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Introduction

With Security becoming a key focus for all businesses, developers are now expected to not only understand security vulnerabilities in software but also to know how to fix them. Fixing vulnerabilities is not always as straightforward as development shops might think. Most college courses in programming are not going to have a secure-coding slant to them. Only recently has security become visible enough to warrant such inclusion. Because of this lack of emphasis, I spent many years coding away happily without ever thinking about security implications. Only now do I realize how this lack of critical thinking in my software may have caused me to, not only enable vulnerabilities in my code, but to actually persist them over years of repeated oversight. I’ve been coding in Java for many years, since version 1.0 back in 1995, yet only recently have I come to understand security architecture and implementation of secure coding techniques as standard practice.

I now realize that I can implement some very fundamental coding steps to make my web applications more secure. Bear in mind that the tips presented in this book are not foolproof. Even after using these preventative techniques, your applications may, and probably will, still be vulnerable to attacks. However, taking just a few simple additional steps while in the midst of coding your application can go a very long way to mitigating security vulnerabilities.

This book is based on the vulnerabilities set forth by OWASP. OWASP stands for Open Web Application Security Project and is the recognized industry standard on security vulnerabilities found in software. This book includes all ten OWASP Top 10 vulnerabilities for 2013, as made public on June 12, 2013. This new listing provides an updated view of vulnerabilities than the previous OWASP Top 10 2010 listing.

Included in the OWASP Top 10 for 2013 are the following categories: A1-Injection, A2-Broken Authentication and Session Management, A3-Cross-site Scripting (XSS), A-4 Insecure Direct Object References, A-5 Security Misconfiguration, A-6 Sensitive Data Exposure, A-7 Missing Function Level Access Control, A-8 Cross-Site Request Forgery (CSRF), A-9 Using Components with Known Vulnerabilities, A-10 Unvalidated Redirects and Forwards. This book will describe each category, include types of attacks, explain how the attacks occur and provide preventative techniques to address the attacks.

I hope developers find the information here helpful and informative in addressing these most prevalent application vulnerabilities. Realize, however, that new hacks are created every day. And, that it can be difficult to retrofit security into an application after-the-fact. Security should be fundamental to the architectural design and should be “baked” into a software lifecycle process instead of “bolted on” later. For more details on how you can design and architect security into your entire software lifecycle, please read my e-book entitled Sunshine on Secure Software: Baking Security into your SDLC Process
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available on Amazon, iTunes, Barnes and Noble and other great sites.


Chapter 1: A1-Injection [image: ]

The first OWASP category, A-1, is Injection. Injection flaws allow attackers to inject code that, in turn, can be interpreted by the program for the execution of an unintended command or for the purpose of exposing unauthorized information. The “injection” can occur at different exposure points of an application, but, one of the more obvious points is the browser dialog box where the URL is displayed. By manipulating parameters in the browser dialog box, an attacker can trick the underlying program into executing commands without proper authentication or authorization.

Types of Attacks [image: ]

Injection attacks can include SQL Injection (aka SQLi),  Command Injection (such as Operating System or program arguments),  Authentication Repository Injection (e.g., LDAP - Lightweight Directory Access Protocol), XPath Injection, just to name a few. In this book, we will look at SQL and Command Injection in depth.









 

   

   
	 
    

     
	 
    

     
	 
	 
    

     
	 
    

     
	 
	 
    

     
         
             
             
             
             
             
        
    

  

   
     
  









