

[image: Ansible For Windows By Examples]

 Ansible For Windows By Examples

 30+ Automation Examples For Windows System Administrator And DevOps

 Luca Berton

 This book is for sale at http://leanpub.com/ansibleforwindowsbyexamples

 This version was published on 2022-04-08

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2022 Luca Berton

 ISBN for EPUB version: 978-80-908536-1-4

 ISBN for MOBI version: 978-80-908536-2-1

Introduction

This book provides an introduction to the Ansible language.

Ansible is a popular open source IT automation technology for scripting applications in a wide variety of domains.

It is free, portable, powerful, and remarkably easy and fun to use.

This book is a tool to learn the Ansible automation technology with some real-life examples.

Whenever you are new to automation or a profession automation engineer, this book’s goal is to bring you quickly up to speed on the fundamentals of the core Ansible language.

Every successful IT department needs automation nowadays for bare metal servers, virtual machines, cloud providers, containers, and edge computing. Automate your IT journey with Ansible automation technology.

I’m going to teach you example by example how to accomplish the most common System Administrator tasks.

You are going to start with the installation of Ansible in Windows 10 and Windows 11 and use the most command package manager and archives.

Each of the 30+ lessons summarizes a module: from the most important parameter to some live demo of code and real-life usage. Each code is battle proved in the real life. Console interaction and verification are included in every video. A mundane activity like installing software, verifying a system is up-to-date, rebooting a server, installing Google Chrome, copying files from local controller to a remote system, could be automated with some lines of code and these are only some of the long lists included in the course.

There are some Ansible codes usable in all the Windows systems and some specific for Windows Server.

The Ansible troubleshooting lessons teaches you how to read the error message, how to reproduce, and the process of troubleshooting and resolution.

Are you ready to automate your day with Ansible?

Whois Luca Berton

I’m Luca Berton and we’re going to have a lot of fun together.

First of all, let me introduce myself.

I’ve been Ansible Technical Support Engineer of Red Hat, based in the Czech Republic, even if I’m Italian.

I’ve been more than 15 years System Administration, working with infrastructure, either on-premise or on the major cloud providers.

I’m an enthusiast of the Open Source support the community by sharing my knowledge in different events of public access.

I’m also a co-founder of my hometown Linux Users Group, visited by Richard Stallman, the founder of the Free Software Movement.

I consider myself a lazy person so I always try new ways to automate the repetitive task of my work.

After years of Perl, Bash, and python scripting I landed in Ansible technology. I took the certification and worked for more than a year with the Ansible Engineer Team.

I consider Ansible the best infrastructure automation technology nowadays, it’s human-readable, the learning curve is accessible, and very requested by the recruiters in the market.

This ultimate guide contains all of the obvious and not-so-obvious solutions using Ansible automation.

In every lesson of this course, I’m going to share with you one specific use case, the possible solution, the code, the execution, and the verification of the target system.

All these solutions are battle-tested and used by me in my everyday automation.

You could easily jump between lessons and review again all the times that you need.

Awards & Recognition

2022

 	
Ansible Anwendertreffen - From Zero to Hero: How to build the Ansible Pilot Community - by Luca Berton (Red Hat CZ) 15:15 - 16:00 15 Feb 2022

 	
Red Hat Ansible Playbook included in RHSB-2021-009 Log4Shell - Remote Code Execution - log4j (CVE-2021-44228) 12 Jan 2022

 	
AWS Tip Set sysctl kernel parameters — Ansible module sysctl 12 Jan 2022

 	
The Ansible Bullhorn #41 - A Newsletter for the Ansible Developer Community 7 Jan 2022

2021

 	
The Ansible Bullhorn #34 - A Newsletter for the Ansible Developer Community 17 Sep 2021

The course is going to keep track of the evolution of the Ansible technology adding more content whenever is needed.

Are you ready to have fun?

Ansible For Beginners With Examples

In this chapter you’re going to discover the Ansible Basics, Architecture and Terminology.

What is Ansible

In this chapter, I’ll explain to you what is Ansible and why it is so powerful for your IT department.

Ansible

 	Infrastructure Automation tool

 	Open Source infrastructure as code

First of all, let’s begin our adventure with the fabulous Open Source technology named Ansible. It is classified as an Infrastructure Automation tool, so you could automate your System Administrator tasks very easily. Infrastructure as code is the process of managing and provisioning computer data centers through machine-readable definition files, rather than physical hardware configuration or interactive configuration tools. Ansible follows the DevOps principles. With Ansible you could deploy your infrastructure as code on-premise and on the most well-known public cloud provider.

Ansible three Use Cases

 	Provision

 	Config management

 	Application deployment

The three main use cases of Ansible are provision, configuration management, and app deployment. But after touching the technology I’m sure you could invent some more ways to use it!

Provisioning

 	The process of setting up the IT infrastructure

Let’s start talking about provisioning: all the System Administrator know how important is to manage a uniform fleet of machines. Some people still rely on software to create workstation images. But there is a drawback, with imaging technology you’re only taking a snapshot in time of the machine. So every time you need to reinstall software because of the modern key activation systems or update manually to the latest security patches. Ansible is very powerful to automate this process being able to create a more smooth process.

Configuration management

 	The process for maintaining systems and software in a desired and consistent state

The second key use case is “configuration management”: maintain up-to-date and in a consistent way all your fleet, coordinating rolling updates and scheduling downtime. With Ansible you could verify the status of your managed hosts and take action in a small group of them. A huge variety of modules is available for the most common use cases. Not to mention the common use case to check the compliance of your fleet to some international standard and apply resolution plans.

Application deployment

 	The process to publish your software between testing, staging and production environment

The third key use case where Ansible is useful is Application deployment. It could automate the continuous integration / continuous delivery workflow pipeline of your web application for example. Your DevOps team will be delighted!.

Ansible in DevOps

Ansible is used to apply the DevOps principles in worldwide organizations. Let me quickly summarize.
DevOps is a set of practices that combines software development (Dev) and IT operations (Ops). As DevOps is intended to be a cross-functional mode of working, those who practice the methodology use different sets of tools referred to as “toolchains” rather than a single one. These toolchains are expected to fit into one or more of the following categories, reflective of key aspects of the development and delivery process. The seven categories:
Code: code development and review, source code management tools, code merging.
Build: continuous integration tools, build status.
Test: continuous testing tools that provide quick and timely feedback on business risks.
Release: artifact repository, application pre-deployment staging.
Deploy: change management, release approvals, release automation.
Operate: infrastructure configuration and management, infrastructure as code tools.
Monitor: applications performance monitoring, end-user experience.

Four key tenets of Ansible

1. Declarative
You declare what you want rather than how to get to.

2. Agentless
You don’t need to install an agent. It takes advantage of OpenSSH.

3. Idempotent
An operation could be run multiple times without changing beyond the initial operation.

4. Community driven
Published in Ansible Galaxy as collections and roles.

The four key tenets of ansible are: declarative, agentless, idempotent, and community-driven. With “declarative” it means that you could use in a way very similar to a programming language apply sequencing, selection, and iteration to the code flow. With “agentless” it means that you don’t need to install and update any agents on the target machine, it uses the SSH connection and python interpreter. The language itself is “idempotent”, which means that the code will check a precise status on the managed machine. It means that for example the first time your code will change something, the following runs it only verify that nothing changed and move forward. The last tenet is “community-driven”, which means that exists a public archive called “Ansible Galaxy” where you could download the code made by other open source contributors. This code is organized in roles and collections, but we’ll see it in the future.

Ansible six values

 	Simple

YAML human readable automation.

 	Powerful

Configuration management, workflow orchestration, application deployment.

 	Cross-platform

Agentless support for all major OS, physical, virtual, cloud and network.

 	Work with existing tools

Homogenize existing environment.

 	“batteries included”

Come bundled with 750+ modules.

 	Community powered

Download \250k/months
People \3500 contributors, 1200 users on IRC.

Now let’s talk about the six values of Ansible. The first is that is “simple: the code is written in YAML language, that is a human-readable data serialization language. It is well known and easy to learn, it is commonly used for configuration files and in applications where data is being stored or transmitted. Ansible is Powerful, it is battle-tested as Configuration management, workflow orchestration, application deployment. The third value is “cross-platform” by nature, the Agentless support for all major Operating Systems, physical, virtual, cloud, and network provider. Another value of Ansible is that it works with existing tools, it easy to homogenize the existing environment. The “batteries included” means that Ansible included bundled more than 750 modules to automate the most common tasks. The last value is that Ansible is “community-powered”, every month has more than 250000 downloads, an average of 3500 contributors, and more than 1200 users on IRC.

Ansible history

 	2012

Developed by Michael DeHaan

 	2015

Acquired by Red Hat

 	2016

AnsibleFest events

 	2020

Red Hat Ansible Automation Platform 1.0

 	2021

Red Hat Ansible Automation Platform 2.1

The main events in Ansible history are the following.
The first release of Ansible was public on the 20th of February 2012. The Ansible tool was developed by Michael DeHaan. Ansible Inc., originally AnsibleWorks Inc., was the company set up to commercially support and sponsor the project.
On the 16th of October 2015 Red Hat acquired Ansible Inc., and evaluate Ansible as a “powerful IT automation solutions” designed to help enterprises move toward friction less IT.
AnsibleFest is an annual conference of the Ansible community of users, contributors since 2016 in London and the USA.

Ansible & Ansible Tower & Ansible Automation Platform

 	Ansible

Community driven project fast-moving innovations Open Source but only command line tools.

 	Red Hat Ansible Tower / Ansible Automation Platform

It is a framework designed by RedHat. It provides a web UI to manage your infrastructure.

Ansible is a community-driven project with fast-moving innovations Open Source but only command-line tools.
Enterprise needs more services and some stable releases. For example, they need an SLA for support. Red Hat offers this service to companies namely under the Ansible Tower umbrella, now re branded as Ansible Automation Platform.
Ansible Tower is a REST API, web service, and web-based console designed to make Ansible more usable for IT teams with members of different technical proficiency and skill-sets. It is a hub for automation tasks. The tower is a commercial product supported by Red Hat Inc. but derived from AWX upstream project, which is open source since September 2017.
Red Hat maintains also Ansible Engine. With Ansible Engine, organizations can access the tools and innovations available from the underlying Ansible technology in a hardened, enterprise-grade manner. Ansible Engine is developed by Red Hat with the explicit intent of being used as an enterprise IT platform.

Getting Started

In this chapter, I’ll explain you how to move the firsts steps with Ansible technology. How to connect to the managed hosts and how to execute some simple tasks using the command line.

Ansible architecture

Let’s Begin a talking about Ansible architecture. The node where Ansible is actually installed is called “control node” and it manages all your fleet of nodes. The controlled node on the other hand is called “managed node”. The target nodes could be Linux, Mac, Windows and several network equipment. Each target has some specificity like different Linux distribution and module usage. We will discuss of the specificity the in the next sections.

Connection with managed nodes

The connection between “control node” and “managed nodes” is managed by SSH protocol without any requirement of specific client on the target machine. Other competitor require a client software often called “agent”. With SSH connection the only requirements are a username and a certificate to access the target machine. There are some way to automate also this first script step. After completing SSH connection another requirement is “python” interpreter, witch come out-of-the-box for modern operating systems. By default Ansible uses SFTP to transfer files but you could switch to SCP in configuration. The Windows target could be connected using WinRM technology and uses PowerShell as interpreter.

Create a basic inventory

 	/etc/ansible/hosts

 1 host1.example.com

 	default inventory file /etc/ansible/hosts

 	“host1.example.com” is a managed host

The list of managed hosts is stored in /etc/ansible/hosts. In this example it contain only one host named host1.example.com.

Run your first Ansible command

 1 $ ansible all -m ping
2 host1.example.org | SUCCESS => {
3 "ansible_facts": {
4 "discovered_interpreter_python": "/usr/bin/python"
5 },
6 "changed": false,
7 "ping": "pong"
8 }

 	“ping” module executed on “all” hosts

 	“host1.example.com” replied with a success code

Now we’re ready to run your first Ansible command. The Ansible command is called module in Ansible slang. The first line executed Ansible ping module on all hosts. The response is a pong. Please note that this means that Ansible is able to connect with SSH username, identify using public key and execute the local python executer. So it’s completely different from any ping in networking.

Run ad-hoc command on Ansible

 1 $ ansible all -a “/bin/echo hello”
2 host1.example.org | CHANGED | rc=0 >>
3 hello

 	“/bin/echo hello” command executed on “all” hosts

 	“host1.example.com” replied with a changed code and print “hello” on standard output

Ansible could also execute some command on the target host and report the status on the console of “control node”. In this example “/bin/echo hello” command was executed on “all” hosts. “host1.example.com” replied with a changed code and print “hello” on standard output. Please note that you would receive a “changed” state every time you run a command on the remote machine.

Run ad-hoc command with privilege escalation on Ansible

 1 $ ansible all -m ping -u devops --become
2 host1.example.org | SUCCESS => {
3 "ansible_facts": {
4 "discovered_interpreter_python": "/usr/bin/python"
5 },
6 "changed": false,
7 "ping": "pong"
8 }

 	“ping” module executed on “all” host as user “root” after login with user “devops”

 	“host1.example.com” replied with a changed code and print “hello” on standard output

In this example I run the “ping” module against “all” host as user “root” after login with user “devops”. “host1.example.com” replied with a changed code and print “hello” on standard output.

Recap

In this module we learned the basic concept of Ansible architecture, how to write the list of managed hosts and how to execute some simple commands against it.

Inventory

In this chapter, I’ll explain to you what is an Ansible inventory, why do you need, the different types how to edit and use it in your day to day journey.

 1 An inventory is the set of hosts Ansible could work again\
2 st.
3 They could be categorized as groups/patterns.

The list of multiple hosts managed by Ansible is called “inventory”. It is fundamentally the list of nodes or hosts in your infrastructure at the same time, using a list or group of lists known as inventory. You could organize your inventory with “groups” or “patterns” to select the hosts or group you want Ansible to run against.

 	“all” keyword

 1 the keyword all includes all hosts of the inventory, exce\
2 pt localhost

The special keyword “all” include all the hosts of the inventory used. It will be very useful in the following lessons. The only exception is localhost that you need to specify.

Simple INI inventory

 	./ini_simple_inventory

 1 one.example.com
2
3 [webservers]
4 two.example.com
5 three.example.com

 	file name: ini_simple_inventory

 	“one.example.com” is ungrouped

 	“two.example.com” and “three.example.com” are grouped as “webserver”

The simplest inventory type is the INI inventory, by the type of the file. The default location is “/etc/ansible/hosts” but you could use your customized with “-i” parameter. In this example host “one.example.com” is ungrouped and “two.example.com” and “three.example.com” are grouped as “webserver”.

Simple YAML inventory

 	./simple_yaml_inventory.yml

 1 ---
2 all:
3 hosts:
4 one.example.com:
5 children:
6 webservers:
7 hosts:
8 two.example.com:
9 three.example.com:

 	file name: inventory.yml

 	“one.example.com” is ungrouped

 	“two.example.com” and “three.example.com” are grouped as “webserver”

You could express the same inventory using YAML syntax In this example In this example host “one.example.com” is ungrouped and “two.example.com” and “three.example.com” are grouped as “webserver”.

Add ranges of hosts

 	./ini_range_inventory

 1 [webservers]
2 www[01:99].example.com
3
4 [databases]
5 db-[a-f].example.com

 	“webservers” group contains all hosts from www01.example.com to www99.example.com

 	“Databases” group contains all hosts from db-a.example.com to db-f.example.com,

Group members could be defined also using ranges by numbers or letters. In the range by numbers you could also specify a stride the increment between a sequence of number. In this INI example “webservers” group contains all hosts from “www01.example.com” to “www99.example.com”. “databases” group contains all hosts from “db-a.example.com” to “db-f.example.com”.

Host in multiple groups

 	./ini_groupsmultiple_inventory

 1 one.example.com
 2
 3 [webservers]
 4 two.example.com
 5 three.example.com
 6
 7 [prod]
 8 two.example.com
 9
10 [dev]
11 three.example.com

 	hosts “two.example.com” and “three.example.com” are present in multiple groups

Hosts could be present in multiple groups. In this INI example hosts “two.example.com” and “three.example.com” are grouped as “webserver”. “two.example.com” is present in “webserver” as well as “prod” group.
“three.example.com” is present in “webserver” and “dev” group.

Host variables

 	./ini_hostinventory

 1 [webservers]
2 localhost ansible_connection=local
3 one.example.com ansible_connection=ssh ansible_user=devops
4 two.example.com ansible_connection=ssh ansible_user=ansib\
5 le

 	Customization of “ansible_connection” and “ansible_user” variables

In inventory you might would like to store variable values that relate to a specific host or group. This example scenario is common because it defines different connection with different hosts. For example to use “local” connection for the localhost and “ssh”, default, for all the other hosts. For each hosts you could customize also the login user “devops for “one.example.com” and “ansible” for “two.example.com”.

Group variables

 	./ini_groupsvariables_inventory

 1 [webservers]
2 one.example.com
3 two.example.com
4
5 [webservers:vars]
6 ntp_server=europe.pool.ntp.org

 	./inventory.yml

 1 ---
2 webservers:
3 hosts:
4 two.example.com:
5 three.example.com:
6 vars:
7 ntp_server: europe.pool.ntp.org

As well as per single host is possible to define group variables. This two inventory files in the example (INI and YAML format) the variables “ntp_server” has assigned the value “europe.pool.ntp.org” for all the hosts of the group.

Inheriting variable values

 	./ini_variableinheriting_inventory

 1 [asia]
 2 host1.example.com
 3
 4 [europe]
 5 host2.example.com
 6
 7 [webserver:children]
 8 asia
 9 europe
10
11 [webservers:vars]
12 ntp_server=europe.pool.ntp.org

 	./variableinheriting_inventory.yml

 1 ---
 2 children:
 3 webservers:
 4 children:
 5 asia:
 6 hosts:
 7 host1.example.com:
 8 europe:
 9 hosts:
10 host2.example.com:
11 vars:
12 ntp_server: europe.pool.ntp.org

Hosts and group could be combined together. In this example the group “webserver” has two members “asia” and “europe”. This two elements are defined as a single host “host1.example.com” and “host2.example.com”, respectively, but could contains more hosts as well. “ntp_server” variables is defined at “webservers” level. So in the end “ntp_server” variable is available for “webserver”, “asia” and “europe” group. “ntp_server” variable is available as well in “host1.example.com” and “host2.example.com” hosts.

Use multiple inventory sources

 1 $ ansible-playbook playbook.yml -i production -i developm\
2 ent

 	Execute ansible playbook named “playbook.yml” against “production” and “development”

Is possible to use multiple inventory files for each execution. In this example is going to be executed ansible playbook named “playbook.yml” against “production” and “development” inventories.

localhost inventory

 	./ini_local_inventory

 1 localhost ansible_connection="local"

 	file name: inventory

 	/etc/ansible/hosts default

One special case in inventory is with localhost. You need to specify the connection type as “local”, otherwise Ansible presume to use the default SSH connection.

Recap

Now you know more about Ansible INI and YAML inventory files, host and group variable.

Playbook

In this chapter, I’ll explain to you what is an Ansible Playbook and why do you need. We’ll cover how to start with a simple playbook, from the basic syntax and how to add more tasks.

 1 A playbook is a set of play to be executed against an inv\
2 entory.

YAML syntax

 1 # This is a YAML comment
 2 some data # This is also a YAML comment
 3
 4 this is a string
 5 'this is another string'
 6 "this is yet another a string"
 7
 8 with_newlines: |
 9 Example Company
10 123 Main Street
11 New York, NY 10001
12
13 without_newlines: >
14 This is an example
15 of a long string,
16 that will become
17 a single sentence.
18
19 yaml_dictionary: {name1: value1, name2: value2}
20
21 yaml_list1:
22 - value1
23 - value2
24 yaml_list2: [value1, value2]

Every playbook is based on YAML syntax so the file is easy and human readable. YAML is a text format and you could easy recognize by the presence of the three dash symbols at the beginning and three dots in the end. The three dots are not mandatory so a lot of people simply omit them. This file type is very sensitive to spacing between elements. It’s strictly important that elements of the same level are in the same indentation, despite some programming languages. You could use the symbol “#” for comments, even on the lines with some previous code. String are very important and you could specify directly or with single or double quote. I recommend you to use a double quote as a general rule. Using the pipe and major statement you could define multi-line strings. The first statement will keep the newlines, the second not. Others useful data structures are dictionaries and lists that you could see in action in the grayboard.

helloworld.yml

 	helloworld.yml

 1 ---
2 - name: Hello World sample
3 hosts: all
4 tasks:
5 - name: Hello message
6 ansible.builtin.debug:
7 msg: "Hello World!"
8 ...

 1 file name: helloworld.yml
2 Name of the playbook
3 Hosts of execution
4 List of tasks
5 One task named “Hello message”
6 Module ansible.builtin.debug
7 Argument “msg” of module debug

This is the output of the execution of the “helloworld.yml”. I’d like you to note the command used is “ansible-playbook”. The first parameter is the inventory file and the second is the playbook.
In this execution the play is executed against the “host1.example.com” node. The output is very clear of the step by step execution. When the command is successful the output is highlighted with green color. A warning will be presented in orange and an error in red. The most attent of you have noticed an extra task executed called “Gathering Facts” that is performed by Ansible to acquire some information of the managed node. We’ll discuss more about facts gathering in the following lesson. Try by yourself the execution of this code and become confident with this output summary. It will be very useful. Two tasks are being executed.

Tip1: ansible-playbook –check option

 1 $ ansible-playbook -i inventory --check helloworld.yml
 2 PLAY [Hello World sample] *******************************\
 3 ***\
 4 ***********
 5 TASK [Gathering Facts] **********************************\
 6 ***\
 7 ********
 8 ok: [host1.example.com]
 9 TASK [Hello message] ************************************\
10 ***\
11 ******
12 ok: [host1.example.com] => {
13 "msg": "Hello World!"
14 }
15 PLAY RECAP **\
16 ***
17 host1.example.com : ok=2 changed=0 unreachabl\
18 e=0 failed=0 skipped=1 rescued=0 ignored=0

A very useful option of “–check” for ansible-playbook command. This option to perform a dry run on the playbook execution. This causes Ansible to report what changes would have occurred if the playbook were executed, but does not make any actual changes to managed hosts.

Tip2: debug day-to-day usage

 	helloworld_debug.yml

 1 ---
2 - name: Hello World sample
3 hosts: all
4 tasks:
5 - name: Hello message
6 debug:
7 msg: "Hello World!"
8 verbosity: 2
9 ...

 1 file name: helloworld_debug.yml
2 Name of the playbook
3 Hosts of execution
4 List of tasks
5 One task named “Hello message”
6 Module debug
7 Argument “msg” of module debug
8 Argument “varbosity” is “2”

This tip allow you to keep the debug code in your playbook and enable the execution only when you need. For example the message is printed only when Ansible is invoked with output level two.

helloworld_debug.yml - execution - part 1

 1 ansible-playbook -i inventory helloworld_debug.yml
 2 PLAY [Hello World sample] *******************************\
 3 ***\
 4 ***********
 5
 6 TASK [Gathering Facts] **********************************\
 7 ***\
 8 ********
 9 ok: [host1.example.com]
10
11 TASK [Hello message] ************************************\
12 ***\
13 ******
14 skipping: [host1.example.com]
15
16 PLAY RECAP **\
17 ***
18 host1.example.com : ok=1 changed=0 unreachabl\
19 e=0 failed=0 skipped=1 rescued=0 ignored=0

