
[image:]

[image:]

ISBN: 9781483513454

Notice of Rights All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Notice of Liability The information in this book is distributed on an “as is” basis without warranty. While every precaution has been taken in the preparation of the book, neither the author nor the publisher shall have any liability to any person or entity with respect to any loss caused directly or indirectly by the instructions contained in this book or by the products described in it.

Trademarks Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations appear as requested by the owner of the trademark. All other product names and services identified throughout this book are used in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

Intended Audience This book is intended for programmers and designers that use the Java Programming Language. There is an expectation of acquired knowledge in Java Enterprise Edition (JEE) and Java Standard Edition (JSE) as it pertains to building web applications. In addition, a previous understanding of Mozilla’s JavaScript scripting language is also helpful.

Special Thanks To Larry & Roxanne – Without your dedication and support, I could never have done this. You are the best!

Dedication - I dedicate this eBook to all my fellow Java programmers out there who were in the dark about such techniques just as I was...May this book help you to be the very best at what you do!

About the Author

[image:]

Natalie "Sunny" Wear, CISSP, CRISC, CEH, GIAC GSSP-JAVA, CSSLP has worked as an Application, Enterprise and Security Architect over the past 20 years of her career at various large corporations. She also wrote the material for and taught Java at a major university for several years while concurrently working in the field. Natalie lives in Tampa, FL and can be reached at sunny@sunnywear.org .

References

OWASP Top 10 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

FIPS 140-2 http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf

Clickjacking http://mashable.com/2010/05/31/facebook-like-work-clickjack/

Perl-Fu example: http://www.win.tue.nl/~aeb/linux/hh/hh-6.html

Spring Framework Remote Code Exe http://www.networkworld.com/news/2013/011713-java-spring-framework-265923.html

BlackHat-DC-2010 Advanced Command Injection Exploitation

Introduction

With Security becoming a key focus for all businesses, developers are now expected to not only understand security vulnerabilities in software but also to know how to fix them. Fixing vulnerabilities is not always as straightforward as development shops might think. Most college courses in programming are not going to have a secure-coding slant to them. Only recently has security become visible enough to warrant such inclusion. Because of this lack of emphasis, I spent many years coding away happily without ever thinking about security implications. Only now do I realize how this lack of critical thinking in my software may have caused me to, not only enable vulnerabilities in my code, but to actually persist them over years of repeated oversight. I’ve been coding in Java for many years, since version 1.0 back in 1995, yet only recently have I come to understand security architecture and implementation of secure coding techniques as standard practice.

I now realize that I can implement some very fundamental coding steps to make my web applications more secure. Bear in mind that the tips presented in this book are not foolproof. Even after using these preventative techniques, your applications may, and probably will, still be vulnerable to attacks. However, taking just a few simple additional steps while in the midst of coding your application can go a very long way to mitigating security vulnerabilities.

This book is based on the vulnerabilities set forth by OWASP. OWASP stands for Open Web Application Security Project and is the recognized industry standard on security vulnerabilities found in software. This book includes all ten OWASP Top 10 vulnerabilities for 2013, as made public on June 12, 2013. This new listing provides an updated view of vulnerabilities than the previous OWASP Top 10 2010 listing.

Included in the OWASP Top 10 for 2013 are the following categories: A1-Injection, A2-Broken Authentication and Session Management, A3-Cross-site Scripting (XSS), A-4 Insecure Direct Object References, A-5 Security Misconfiguration, A-6 Sensitive Data Exposure, A-7 Missing Function Level Access Control, A-8 Cross-Site Request Forgery (CSRF), A-9 Using Components with Known Vulnerabilities, A-10 Unvalidated Redirects and Forwards. This book will describe each category, include types of attacks, explain how the attacks occur and provide preventative techniques to address the attacks.

I hope developers find the information here helpful and informative in addressing these most prevalent application vulnerabilities. Realize, however, that new hacks are created every day. And, that it can be difficult to retrofit security into an application after-the-fact. Security should be fundamental to the architectural design and should be “baked” into a software lifecycle process instead of “bolted on” later. For more details on how you can design and architect security into your entire software lifecycle, please read my e-book entitled Sunshine on Secure Software: Baking Security into your SDLC Process

[image:]

available on Amazon, iTunes, Barnes and Noble and other great sites.

Chapter 1: A1-Injection [image:]

The first OWASP category, A-1, is Injection. Injection flaws allow attackers to inject code that, in turn, can be interpreted by the program for the execution of an unintended command or for the purpose of exposing unauthorized information. The “injection” can occur at different exposure points of an application, but, one of the more obvious points is the browser dialog box where the URL is displayed. By manipulating parameters in the browser dialog box, an attacker can trick the underlying program into executing commands without proper authentication or authorization.

Types of Attacks [image:]

Injection attacks can include SQL Injection (aka SQLi), Command Injection (such as Operating System or program arguments), Authentication Repository Injection (e.g., LDAP - Lightweight Directory Access Protocol), XPath Injection, just to name a few. In this book, we will look at SQL and Command Injection in depth.

	

	

	
	

	

	
	

