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    Preface


    When this book was conceived, as a discussion among members of the section of Public Health Epidemiology of the European Public Health Associations (EUPHA), the main idea was to describe not only theory, but above all how to use the available software for epidemiologic and statistical data analysis.


    In the era of Evidence Based Medicine, health professionals are required to fully understand design, analysis and interpretation of the results of research. Furthermore, they should be able to assess the needs of their communities and respond accordingly. To achieve these goals, one needs to be familiar with the basic concepts of epidemiology and biostatistics.


    But epidemiology is more than “the study of.” Its application and practice are essential to address public health issues.


    So, the purpose of the book is to give the reader either the theory concerning specific aspects of technical disciplines as epidemiology and biostatistics, and in the mean time to give the opportunity of replicating under guidance the analysis done by each chapter’s author and already published in a given research article. The idea is to use the available software for epidemiologic and statistical data analysis, that each reader can download freely from the Internet.


    Concerning the way in which the purpose of the book is to be achieved, it is important to underline that each chapter will present one or more specific examples on how to perform an epidemiological or statistical data analysis. The single chapter will give the reader the possibility of conducting an epidemiological or a statistical analysis, using a step by step approach. In other words, the reader will be able to do the analysis following the detailed description of the commands to use and the figures that represent a picture of the software command and/or output.


    Why do we believe the book is needed?


    The answer is mainly of technical reason. Up to now, many books concerning epidemiology and biostatistics are available, but no one could give practical examples using different freely available software. This book will use software such as Epi Info, Episheet, Simcalc, StatCalc, RevMan, that are downloadable from the web, and could cover most arguments concerning the two disciplines. In selected cases, we will make examples using commercial statistical software, such as Stata and SPSS.


    The reader will be interested in this book because he/she will find a resolution of an epidemiological/biostatistical problem with practical example and a guide to use the software in a very detailed and efficient way.


    Have you ever been interested in performing an epidemiological data analysis, but you thought to be not able to?


    Have you ever been in trouble in making a statistical analysis, because you considered statistics a matter of statisticians only?


    Applied Epidemiology and Biostatistics is the answer to you.


    Questions as following will find an answer:


    
      	How to perform a multiple logistic regression using your own data?


      	How to calculate the 95% confidence intervals of that odds ratio?


      	How to perform a meta-analysis of papers of your interest?


      	How to make graphs for your report?


      	How to make a ROC curve or control for a possible confounding?


      	How to calculate the sample size needed for the clinical trial?

    


    This is a manual designed for using software, that are freely downloadable from the web, and could cover most arguments concerning the two disciplines, epidemiology and biostatistics. In selected cases, examples will use commercial statistical packages.


    Who is the best reader of this book?


    Considering that epidemiology can be seen as the study of factors affecting the health and illness of a certain population, and the Biostatistics is one of the main pillar of the research, in our intention this manual will have as principle possible targets the following:


    
      	Public Health practitioners (professionals, researchers).


      	Clinicians (researchers).


      	Health Managers (professionals, researchers).


      	Teachers of Epidemiology.


      	Teachers of Biostatistics.

    


    Finally, I would like to thank all the contributors to this manual. Without their support and suggestions, it would have been impossible to achieve this goal.


    Now, do you want to start?


    Let’s make Epidemiology and Biostatistics together!


    



    Giuseppe La Torre


    
      Instructions for Downloading


      To download the software and databases described in this book, you need to:


      
        	access the website http://download.edizioniseed.it



        	access the “Download area” and


        	type the code SOB0H46Y.

      

    

  


  1. Measures of Occurrence
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  2 University of Milano-Bicocca, Italy


  
    Objectives of the chapter


    
      	To describe the measures of occurrence.


      	To give some practical examples showing how to get them from a dataset using the statistical package SPSS.

    

  


  1.1. Introduction


  One of the objectives of epidemiology is to describe the frequency and distribution of diseases and other health-related events and to assess the association between possible risk factors and diseases. An initial contrast must be made between measures of occurrence (the ones describing a health phenomenon) and measures of association (the ones describing the strength of a possible association between an exposure and a health outcome). In this chapter, we will spend some time on the measures of occurrence. Measures of association will be discussed in a later chapter (see chapter 2).


  The measures of occurrence can be divided into the following groups [1]:


  
    	Description of number of events.


    	Ratios.


    	Proportions.


    	Rates.

  


  The description of the number of events usually only satisfies an administrative need for quantifying a phenomenon, but doesn’t usually give any information about the denominator to which it is referring. Knowing, for instance, how many people are sick with a certain disease could help institutions organize their healthcare facilities accordingly, but it would not give any additional information on how that disease is spread in that particular group of people in the absence of a denominator or a time reference.


  A ratio expresses the relationship between two independent quantities. For instance, if eight women and two men make up a group of 10, the women-to-men ratio would be: 8/2 = 4. A particular kind of ratio used often in epidemiology is an odds ratio that will be discussed more in a later chapter (see chapter 2).


  The proportion is a kind of ratio in which the denominator always includes the numerator (therefore the two quantities are not independent). The values of this ratio are always included between 0 and 1 and they may also be expressed as a percentage (0% to 100%). In the example given above, the proportion of women is 8/10 = 0.8 or 80%. A proportion can easily express the fraction of a population affected by a certain disease.


  A rate is a measure in which a time dimension is introduced into the formula. If we want to measure the new cases of a disease in a community, we would need to specify the time in the formula such as when we want to calculate the speed of a vehicle. For instance, if there were five new cases of a disease in a group of 10 people in three days, there would be a rate of 5/(10 x 3) = 0.17 cases per person-day in the population. A rate can theoretically go from 0 up to infinity since we can also use a time reference with values less than a unit (say 0.1 days, etc.). To sum up, a rate is a dynamic measure that could, for example, describe how fast a disease is spreading in a population or how fast a health-related phenomenon is occurring [2].


  1.2. Prevalence


  A specific kind of proportion largely used in epidemiology is the prevalence. The prevalence can be defined as the proportion of cases of disease (or of another health-related phenomenon) at a certain time or period in the overall population.


  Some refer to point prevalence when it is measured in a specific moment, and to period prevalence when it is measured over a defined period of time (a month, a year, etc.) [3]. The point prevalence can have big variations, especially if it measures diseases with a short duration, like infectious diseases that can wax and wane over relatively short periods of time. For instance, we could have a certain prevalence of influenza on one day and a very different one on the following day.


  The period prevalence partially solves this problem since it is focused on a broader period of time and represents a good average of the phenomenon. In the denominator, it is usually considered the population at the mid-point of the time period. So, if we consider the prevalence of a certain disease over a year, the denominator will be the overall population on June 30 (had it been over a month, there would be the overall population on the 15th day of that same month, etc.), and the numerator will be the number of people with the disease in that year (both new and existing cases). The period prevalence always considers the entire population and this differentiates it from the incidence rate.


  The prevalence has to be considered a static measure since it does not take time into account and also considers the existing cases of disease, not just the new cases. It is like a cross-sectional picture of a certain health-related phenomenon and it is mainly used to describe the fraction of a certain population affected by a disease or a risk factor. Its use is more frequently related to healthcare planning and the cost analysis of certain interventions [4].


  1.3. Incidence


  The incidence is an epidemiologic measure that indicates the risk of developing a disease over a period of time; in other words, how many new cases of disease have occurred during a specific period of time in an at-risk population. It is a more dynamic measure compared to the prevalence, and can be calculated as a proportion (cumulative incidence, incidence proportion, or incidence risk) or, more frequently, as a rate (incidence rate, incidence density, or person-time incidence) [5].


  The incidence proportion (or cumulative incidence or incidence risk) considers the number of new cases of disease in the numerator. The denominator is the population at risk for that disease at the beginning of the period of observation [6], so any individual counted in the denominator has, in theory, some chance of being counted in the numerator as well. Therefore, the denominator does not include people who already have the disease or people who surely cannot develop the disease—for instance, individuals fully immunised against a certain communicable disease.


  The time reference of the incidence always has to be specified: if we had four new cases of measles in the last week in a group of 10 subjects, one of which had been immunised and another had already had the disease, we would say that the incidence proportion of influenza is four new cases divided by 8 (10 – 2) subjects at risk, per week, which is equal to 0.5 or 50%. The proportion of 50% could be also called the risk that a member of that group of people will develop influenza in a week: that is why it is also called incidence risk.


  The incidence rate (or incidence density or person-time incidence) shares the exact same numerator (number of new cases) as the incidence proportion, but since it is a rate, it also includes time in the denominator so that person-times at risk as well as persons at risk are factored into the formula and it can be more accurate. It is particularly helpful when the event happens to the same person more than once during the study period and the investigators want to take this into account [7].


  Using the example above, let us assume that we want to know the incidence rate of influenza per day and not per week. Because there are seven days in a week, the incidence rate would be: 4/(10 – 2) x 7 = 0.07 new cases of influenza per person-day (and not just “per person”) at risk.


  The advantage of considering the incidence rate instead of the incidence proportion is the higher accuracy of the former. In fact, if the group above were a dynamic cohort with people coming in and out over the period of time considered (one week), we could have easily taken into account each person’s respective contribution to the denominator by only considering the actual at-risk periods each person spent in the cohort without giving the same weight to people staying in the cohort at risk for just one day and to people who were at risk for the entire period.


  
    [image: fig_01_01.eps]


    Figure 1.1: Relationship between incidence and prevalence.

  


  The incidence is a more dynamic measure because it takes time into account. The incidence proportion gives more of an estimate of the individual risk of getting a certain disease by not taking into account all the at-risk periods of time, and only using at-risk individuals in the denominator. The incidence rate instead can be seen as an estimate of the speed of a certain health-related phenomenon by taking time into account in the computational formula.


  In a steady-state situation, in which the inflow of subjects in the population equals the outflow, and with a steady incidence over time, the following relationship applies:


  [image: form_01_01.eps]


  Therefore, prevalence is affected both by changes in incidence and disease duration. In fact, if we notice an increase in prevalence of a certain disease, we can expect it to be due either to an increase in incidence (more new cases) or to an increase in disease duration (increased survival), or both (Figure 1.1).


  For instance, if we knew that the incidence of pancreatic cancer was 10/100,000 per year, and that its prevalence was 25/100,000 in a certain year, then we could estimate the average duration of the disease by dividing the prevalence by the incidence [1]:


  [image: form_01_02.eps]


  1.4. Practical issues


  1.4.1. Denominator issues


  When investigators are dealing with large populations, the issue of the incidence denominator, which should just include the people (or person-times) actually at risk, is usually a minor one since only a small amount of people can be considered not at risk.


  Sometimes, however, this can actually be an issue. For instance, when investigators are dealing with the incidence of uterine cancer, women who have had hysterectomies have to be excluded from the denominator (together with males, of course) to prevent an underestimate of the actual incidence or mortality rate [8].


  1.4.2. Numerator issues


  The most important issue is to define who has the disease. In other words, we must determine who actually is “a case.” To do this, an accurate written definition of a “case” must be followed. There are diseases—like certain psychiatric conditions—that can follow different and more subjective diagnostic criteria. By using different diagnostic criteria, we can come up with different numerators and therefore a different incidence or prevalence. Biases in data collection in general can also potentially affect the measure of frequency obtained.


  1.5. Practical examples


  The following example, taken from a previously published cross-sectional study (AIDS 2005), shows how to get measures of occurrence from an existing dataset using the statistical package SPSS (available at http://download.edizioniseed.it ). Data were collected through a self-administered questionnaire about sexual behavior, knowledge, and attitudes towards HIV in the general Italian population [9]. The complete dataset was opened in Microsoft Excel and an extract of it is shown in Figure 1.2. Each field has a corresponding code. The first two columns list the ID variable (Variable 1) and the province the enrolled subjects live in (Variable 2). Variable 3 refers to the gender of the interviewed subjects (male = 1; female = 2). Variable 4 refers to the number of HIV tests taken (once = 1; more than once = 2; never = 3). Variable 5 refers to the self-assessed risk of being sexually infected with HIV (high = 1; intermediate = 2; low = 3; null/not existent = 4).


  
    [image: fig_01_02.jpg]


    Figure 1.2: The simple dataset.
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    Figure 1.3: The Analyze menu.
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    Figure 1.4: Getting the results: the output window.

  


  After opening the complete dataset in Microsoft Excel from SPSS (choose Open existing data source from the list shown and then Browse), the Analyze menu can be scrolled down to ask for the proportions for each field we want to consider in the analysis, as shown in Figure 1.3 (click Analyze then Descriptive statistics and then Descriptives).


  The next step is to select Variables V3, V4 and V5 and move them into the variables box and then click OK.


  Once the OK button has been clicked, the absolute and relative frequencies will be available from the outcome box, with each table reporting about each of the variables chosen (Figure 1.4). Since prevalence is a simple proportion, and in this specific case it is a point prevalence, the obtained proportion will be the proportion of people testing for HIV, or of people who are at high risk for HIV sexual transmission.


  If the objective is instead to obtain incidence, a different dataset is needed because incidence cannot be computed with cross-sectional data for obvious reasons. For instance, a dataset about influenza cases in the northern Italian city of Parma can be used. The data were collected during the flu period by the week of surveillance and through an active surveillance system involving three general practitioners (GPs) for a total of 2,700 patients. Specimens were collected for each influenza-like illness (ILI) diagnosed by the GPs to search for influenza viruses and identify the different influenza strains [10].


  Since the population is made up of patients (individuals) and not person-times, only the cumulative incidence can be calculated. The proportion of ILI cases (or viruses) detected by a week of surveillance can be computed, and this again can be done by opening the dataset from SPSS, as shown in Figure 1.5.
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    Figure 1.5: The dataset in SPSS.

  


  In order to get the cumulative incidence of influenza-like illnesses (ILIs) by week of surveillance, the values in the ILI column should be divided by the values in the Denominator field. To do this with SPSS, scroll down the Transform menu and choose the Compute option. A window will then open (see Figure 1.6). The variables on the left will have to be selected and moved into the Numeric Expression field in the upper right-hand side. They are then divided by using the computational symbols or functions shown in the bottom fields. The name of the target variable (the new column where the incidence results should be displayed) will also have to be typed into the upper left-hand side corner of the window.
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    Figure 1.6: Computing the new variable.

  


  The characteristics of the new column for the incidence, originally called Var, can be modified by clicking on the Variable View sheet from the tool bar on the page. This can either be carried out before or even after computing the incidence with the Transform command as discussed above. The variable names can be modified by double-clicking on them. It is also possible to change the characteristics of the variables, and in this case, the number of visible decimals, since the incidences are very small (see Figure 1.7).
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    Figure 1.7: Variables view.

  


  Going back to the data view sheet, the new outcome column should now be visible, in this case renamed as ILI_incidence (see Figure 1.8) with all the incidences by week of surveillance computed. The same type of calculations can also be carried out to obtain the cumulative incidences of virus isolation in the same population by week.
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    Figure 1.8: The final data view with the ILI incidences.

  


  Calculating incidence and prevalence by using these types of statistical packages can also be quite straightforward in obtaining grouped or stratified measures. In fact, by scrolling through the Transform and Analyse menus, it is quite easy to find many different options based on specific requests. As a bottom line, though, the importance of the quality of the collected data and their source cannot be stressed enough in getting accurate measures of occurrence. That is something that no statistical package can correct nor account for.
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  2. Measures of Association
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    Objectives of the chapter


    
      	To understand the concept of measures of association in different study designs.


      	To be able to calculate relative risk, risk difference, and odds ratio with statistical packages.

    

  


  2.1. Relative risk


  In epidemiology, the concept of relative risk (RR, sometimes called risk ratio) concerns a ratio of the probability (risk) of the event occurring in the exposed group versus the probability of the same event in a non-exposed group.


  
    
      
        
          	
            Exposure

          

          	
            Disease status

          
        


        
          	
            Present

          

          	
            Absent

          
        


        
          	
            Drinking

          

          	
            a

          

          	
            b

          
        


        
          	
            No drinking

          

          	
            c

          

          	
            d

          
        

      
    


    Table 2.1: A 2 by 2 contingency table: cohort study.

  


  We can consider the following contingency table, corresponding to a cohort study, in which one can see the exposure status (i.e., drinking alcohol) on the left entrance, and can categorise the disease status of the participants in the study (present vs. absent) on the upper entrance (Table 2.1).


  From the Table 2.1, the risk of getting the disease for drinkers is a/(a + b). Moreover, the risk of getting the disease for nondrinkers is c/(c + d). The RR is defined as the ratio between the risk of getting the disease for drinkers and the risk of getting the disease for nondrinkers—i.e., [a/(a + b)] / [c/(c + d)]. In this case, the baseline risk of getting the disease comes from the not-exposed group, which can be seen as a reference.


  In a randomized clinical trial (RCT), we can define the rate [a/(a + b)] as experimental event rate (EER), and the rate [c/(c + d)] as the control event rate (CER). If the exposure variable is not dichotomised, but three levels of exposure exist, one can still calculate the RRs, taking one level of exposure as the reference. Looking at Table 2.2, one can calculate the risk of getting the disease for each exposure category.


  
    
      
        
          	
            Exposure

          

          	
            Disease status

          
        


        
          	
            Present

          

          	
            Absent

          
        


        
          	
            Drinking 1-7 beers per week

          

          	
            a

          

          	
            b

          
        


        
          	
            Drinking more than 7 beers per week

          

          	
            c

          

          	
            d

          
        


        
          	
            No drinking

          

          	
            e

          

          	
            f

          
        

      
    


    Table 2.2: A 3 by 2 contingency table.

  


  From this table, the risk of light drinkers getting the disease (1-7 beers per week) is a/(a + b), while the risk for heavy drinkers (> 7 beers per week) is c/(c + d). Finally, the risk for nondrinkers is e/(e + f). Taking the No drinking category as reference, we are able to calculate two separate RRs.


  For heavy drinkers, RR is:
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  For light drinkers, RR is:


  [image: form_02_02.eps]


  An RR over 1 means essentially that the exposure is a potential risk factor for getting the disease, while an RR under 1 indicates that the exposure can be considered a potential protection factor. Finally, a RR equal to 1 means that the exposure does not influence the disease.


  Apart from the point estimate, we also need to calculate the 95% confidence interval (CI) of the RR, with the aim of controlling whether the value 1 is present in the interval. This is important because with a 95% CI containing the value 1, one cannot exclude, with 95% confidence, that the RR found is different from 1 (indifferent factor, B). The other two situations correspond to a 95% CI with both lower and upper limits under 1 (significant protective factor, A) and a 95% CI with both lower and upper limits over 1 (significant risk factor, C) (see Figure 2.1).
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    Figure 2.1: Representation of possible 95% CIs for RR.

  


  The RR can be calculated by hand in the easiest cases, nevertheless regression models (Poisson and Cox regression models) can be used for the purpose if a statistical package is available. Using the Cox regression in particular, an estimate of RR can be calculated—the hazard ratio (HR)—which represents, in a survival analysis, the effect of an explanatory variable on the risk (hazard) of getting a given event. In other words, the HR is the ratio between the predicted hazard for people exposed to a certain factor and that for people not exposed to the factor, with everything else being constant.


  2.2. Risk difference


  The risk difference (RD) can be seen as the absolute difference in the event rates of exposed and not-exposed people. Some Authors define RD as attributable risk for the exposed (ARE), meaning of the portion of the incidence of a given disease in the exposed that is due to the exposure. It can also be intended as the incidence of a disease in the exposed group that would be eliminated if exposure were eliminated. Given the above notation of Table 2.1, the RD can be calculated as:
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  The RD is often calculated essentially because a value of zero indicates there is no difference between exposed and not-exposed rates. Moreover, if the RD is less than zero, this is a situation in which the exposure reduces the risk of the outcome. In a RCT, the RD is also called absolute risk reduction (ARR) if RD < 0, while it is called absolute risk increase (ARI) if RD > 0.


  If the 95% CI of the RD contains the value 0, this means that we are not sure with a confidence of 95% that the RD is different from 0 (indifferent factor, B), while in the other two situations we will have a significant protective (A) or risk (C) factor (Figure 2.2).
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    Figure 2.2: Representation of possible 95% CIs for RD.

  


  2.3. Other measures of attributable risk


  2.3.1. Attributable risk percent


  The attributable risk percent (AR%) represents the percentage of the incidence rate of a given disease in the exposed group that is due (attributable) to the exposure. From the practical point of view, AR% is the proportion of the incidence rate of a disease in the exposed group that could be eliminated if exposure were eliminated. This measure can be calculated by dividing the AR by the incidence rate in the exposed group and then multiplying the product by 100. Considering Table 2.1, the formula is:
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  2.3.2. Population attributable risk


  The population attributable risk (PAR) is interpreted as the portion of the incidence rate of a given disease in the population (both exposed and non-exposed groups) that is attributable to the exposure. It can be interpreted as the incidence rate of a disease in the population (IRP) that could be eliminated if the exposure were eliminated. Considering again Table 2.1, and defining the IRP of a given disease as (a+c)/(a+b+c+d), the formula for PAR is:
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  2.3.3. Population attributable risk percent


  The population attributable risk percent (PAR%) represents the percentage of the incidence rate of a given disease in the population (both exposed and non-exposed) that is attributable to exposure. PAR% is the proportion (percentage) of the incidence of a disease in the population that could be eliminated if exposure were eliminated. From the practical point of view, PAR% is calculated by dividing PAR by the incidence rate in the total population and multiplying the product by 100. Considering Table 2.1, the formula is the following:
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  2.3.4. Odds ratio


  Odds are used to compare the presence (or not) of a given exposure within the same status category (i.e., disease present), both in people with and without a given disease. In a case-control study, as well as a cross-sectional study, one can calculate the odds of exposure for cases (people with a given disease) as well as the odds of exposure for controls (people without a given disease). Using Table 2.3, we can calculate the odds of exposure among cases as a/c, while the odds of exposure among controls are b/d.


  
    
      
        
          	
            Exposure

          

          	
            Disease status

          
        


        
          	
            Cases

          

          	
            Controls

          
        


        
          	
            Drinking

          

          	
            a

          

          	
            b

          
        


        
          	
            No drinking

          

          	
            c

          

          	
            d

          
        

      
    


    Table 2.3: A 2 by 2 contingency table, case-control or cross-sectional study.

  


  The odds ratio (OR) simply represents the ratio between the odds of being exposed among cases and the same odds among controls. In other words:
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  The OR can be interpreted as an estimate of RR. The interpretation of 95% CI for OR is the same for RR.


  2.4. Practical examples


  2.4.1. Example 1


  Relative risk: the context


  A surveillance study of the epidemiology of accidents among users of two-wheeled motor vehicles (scooters, etc.) in two Italian cities—Rome and Naples—was conducted by recruiting the victims of such accidents in the Emergency Departments of two Italian hospitals [1].


  Personal data of the involved person, the circumstances of the accident, the means of arrival at the hospital, the type of vehicles involved, helmet use, any third parties involved, and data on the specific injury diagnosis were collected.


  
    
      
        
          	
            Helmet use

          

          	
            Head injuries

          

          	
            No head injuries

          

          	
            Total

          
        


        
          	
            Yes

          

          	
            171

          

          	
            478

          

          	
            649

          
        


        
          	
            No

          

          	
            4

          

          	
            83

          

          	
            87

          
        


        
          	
            Total

          

          	
            175

          

          	
            561

          

          	
            736

          
        

      
    


    Table 2.4: Percentage of head injuries by helmet use.
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    Figure 2.3: Risk data output using the data of head injuries in unhelmeted and helmeted scooter drivers.

  


  If we want to compare the risk of being injured in a specific body region among helmet users and nonusers, respectively, we can use the relative risk formula. In this case, relative risks (95% CI) are calculated with the aim of estimating an excess risk of being injured in a specific body region in unhelmeted versus helmeted riders. Considering the head injuries, and given that among the 736 injured, 87 were helmeted and 649 were not, we are able to see the results in a 2 by 2 table (Table 2.4).


  With the help of Episheet, we can use the Risk data option to enter the number of head injuries without (exposed, 171) and with (unexposed, 4) the helmet in the white cells, and the total number of unhelmeted (649) and helmeted (87) people (see Figure 2.3).


  Head trauma seems to be influenced by helmet use, with a nearly six-fold increase among nonusers (RR = 5.73; 95% CI = 2.18-15.05). Moreover, one can also observe that the RD is significantly different from 0 (0.22; 95% CI = 0.16-0.27).


  2.4.2. Example 2


  Hazard ratio: the context


  A survival analysis was conducted by Chiusolo et al. to estimate the predictors of time in the relapse and survival of 82 adult acute lymphoblastic leukemia patients [2]. In this analysis, the Authors were interested in quantifying the effect of age on the development of relapse and death. The variable “age” was dichotomised, indicating patients of 60 years and over with a 1 and patients of less than 60 years with a 0.


  With the help of SPSS (available at http://download.edizioniseed.it ), we can use the Leukemia database, and use the Cox Regression Model from the Survival option to get a HR, and specify the time variable Time to relapse and the variable Relapse as status variables (defining the event Relapse equal to 1). In the Covariates box, we insert the grouping variable we are interested in (i.e. age group), comparing patients over 60 vs. patients younger than 60 years (see Figure 2.4).


  
    [image: fig_02_04.jpg]


    Figure 2.4: Cox simple regression model.

  


  As an option, we could ask the software to show the 95% CI of the HR, and after clicking on OK, the output shown in Output 2.1 appears, showing that for patients older than 60 years the risk of getting a relapse is significantly higher (2.4 times) than for patients younger than 60 years (note that Exp(B) in the Cox regression corresponds to HR).


  Variables in the Equation


  
    
      
        
          	

          	
            B

          

          	
            SE

          

          	
            Wald

          

          	
            df

          

          	
            Sig.

          

          	
            Exp(B)

          

          	
            95% CI for Exp(B)

          
        


        
          	
            Lower

          

          	
            Upper

          
        


        
          	
            age6080

          

          	
            .867

          

          	
            .364

          

          	
            5.671

          

          	
            1

          

          	
            .017

          

          	
            2.380

          

          	
            1.166

          

          	
            4.859

          
        

      
    

  


  
    Output 2.1: Partial output of the Cox simple regression model.

  


  If we estimate the HR for mortality according to age group (over 60 vs. under 60), we have to specify the Follow-up time variable and the Dead variable as Status variables (defining the death event equal to 1), and the age6080 variable in the Covariates box. The following output will appear (see Output 2.2), showing that for patients older than 60 years, the risk of getting a relapse is significantly two times higher than for patients younger than 60 years.


  Variables in the Equation


  
    
      
        
          	

          	
            B

          

          	
            SE

          

          	
            Wald

          

          	
            df

          

          	
            Sig.

          

          	
            Exp(B)

          

          	
            95% CI for Exp(B)

          
        


        
          	
            Lower

          

          	
            Upper

          
        


        
          	
            age6080

          

          	
            .716

          

          	
            .349

          

          	
            4.209

          

          	
            1

          

          	
            .040

          

          	
            2.047

          

          	
            1.032

          

          	
            4.057

          
        

      
    

  


  
    Output 2.2: Partial output of the Cox simple regression model.

  


  2.4.3. Example 3


  Odds ratio: the context


  A cross-sectional study can be used for calculating the OR. The example comes from a study carried out in Piedmont by De Renzi et al., in which the Authors investigated whether the gender and age of 844 patients and their reactivity to specific allergens are related to different clinical presentations of IgE-mediated allergic disease [3]. In our analysis, we consider cutaneous symptoms only. To calculate the OR of a cutaneous symptom with SPSS, we open the Allergy file (available at http://download.edizioniseed.it ), use the Crosstabs option in Analyze, insert the Food variable in the row and the Onlycut variable in the column box. Moreover, using the Statistics button, we must check Risk (see Figure 2.5).


  
    [image: fig_02_05.jpg]


    Figure 2.5: Example of calculating OR using the Crosstab option in SPSS.

  


  Output 2.3 shows the SPSS output of the previous commands. The OR for a cutaneous symptom only is 3.50 higher for patients exposed to food. Note the 95% CI of the OR (2.57-4.98) is significant because it doesn’t contain the value 1.


  Crosstab


  
    
      
        
          	

          	
            Only cutaneous symptoms

          

          	
            Total

          
        


        
          	
            .00

          

          	
            1.00

          
        


        
          	
            Food

          

          	
            .00

          

          	
            461

          

          	
            80

          

          	
            541

          
        


        
          	

          	
            1.00

          

          	
            187

          

          	
            116

          

          	
            303

          
        


        
          	
            Total

          

          	
            648

          

          	
            196

          

          	
            844

          
        

      
    

  


  Risk Estimate


  
    
      
        
          	

          	
            Value

          

          	
            95% CI

          
        


        
          	
            Lower

          

          	
            Upper

          
        


        
          	
            Odds ratio for food (.00/1.00)

          

          	
            3.575

          

          	
            2.566

          

          	
            4.980

          
        


        
          	
            For cohort only cutaneous symptoms = .00

          

          	
            1.381

          

          	
            1.255

          

          	
            1.519

          
        


        
          	
            For cohort only cutaneous symptoms = 1.00

          

          	
            .386

          

          	
            .302

          

          	
            .495

          
        


        
          	
            N of Valid Cases

          

          	
            844

          

          	

          	
        

      
    

  


  
    Output 2.3: Output of a Crosstab with the OR calculation using SPSS.

  


  2.4.4. Example 4


  In the following example, we will use the MACH 10 Risk Calculator software for the calculation of RR or PAR. Let us consider the following hypothetical situation of a cohort study that investigates the association between drinking alcohol and pancreatic cancer.


  
    
      
        
          	
            Exposure

          

          	
            Pancreatic cancer

          
        


        
          	
            Present

          

          	
            Absent

          
        


        
          	
            Drinking

          

          	
            15

          

          	
            4,985

          
        


        
          	
            No drinking

          

          	
            5

          

          	
            4,995

          
        

      
    


    Table 2.5: A 2 by 2 contingency table showing the association between alcohol and pancreatic cancer in a cohort study.

  


  The whole population is made of 10,000 people: 5,000 are exposed to alcohol drinking and 5,000 are not. In this cohort, 15 of those exposed and 5 of those not exposed contract pancreatic cancer (Table 2.5).


  Using the MACH 10 Risk Calculator, and using the data presented in Table 2.5, we will get the following output (Figure 2.6).


  
    [image: fig_02_06.jpg]


    Figure 2.6: Partial output of MACH 10 Risk Calculator using data from Table 2.5.

  


  The output presented in Figure 2.7 reveals that:


  
    	Incidence among exposed = 0.003 (3/1,000).


    	Incidence among not exposed = 0.001 (1/1,000).


    	RR = 3.


    	PAR% = 50%.


    	OR = 3.006.

  


  
    [image: fig_02_07.jpg]


    Figure 2.7: Partial output of MACH 10 Risk Calculator showing results of the measures of association.
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    Objectives of the chapter


    
      	To understand a confounding factor.


      	To consider the confounders in study design and statistical analysis.


      	To understand how to control for confounding with an analytical approach (stratification and regression analysis).

    

  


  3.1. What is confounding in epidemiology?


  There is no doubt that confounding can be considered a central issue in epidemiology. According to Pearl [1], confounding is “a causal concept.” A confounding factor is of high interest due to the fact that it can be considered an impediment to learning about genuine causal effects [2].


  The word “confounding” is a Latin expression (cum fundere) that essentially means that two variables—the exposure and the confounding factor—act in a mixed way, giving a distortion (bias) in the measure of association. In other words, considering the effect of the exposure separately could give a distortion of the effect that can be controlled considering the effect of an external variable (confounder) in the mean time (see Figure 3.1). From the epidemiological point of view, the researcher needs to control for these factors with the aim of avoiding a false positive relationship (type 1 error, spurious relation) between the dependent variable and the independent one. To be a confounder, the factor has to present the following characteristics:


  
    	It must be associated with the outcome (and specifically in non-exposed).


    	It must be associated with the exposure.


    	It must not be an effect of the exposure or the outcome.

  


  
    [image: fig_03_01.eps]


    Figure 3.1: Structure of the relationship between exposure, confounder, and outcome.

  


  3.2. Controlling for confounding factors


  The control for confounding factors can happen in two phases of a study: in the preparation of the protocol and at the moment of data analysis.


  3.2.1. Study design


  At this level, the researcher can control possible confounders using one of the following:


  
    	
Randomisation: this happens essentially when conducting a clinical trial and allows the assignment of the patient randomly to the treatments under study. It is essentially an attempt to evenly distribute potential (unknown) confounders in groups under study.


    	
Restriction: this procedure reduces the characteristics of the study participants (i.e., recruiting patients with a cancer at stage 1).


    	
Matching: this procedure allows equal representation of individuals with known confounders in groups being studied.

  


  3.2.2. Data analysing


  After carefully considering the presence of confounders (known and unknown) in the study design, the researcher can possibly control the effect of confounding factors through a:


  
    	Stratified analysis.


    	Multivariate analysis, using regression techniques.

  


  3.3. How to control for confounding factors


  3.3.1. Stratified analysis


  The first way we consider controlling for possible confounders is the stratified analysis, using the Mantel-Haenszel approach and following the steps as specified:


  
    	First, we perform an analysis that gives “crude” values of RR or OR (2 by 2 table).

  


  
    
      
        
          	
            Exposure X

          

          	
            Outcome

          
        


        
          	
            Yes

          

          	
            No

          
        


        
          	
            Yes

          

          	
            a

          

          	
            b

          
        


        
          	
            No

          

          	
            c

          

          	
            d

          
        

      
    

  


  We calculate the crude:


  [image: form_03_01.eps]


  
    	After that, we stratify considering the modality of a categorical variable (more often a dichotomous variable) that could act as a possible confounder:

  


  Modality 1


  
    
      
        
          	
            Exposure X

          

          	
            Outcome

          
        


        
          	
            Yes

          

          	
            No

          
        


        
          	
            Yes

          

          	
            a1

          

          	
            b1

          
        


        
          	
            No

          

          	
            c1

          

          	
            d1

          
        

      
    

  


  We calculate the:


  [image: form_03_02.eps]


  Modality 2


  
    
      
        
          	
            Exposure X

          

          	
            Outcome

          
        


        
          	
            Yes

          

          	
            No

          
        


        
          	
            Yes

          

          	
            a2

          

          	
            b2

          
        


        
          	
            No

          

          	
            c2

          

          	
            d2

          
        

      
    

  


  We calculate the:


  [image: form_03_03.eps]


  
    	Next, we confront the RRs (ORs) within the strata. In the previous example, we compare OR1 with OR2.


    	We conduct a homogeneity analysis between strata. This could be done with a homogeneity (or heterogeneity) test, performed using many statistical packages. If the RRs (ORs) in the strata differ, effect modification is produced rather than confounding (see Box).


    	If the strata are homogeneous, we calculate a weighted estimate of the RR (OR) according the method described by Mantel-Haenszel. In case-control studies, the following formula can be used:

  


  [image: form_03_04.eps]


  
    	Then, compare the Mantel-Haenszel RR(OR) estimate with the crude RR (OR).

  


  
    Effect modification


    In a study, the effect modification appears when the strength of the association is different over separate modalities of a third variable: in other words, when the effect modifier is able to change the effect of the exposure. The effect modifier is said to be an effect of nature, and essentially can be represented by gender, age group, environmental exposure, or genetic profile. In the following example, let us consider the relationship between fat consumption and obesity, stratified by gender.


    [image: fig_03_box1.eps]


    One can find that the crude OR of this association is 1.8. Moreover, one can find for males OR = 1.9, and for females OR = 0.8 in the stratum. In this case, the researcher can say that gender is an effect modifier of the relationship between fat consumption and obesity. Since there is no way to adjust for effect modification, the researcher has to describe the stratum-specific measure of associations.

  


  3.3.2. The multivariate analysis


  In this case, all the following multivariate models can be used depending on the study design:


  
    	Linear regression.


    	Logistic regression.


    	Poisson regression.


    	Cox regression.

  


  While in a stratified analysis one can essentially control for one potential confounder at a time, the multivariable analysis allows the researcher to control for confounding by many variables simultaneously, and this happens because each variable present in the model is interpreted conditionally [3].


  3.4. Practical examples


  3.4.1. Example 1


  The context


  The prevalence rates of obesity in children and adolescents have steadily increased in industrialised countries in the last 20 years. Current rates of obesity range between 6 and 30%. Several studies show that risk factors for weight gain in school age children are strongly linked to low physical activity and family environmental factors (parents’ education and job, number of family members, number of hours spent watching television, etc.). Before planning a nutritional and health educational program, a study was conducted on the nutritional status of the school-age population of the Province of Frosinone in central Italy, and the family factors that infuence it [4].


  In each of the 12 selected schools, a meeting with teachers and students was arranged to discuss the aims and methods of research and to collect informed consent from the students. Each student was interviewed about physical activity and underwent the following measurements: height, weight, bicipital, tricipital, subscapular and over-iliac skinfolds, and sexual development. Students’ parents answered a questionnaire about family structure, parental educational levels and jobs, parental height and weight, and the presence of pathologies such as hypertension or diabetes in the family.


  Is the lack of physical activity associated with obesity in children?


  We can complete a simple 2 by 2 table in which the exposure is the physical activity and the outcome is the status of obesity. In this exercise, we found that physical activity is inversely associated to obesity in children (OR = 0.44; 95% CI = 0.26-0.74). The Authors want to explore the possibility that gender is a confounding factor that influences the relationship between physical activity and obesity in some way, according to the diagram in Figure 3.2.
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    Figure 3.2: Relationship between physical activity, obesity, and gender.

  


  In an effort to control whether the variable gender is a confounder of this association, we can perform a stratified analysis or a multivariate analysis.


  Stratified analysis


  
    [image: fig_03_03.jpg]


    Figure 3.3: How to perform a stratified table analysis.

  


  Using Epi Info software (Analysis; available at http://download.edizioniseed.it ), the first kind of analysis can be conducted using the Tables command in the Statistics folder. In this case, we have to specify the physical activity variable in the exposure variable box, and the obesity variable in the outcome variable box, stratifying by the SexF variable (where modality 1 is used for females, and 0 is for males) (see Figure 3.3).


  After clicking on OK, we will get the 2 by 2 table for men, as shown in Output 3.1.


  Obesity


  
    
      
        
          	
            Weekly physical activity

          

          	
            No

          

          	
            Yes

          

          	
            Total

          
        


        
          	
            < 3 hours Row % Col %

          

          	
            206 84.1 45.2

          

          	
            39 15.9 69.6

          

          	
            245 100.0 47.9

          
        


        
          	
            ≥ 3 hours Row % Col %

          

          	
            250 93.6 54.8

          

          	
            17 6.4 30.4

          

          	
            267 100.0 52.1

          
        


        
          	
            TOTALRow % Col %

          

          	
            456 89.1 100.0

          

          	
            56 10.9 100.0

          

          	
            512 100.0 100.0

          
        

      
    

  


  Single Table Analysis


  
    
      
        
          	
            PARAMETERS: Odds-based

          

          	
            Point Estimate

          

          	
            95% CI

          
        


        
          	
            Lower

          

          	
            Upper

          
        


        
          	
            Odds ratio (cross product)

          

          	
            0.3592

          

          	
            0.1974

          

          	
            0.6536 (T)

          
        


        
          	
            Odds ratio (MLE)

          

          	
            0.3599

          

          	
            0.1935

          

          	
            0.6494 (M)

          
        


        
          	

          	

          	
            0.1851

          

          	
            0.6747(F)

          
        

      
    

  


  
    
      
        
          	
            STATISTICAL TESTS

          

          	
            Chi-square

          

          	
            1-tailed p

          

          	
            2-tailed p

          
        


        
          	
            Chi-square - uncorrected

          

          	
            11.9653

          

          	

          	
            0.0005431879

          
        


        
          	
            Chi-square - Mantel-Haenszel

          

          	
            11.9419

          

          	

          	
            0.0005500291

          
        


        
          	
            Chi-square - corrected (Yates)

          

          	
            11.0048

          

          	

          	
            0.0009099156

          
        


        
          	
            Mid-p exact

          

          	

          	
            0.0002774613

          

          	
        


        
          	
            Fisher exact

          

          	

          	
            0.0004158930

          

          	
        

      
    

  


  
    Output 3.1: Contingency table in the stratum Men.

  


  For women we will get the results shown in Output 3.2.


  Obesity


  
    
      
        
          	
            Weekly physical activity

          

          	
            No

          

          	
            Yes

          

          	
            Total

          
        


        
          	
            < 3 hours Row % Col %

          

          	
            252 92.3 69.2

          

          	
            21 7.7 84.0

          

          	
            273 100.0 70.2

          
        


        
          	
            ≥ 3 hours Row % Col %

          

          	
            112 96.6 30.8

          

          	
            4 3.4 16.0

          

          	
            116 100.0 29.8

          
        


        
          	
            TOTALRow % Col %

          

          	
            364 93.6 100.0

          

          	
            25 6.4 100.0

          

          	
            389 100.0 100.0

          
        

      
    

  


  Single Table Analysis


  
    
      
        
          	
            PARAMETERS: Odds-based

          

          	
            Point Estimate

          

          	
            95% CI

          
        


        
          	
            Lower

          

          	
            Upper

          
        


        
          	
            Odds ratio (cross product)

          

          	
            0.4286

          

          	
            0.1438

          

          	
            1.2775 (T)

          
        


        
          	
            Odds ratio (MLE)

          

          	
            0.4294

          

          	
            0.1236

          

          	
            1.2050 (M)

          
        


        
          	

          	

          	
            0.1047

          

          	
            1.3137 (F)

          
        

      
    

  


  
    
      
        
          	
            STATISTICAL TESTS

          

          	
            Chi-square

          

          	
            1-tailed p

          

          	
            2-tailed p

          
        


        
          	
            Chi-square - uncorrected

          

          	
            2.4383

          

          	

          	
            0.1184059508

          
        


        
          	
            Chi-square - Mantel-Haenszel

          

          	
            2.4320

          

          	

          	
            0.1188801866

          
        


        
          	
            Chi-square - corrected (Yates)

          

          	
            1.7836

          

          	

          	
            0.1817047913

          
        


        
          	
            Mid-p exact

          

          	

          	
            0.0583952322

          

          	
        


        
          	
            Fisher exact

          

          	

          	
            0.0863402871

          

          	
        

      
    

  


  
    Output 3.2: Contingency table in the stratum Women.

  


  In summary, Epi Info provides the information concerning the crude and adjusted estimates of OR, and a useful indication about the difference of the OR between strata (see Output 3.3).


  
    
      
        
          	
            Parameters

          

          	
            Point Estimate

          

          	
            95% CI

          
        


        
          	
            Lower

          

          	
            Upper

          
        


        
          	
            Odds ratio Estimates

          

          	

          	

          	
        


        
          	
            Crude OR (cross product)

          

          	
            0.4428

          

          	
            0.2644.

          

          	
            0.7416 (T)

          
        


        
          	
            Crude OR (MLE)

          

          	
            0.4432

          

          	
            0.2598.

          

          	
            .7351 (M)

          
        


        
          	

          	

          	
            0.2511.

          

          	
            0.7556 (F)

          
        


        
          	
            Adjusted OR (MH)

          

          	
            0.3759

          

          	
            0.2218.

          

          	
            0.6371 (R)

          
        


        
          	
            Adjusted OR (MLE)

          

          	
            0.3743

          

          	
            0.2169.

          

          	
            .6284 (M)

          
        


        
          	

          	

          	
            0.2094.

          

          	
            0.6468 (F)

          
        

      
    

  


  
    
      
        
          	
            STATISTICAL TESTS (overall assoc)

          

          	
            Chi-square

          

          	
            1-tailed p

          

          	
            2-tailed p

          
        


        
          	
            MH Chi-square - uncorrected

          

          	
            14.1082

          

          	

          	
            0.0002

          
        


        
          	
            MH Chi-square - corrected

          

          	
            15.0236

          

          	

          	
            0.0001

          
        


        
          	
            Mid-p exact

          

          	

          	
            0.0001

          

          	
        


        
          	
            Fisher exact

          

          	

          	
            0.0001

          

          	
        


        
          	
            In the following two tests low p values suggest that ratios differ by stratum

          
        


        
          	
            Chi-square for differing odds ratios by stratum (interaction)

          

          	
            0.0773

          

          	

          	
            0.7810

          
        

      
    

  


  
    Output 3.3: Summary information of the stratified analysis.

  


  It can be noted that the Adjusted OR (95% CI) using the Mantel-Haenszel procedure is 0.3759 (95% CI = 0.2218-0.6371).


  The multivariate analysis


  Using the logistic regression approach, we indicate the obesity variable as the outcome variable and the physical activity and gender variables as covariates (Other Variables in the Logistic module in Epi Info). From the Analysis Commands menu, select the Logistic Regression option in the Advanced Statistics folder, as indicated in Figure 3.4.


  
    [image: fig_03_04.jpg]


    Figure 3.4: How to perform a logistic regression analysis.

  


  After clicking on OK, the output of Epi Info for the logistic regression command is the one shown in Output 3.4.


  
    
      
        
          	
            Term

          

          	
            Odds ratio

          

          	
            95%

          

          	
            CI

          

          	
            Coefficient

          

          	
            SE

          

          	
            Z-statistic

          

          	
            P-value

          
        


        
          	
            ATTFISSE

          

          	
            0.3736

          

          	
            0.2204

          

          	
            0.6332

          

          	
            -0.9847

          

          	
            0.2692

          

          	
            -3.6577

          

          	
            0.0003

          
        


        
          	
            SEXF

          

          	
            0.4557

          

          	
            0.2754

          

          	
            0.7541

          

          	
            -0.7860

          

          	
            0.2570

          

          	
            -3.0582

          

          	
            0.0022

          
        


        
          	
            CONSTANT

          

          	
            *

          

          	
            *

          

          	
            *

          

          	
            -1.6773

          

          	
            0.1690

          

          	
            -9.9228

          

          	
            0.0000

          
        

      
    

  


  
    Output 3.4: Unconditional logistic regression: Epi Info output.

  


  In this case, we can observe that the presence of physical activity is a protective factor of obesity, after controlling for the presence of gender as a possible confounder. In other words, the OR of 0.3736 is the effect estimate of the exposure to physical activity adjusted for gender. Note that this estimate is similar to that shown by the stratified analysis (ORMH = 0.3759).


  3.4.2. Example 2


  The context


  The second example concerns a study published by Narducci et al. [5], where telomerase activity both in circulating polymorphonuclear neutrophils (PMN) and in PMN isolated directly from coronary atherosclerotic plaques was evaluated in 26 patients with angina. The analysis is restricted to patients with unstable angina. In particular, we want to study the relationship between telomerase activity (ln: natural logarithm) in polymorphonuclear neutrophils obtained by atherosclerotic plaques and the time interval (h) between the last anginal episode and PMN sampling during percutaneous coronary intervention (PCI). Using the SPSS file telomerase.sav (available at http://download.edizioniseed.it ), one can plot this relationship using the single scatter plot command (see Figure 3.5). The resulting graph is shown in Figure 3.6.The relation between these two variables can be described by a simple linear regression model. To realise that, using the Regression module, we could use the Linear regression option, indicating the telomerase activity (ln) variable as dependent and the Timing of PCI variable as independent (see Figure 3.7). The results are presented in Output 3.5. One can note that the beta coefficient of the independent variable has a negative value (inverse association). The R2 of the model is 0.397.


  
    [image: fig_03_05.jpg]


    Figure 3.5: Performing a simple scatter plot.

  


  
    [image: fig_03_06.eps]


    Figure 3.6: Inverse correlation between telomerase activity (ln = natural logarithm) in PMN obtained by atherosclerotic plaques and the time interval (h) between the last anginal episode and PMN during PCI.

  


  
    [image: fig_03_07.jpg]


    Figure 3.7: Performing a simple linear regression analysis.

  


  To adjust for possible confounders, a multiple linear regression model can also be performed. In this analysis, the following variables can be used in the model: age, gender, and diabetes mellitus (see Figure 3.8). The results of this analysis are presented in Output 3.6. The beta coefficient of the Timing of PCI variable is adjusted considering the other covariates (potentially confounding factors) simultaneously in the model. The R2 of this model is much improved (0.600).


  
    [image: fig_03_08.jpg]


    Figure 3.8: Performing a multiple linear regression analysis.

  


  Model Summary
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