a sufficiently long lifetime (ie, long T1) for its administration and in vivo distribution and subsequent metabolism. As a result, most HCA include a low-γheteronucleus (129Xe, 13C, 15N, 3He, etc.) used for hyperpolarization storage and detection,82 because protons typically have low T1 values on the order of a few seconds, although there are exceptions when long-lived states of protons are used, such as those in hyperpolarized propane gas.89,90 HCAs are nonradioactive, and they can report on both uptake and metabolism, because it is possible to discern multiple metabolites and report on their distribution91 using the difference in chemical shifts92 or in J-couplings of multiple metabolites.93 Moreover, HCAs’ T1 and lifetimes are typically within minutes, and therefore, HCAs signals are quickly cleared, and multiple administrations of HCAs can be conducted within the same imaging session. Furthermore, a hyperpolarized MR imaging scan requires only a few seconds.94,95 In addition, the detection sensitivity of hyperpolarized MR imaging does not depend on B0 of the main scanner,96 and high-quality images can be potentially obtained with low-field MR imaging (ie, ≤0.3 T), which can have significantly lower costs and greater patient throughput than high-field MR imaging. High-resolution human images were reported at magnetic field strengths of 0.2 T with hyperpolarized 129Xe97 and 0.007 T with hyperpolarized 3He.98


HCAs can be successfully used for quantitative imaging (Box 3). For example, the ratio of injected hyperpolarized 13C-pyruvate to produced 13C-lactate in tumors is correlated with the aggressiveness of prostate cancer,99 and the hyperpolarized 13C-lactate intensity is correlated with response to treatment.100 The ratio of injected hyperpolarized bicarbonate and produced hyperpolarized CO2 can directly report on pH.101 However, hyperpolarized MR imaging has a major shortcoming in that the actual produced signal is proportional to the product of P and metabolite concentration, and the exact knowledge of the concentration is hindered by the differential T1 relaxation processes of multiple metabolites (eg, 13C-pyruvate and 13C-lactate pair) in multiple compartments (eg, relaxation in blood and in tumor). These challenges can be potentially overcome with the use of a single metabolite: for example, the use of hyperpolarized 15N-heterocycles produced by d-DNP102 and SABRE103 technologies can be used for pH sensing, whereby the chemical shift itself of the molecular probe is highly sensitive to the pH environment,102 with potential application to cancer imaging, because acidic pH is frequently a property of cancer.104,105




Box 3


Hyperpolarized contrast agents for quantitative imaging


In less than 20 years,106 hyperpolarization technologies enabled validation of many HCAs in animal models of human diseases, including the use of 13C-pyruvate,92,100,107 13C-lactate,108 13C-glucose,109 13C-fructose,110 13C-succinate,111 13C-fumarate,101 13C-glutamine112 in cancer imaging, 13C-bicarbonate113 for pH imaging, 13C-tetrafluoropropionate114 for plaque imaging, 129Xe and 3He for lung imaging,115 129Xe for brown fat imaging116 among others.82,117 Moreover, hyperpolarized 129Xe, 3He, and 13C-pyruvate have already been successfully tested in clinical trials.94,118,119





Despite the above advantages of hyperpolarized MR imaging, there are 2 major translational barriers. First, the preparation of HCAs requires (frequently expensive) isotopic labeling, and expensive hyperpolarization equipment with relatively low throughput. Second, most HCA molecules have a heteronuclear hyperpolarized site (eg, 13C or 129Xe) requiring multinuclear MR imaging scanner capability, a feature not widely available on MR imaging scanners. These fundamental challenges can be potentially solved through the use of less expensive hyperpolarization techniques (eg, SABRE vs d-DNP), or through innovation in hyperpolarization hardware,95 or through the invention of HCAs with long-lived proton sites versus heteronuclear-based HCAs (eg, hyperpolarized 1H-propane vs hyperpolarized 129Xe). Moreover, heteronuclear-based HCAs can also potentially be detected via indirect proton detection34; the latter would require a relatively minor clinical MR imaging scanner upgrade and would therefore enable this technology on most clinical MR imaging scanners.

Magnetic Resonance Elastography

The fundamental link between tissue mechanics and disease has led to the development of technologies for quantitative assessment of mechanical stiffness in tissue through noninvasive imaging, termed elastography.120–127 A primary motivation for the use of elastography in cancer response assessment and prediction is based on direct evidence linking the progression of cancerous tissue to the disruption and concurrent stiffening of the stromal extracellular matrix structural architecture.128–131 Elevated interstitial fluid pressure within tumors also contributes to observations of elevated stiffness and correlates with cancer progression and therapeutic resistance.132 Many new cancer therapeutics seek to directly target the abnormal cancer niche,133 including drugs with specific antifibrotic activity.134 Thus, it is of great import to develop imaging-based methods to provide a noninvasive measure of the mechanical stiffness of the tissue extracellular matrix.


As a general method, elastography involves applying mechanical excitation, imaging the displacement response, and computing spatial estimates of tissue mechanical elasticity. Although first demonstrated using ultrasound,120 elastography has been applied in many imaging modalities, including MR, CT, and optical imaging. MR elastography (MRE), in particular, allows for quantitative evaluation of tissue mechanical stiffness over a large field of view and deep within the body.135 Mechanical excitation, either dynamic or quasi-static, is typically applied externally by coupling to an acoustic, piezoelectric, or pneumatic deformation source. In the dynamic case, tissue response to mechanical excitation is typically visualized using phase-contrast imaging and motion-sensitive pulse sequences synchronized to the frequency of applied excitation.135 In the quasi-static case, image volumes are acquired before and after the application of mechanical deformation.136,137 Quantitative estimates of tissue stiffness are then calculated based on the observed tissue displacement and an assumed material constitutive relationship (typically linear elasticity), through direct inversion or biomechanical model-based methods. An example of quasi-static MRE with biomechanical model-based reconstruction of tissue stiffness as applied to breast cancer assessment is shown in Fig. 5.


[image: image]
Fig. 5 An example of quasi-static MR elastography in breast cancer. Image volumes and central slice images before (A, B) and after (C, D) the application of an external mechanical deformation are used, along with a biomechanical model, to estimate the tissue mechanical stiffness (E). Cancer is typically revealed to be significantly stiffer than surrounding healthy tissue.



Preliminary applications of MRE in the clinic have been made for assessing hepatic fibrosis and are rapidly emerging as a successful noninvasive image-based alternative to percutaneous tissue biopsy.126 Although the number of MRE studies in cancer is limited, recent investigations have begun to show promise for the use of MRE in characterization of this disease. For example, Venkatesh and colleagues138 used MRE to show that mechanical stiffness could differentiate malignant focal liver lesions from benign lesions, normal liver tissue, and fibrotic liver tissue. In this preliminary study, malignant liver lesions were found to be significantly stiffer than benign lesions (10.1 kPa vs 2.7 kPa, P<.001) with 100% accuracy. MRE for lesion characterization has also shown promise in breast139–141 and prostate142 cancers. Challenging the simplifying assumptions of linear biomechanical constitutive relationships, Garteiser and colleagues143 used a viscoelastic mechanical model and extracted estimates of the storage modulus (elasticity component) and the loss modulus (viscous component) and found a significant elevation in the viscous component of the viscoelastic MRE signal in malignant breast tumors as compared with benign breast tumors.


Although MRE has recently shown promise for response assessment in several preclinical cancer studies,144–146 significantly more work needs to be performed in order to advance MRE for use in clinical therapy response assessment and prediction. Many more patients in this setting must be examined with MRE in order to evaluate the predictive performance. In addition, methodological advancements will be necessary to address the limited spatial resolution and signal quality of traditional MRE examinations. These technical challenges must be overcome for robust longitudinal response assessment for small lesions and within-lesion heterogeneity. Finally, correlations of MRE with histopathology will be important for further understanding of the biological basis of these examinations.

Multiparameter MR Imaging Methods

As indicated above, quantitative MR imaging techniques are playing an increasingly important role in oncology for detecting lesions, monitoring therapy, or predicting treatment response. A relatively new approach to increase the accuracy of tumor identification or prediction of therapy response is to integrate the data available from multiparametric MR imaging. The general hypothesis is that combining the (potentially) complementary information on tumor properties available from multiple MR imaging measures will increase the ability to detect, monitor, and predict outcome. For example, there have been many studies showing that multiparameter MR imaging can achieve this goal in prostate cancer.147–151 In the study by Turkbey and colleagues,147 70 patients with biopsy-proved prostate cancer with a median Gleason score of 7 were imaged by T2-weighted MR imaging, DCE-MR imaging, and MRS. On T2-weighted images, the criterion to detect prostate cancer was a well-circumscribed, round-ellipsoid low-intensity lesion. On MRS, the criterion for identifying tumor tissue was a choline-citrate ratio of 3 or greater standard deviations above the mean value of healthy tissue. On DCE-MR imaging, tumor location was evaluated by visual interpretation as well as Ktrans and kep parametric maps. The results showed that the combination of T2, DCE-MR imaging, and MRS increased the probability of tumor detection from approximately 0.38 (DCE-MR imaging alone) to 0.78 (combining all measures).


There have also been efforts investigating multiparameter MR imaging methods for assessing or predicting the response of breast tumors to neoadjuvant chemotherapy, and several recent publications have demonstrated that combining multiple parameters improves predictive ability.46,53,152–156 Fig. 6 demonstrates an illustrative example. In the study by Hylton and colleagues,56 216 patients with invasive breast cancer of 3 cm or greater were imaged by MR at 4 time points: before NAC, after one cycle of anthracyline-based treatment, between the anthracycline-based regimen and taxane, and after all cycles of NAC. The longest diameter of the primary tumor, tumor volume, signal enhancement ratio at MR imaging, and clinical tumor size was assessed, and changes in each parameter from baseline to each time point were fit to a univariate random-effects logistic regression model to predict pCR and residual cancer burden. A multivariate model was also performed and adjusted for race and age. Higher area under the receiver operating characteristic curve (AUCs) were found for longest diameter and tumor volume than for clinical size at all the time points in the univariate analysis. When all 4 variables were considered in the multivariate analysis, the AUCs for predicting pCR increased to 0.75 and 0.84, at the early time point and before surgery, respectively. Similarly, the AUCs for predicting residual cancer burden also increased to 0.71 and 0.81.


[image: image]
Fig. 6 Parametric maps of Ktrans, ve, vp, kep, and ADC are displayed before (top row), after 1 cycle (middle row), and after all cycles (bottom row) of neoadjuvant chemotherapy for a patient that had residual tumor burden. It is clear that each one of these maps displays their own spatial variations and report on different aspects of tumor status. Thus, combining them to increase (for example) the predictive value of quantitative MR imaging is a natural line of investigation.



Two relatively new areas of multiparametric imaging include using such data to initialize and constrain predictive mechanistic models of tumor growth and treatment response (see, eg, Ref.157 and references cited therein), and to relate tumor phenotype to genomic signatures.158 Both of these approaches have seen much interest in recent years, although with many technical improvements and initial applications in patients. However, much work is required to bring these methods to routine application in clinical trials. More broadly, although multiparametric methods are gaining more attention in oncology, consensus on the optimal practice in image acquisition, data processing, and interpretation has yet to be determined and is an active area of investigation. Indeed, for each of the above MR imaging methods described, the authors have tried to list current shortcomings of the techniques, and these issues are only compounded when 2 (or more) methods are combined.


Summary

Quantitative MR imaging in oncology had undergone enormous advances in the last decade with many techniques now routinely used in clinical trials. Furthermore, there are many methods that are rapidly evolving and have shown early promise in preliminary clinical studies. Going forward, it is imperative that consensus among data acquisition and analysis methods is achieved, and repeatability and reproducibility are established so that quantitative MR imaging can be intelligently applied for particular disease types and therapeutic regimens.
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