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    In the 21st century, depleting fossil fuel resources and environmental concerns have created huge challenges in meeting adequate energy production and storage. Undoubtedly, the ground-breaking nanotechnology may be the only solution to meet the demands of mankind in the future by producing a secure, green and sustainable energy. Carbon-based and other advanced functional nanomaterials have enormous potential to produce and save energy through effective and sustainable approach, and also to support suitable applications in the field of opto- and bio-electronics.


    This unique book by the editors (Dr. Manik and Dr. Sahoo), comprising about fifteen chapters presents an excellent overview and current state-of-the-art future generation nanostructured materials like carbon nanotubes, carbon nano onions, nanowires, graphene, 2D boron nitride, metal oxides, quantum dots, metal organic frameworks (MoFs) etc. and their respective nanocomposites. Such materials find great applications with regard to efficient storage of energy like solar, hydrogen and electrochemical energy. These materials find enormous applications in fuel cells, supercapacitors, bio-sensors and opto-electronic nano-devices, ferroelectric liquid crystal nanocomposites for optical memory, future display devices and electronics. Considering these aspects, I believe that the book shall find great use in the scientific and engineering community.


    It is notable that the book chapters have been contributed by several researchers from premier institutes who carry extensive experience and knowledge in the relevant fields. Further, the book is well edited, quite consistent and focused on enrichment of the knowledge of the readers. This is an excellent masterpiece for students, academics and industry researchers.


    This book shall, therefore, be an impactful addition in the area of application of next generation nanomaterials in the field of energy storage and electronics. The reported work will be important to many groups of researchers and industry experts across the globe, including, but not limited to, those working in materials science, chemical engineering, biotechnology, polymer science, physics, chemistry and renewable energy.
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    Nanotechnology is one of the research areas most focused on the development of a new class of nanomaterials that offer enhanced material or product performance by exploiting synergism. Due to the growing demand in the area of energy and electronics, nanomaterials and their hybrids have shaped the research in the relevant fields with remarkable attention as advanced multifunctional materials with desired efficiency, higher durability and improved stability.


    Currently, the applications of nanomaterials in the field of energy harvesting, storage and opto-electronics are booming, which has resulted in an upsurge in the number of publications, patents and technology transfers worldwide. Despite this, relatively only a few books have focused on nanomaterials applied to energy and electronics. Therefore, the editors found it an opportunity to edit a book on “Current and Future Developments in Nanomaterials: Applications in Energy Storage and Electronics”. We hope that the present book will immensely benefit scientists, engineers, academic researchers, research scholars and post graduate students working in the area of nanomaterials. This book consists of 15 chapters that describe the recent advancements in synthesis and applications of nanomaterials in energy harvesting and storage, and also technology in the field of opto-electronics for next generation devices. Some of the chapters summarize the recent progress in applications of nanomaterials like Carbon Nanotubes, Metal Oxides, and Graphene oxides-based hybrids in solar energy harvesting using recent Photovoltaic Technologies. Similarly, some of the chapters review the fundamentals and state-of-the-art developments in Nanowires, Graphene Quantum Dots, Boron nitrides, Carbon Nano Onions and Metal Organic Frameworks leading to the fabrication of Supercapacitors, Bio-sensors, Lithium ion batteries and Hydrogen storage applications. Further, a few chapters discuss the next generation fuel cells using Polymer Nanocomposites, Ferroelectric Liquid Crystal Nanocomposite and Opto-electronic Nanomaterials for optical memory and displays devices.


    The editors are extremely thankful to the esteemed and experienced contributors of all chapters and also the Bentham Science Publishing team for their kind support. We hope that the content presented herewith in a simple and concise form shall serve as a comprehensive guide to benefit the readers and elevate their knowledge in this increasingly advancing area.
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      Abstract


      Carbon nanotubes (CNTs) and their nanocomposites are used in various products and technologies due to their unique characteristics. For their future implementation, the manufacturing of CNTs with appropriate specifications has gained momentum in the area of nanoscience and technology. Conventional phase change materials used in solar thermal energy storage have low thermal conductivity. CNTs are used to prepare phase change materials with high thermal conductivity to solve this issue. This chapter addresses the synthesis, structure, and properties of CNTs. The different varieties of solar energy storage systems used to store solar radiation are also discussed. Further, we explain the phase change materials (PCMs) as suitable solar thermal energy storage systems and discuss the methods to prepare CNT-based nanomaterials for use as a heat transfer fluid (HTF) after using the CNTs based PCMs in solar storage systems. CNT based nanomaterials as a heat transfer fluid significantly increase the effective receiving efficiency, thermal conductivity, and absorption coefficient of such storage systems.
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      INTRODUCTION


      The production of renewable energy, consumption, and storage are major global challenges for researchers [1-3]. Solar energy devices that convert solar energy directly into electrical energy are called solar cells [4, 5]. There are significant


      research and development efforts underway to improve the device efficiency and lower the fabrication cost [3, 4, 6-8]. Photovoltaic devices are already used in the current era, but the devices suffer from insufficient durability and higher expense for fabrication. Further, solar energy production is mainly dependent on weather conditions; that is why solar power generation is irregular and unpredictable. Moreover, the energy requirement is considerably high in the daytime, and solar energy is available only for a small number of hours, creating the problem of maintaining a balance between the requirement and supply [9]. These two factors are the driving force behind the development of efficient solar energy storage devices, which may help reduce the fluctuation arising from the generation side and provide the possibility of performing auxiliary services. Energy storage systems are thus increasingly reducing the mismatch between need and supply and improving the work capability and reliability of energy systems which play a crucial role in conserving the produced energy [10, 11]. The conventional mechanism of the solar energy storage device is to convert the solar energy into electrical energy through solar panels and then store it in batteries, but it suffers from the issue of high manufacturing costs. In recent years, some research groups have introduced phase change materials (PCMs) as an alternative method for solar energy storage [12]. Since then, the developments of phase-change materials have become a hot research topic. The solar thermal energy storage devices are fabricated using PCMs due to their excellent stable form during phase transition.


      In this method, the solar energy is converted into thermal energy using the PCMs and stored in a storage tank, which acts as a thermal battery [12-14]. Nanotechnology is an important field in the development of modern technology and attracts researchers in all fields. Carbon nanotubes are prime members of the research and development in nanotechnology. CNTs are classified into two categories (Fig. 1) based on a number of layers present in the structure; (1) single-walled carbon nanotubes (SWCNTs) and (2) multi-walled carbon nanotubes (MWCNTs). The physicochemical properties are shown in Table 1. CNTs possess high thermal, mechanical, and electrical characteristics, making them suitable for developing smart composite materials used in energy storage devices, field emitters, sensors, and so on [15]. This chapter deals with CNT-based nanomaterials, their synthesis, properties, and applications in solar energy storage devices. CNTs have been used in various technologies, depending on their attractive electrical, mechanical, and thermal properties [16]. They are primarily used in electronics [19], transistors, and display technologies, owing to their electrical properties [20, 21].
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Fig. (1))

      Conceptual diagram of SWCNTs and MWCNTs; Reprinted with copyright permission from Ref [17, 18].
    


    
      

      CARBON NANOTUBES


      Carbon nanotubes contain sp2 hybridisation and assume different structures with graphite as a well-known example. Graphene is a 2-dimensional (2D) single layer of graphite in the list of carbon nanomaterials. Graphene is stronger than diamond because it contains sp2 hybridisation, which is stronger than sp3 hybridisation in a diamond.


      The sp2 hybridized carbon can form open and closed cages with honeycomb structures [22] and Kroto et al. [23] discovered such kinds of structures. Carbon nanotubes are large molecules of pure carbon that are long, thin and tube-like, about 1-3 nanometres in diameter, and hundreds to thousands of nanometres long.


      
        Table 1 Physiochemical properties of SWCNTs and MWCNTs.
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      The various types of carbon cage structures were studied long back when Iijima [24] first observed the tubular carbon (tube-like structure) structure in 1991. In carbon nanotubes, the carbon molecules are cylindrical and have unique electrical, thermal and mechanical properties that make carbon nanotubes suitable for use in different areas. The carbon nanotubes consist of up to several tens of graphite shells collectively known as multi-walled carbon nanotubes (MWCNTs) with a large length/diameter ratio. The diameter of carbon nanotubes being ~ 1.0 nm and the separation between the two adjacent shells being ~ 0.34 nm. After two years, Iijima, Ichihashi [25] and Bethune et al. [26] synthesised the single-walled carbon nanotubes (SWNTs). The CNTs are classified into three types on the basis of chirality; (1) armchair structure, (2) zigzag structure, and (3) chiral structure (Fig. 2).
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Fig. (2))

      Schematics diagrams of CNTs. (a) armchair structure. (b) zigzag structure, and (c) chiral structure. Reprinted with copyright permission from Ref [27].

      The important structure of SWCNTs and MWCNTs are shown in Fig. (3). The SWCNTs are cylindrical-shaped, and MWCNTs consist of several concentric SWCNTs. The structures of both CNTs are different, and hence, their properties are also different [28, 29].


      
[image: ]


Fig. (3))

      (a) Schematic diagram of how grapheme sheets are rolled up to form CNTs; (b) representation of the three types of SWNTs structure obtained with the pair (n, m) from the chiral vector. Reprinted with copyright permission from Ref [28]. (c) Electronic structure of armchair (metallic); and (d) Electronic structure of zig-zag (semiconductor). Reprinted with copyright permission from Ref [29].
    


    
      PROPERTIES OF CARBON NANOTUBES


      The properties of CNTs depend upon their atomic arrangement, tube length, diameter, and morphology [28-30]. SWCNT properties are governed by structure formation by the bonds between the carbon atoms of graphene sheets [28, 29]. The structure of SWCNTs depends upon the chirality of the tube, which refers to a chirality vector [image: ] and chirality angle (Ѳ), which are shown in Fig. (3). The chirality vector [image: ] is the linear combination of a1 and a2 of the simple hexagonal through the following relationship:
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          	(1)
        

      


      where, n and m are integers and the single-cell vectors of two-dimensional matrix formed by the graphene sheet in which the direction of the nanotubes axis is perpendicular to the chiral vectors shown in Fig. (3a). The graphene sheets are rolled in the direction indicated by the chiral vector pair (n, m), and the values of the chiral vectors’ pair allow three types of arrangement for SWCNTs, (1) zig-zag, (2) arm chair, and (3) chiral, which are shown in Fig. (3b). The mechanical, electrical, and optical properties and the nanotube’s chirality are determined by the chiral vector pair (n, m) [28, 29]. If the value of the pair (n, m) is a multiple of 3, then the structure of nanotubes looks like an arm chair, has metallic behaviour, and its Fermi level is partially filled (Fig. 3c). When the value of the pair (n, m) is a multiple of 3, the structure is zig-zag and has the behaviour of a semiconductor (Fig. 3d). Carbon nanotubes have unique structures and properties like high aspect ratio, which gives them good electrical, thermo-mechanical properties [31], high tensile strength [28, 31, 32] (~50-500 GPa), very low density (~1.3 g/cm3) and very high Young’s modulus (~1500 GPa) [32, 33]. Due to these unique and excellent properties, CNTs are stronger and, at the same time, lighter than steel [31]. The perfect arrangement of carbon-carbon covalent bonds along the axis of nanotubes makes them very strong, with an excellent strength-to-weight ratio [31]. The MWCNTs have a broad range [34, 35] of UV-vis light absorbance [36, 37], which yields good light-thermal [38, 39] conversion capability [40, 41]. CNTs have very high thermal conductivity and are stable up to 2800 °C in vacuum [42, 43].

    


    
      SYNTHESIS OF CARBON NANOTUBES


      The MWNTs and SWNTs are synthesised by various methods: arc-discharge, electrolysis, laser-ablation, sonochemical or hydrothermal and chemical vapour deposition, etc. The various synthetic methods are shown in Fig. (4), which can be used to produce the CNTs in large quantities. The first production method of CNTs was high temperature preparation techniques like arch discharge or laser ablation were used, but recently, such methods have been replaced by low chemical vapour technique deposition technique (< 800 0C), since the alignment, orientation, length diameter, purity and density of CNTs can precisely be controlled in the latter method [44].
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Fig. (4))

      Schematic diagram of various synthesis methods conventionally used for the preparation of CNTs.

      
        Arc Discharge Method


        In the arc discharge method using a high temperature, preferably above 1700 oC, CNTs are synthesised with a lower structural defects in comparison to other methods. Arc discharge method was used to synthesise the SWCNTs, MWCNTs, and double walled carbon nanotubes (DWCNTs).


        Bethune et al. produced CNTs with a small diameter (1.2 nm) through the co-evaporation of carbon with cobalt in an arc generator [26]. Likewise, Ajayan et al. also synthesised the SWCNTs (1-2 nm diameter) through the arc discharge method with cobalt used in the helium atmosphere [45]. The most utilized catalyst in the synthesis of SWCNTs is nickel and Seraphin et al. have performed detailed studies on the catalytic activity of various catalysts like Ni, Pd, and Pt in the synthesis of carbon nanoclusters using the DC arc discharge method with operating conditions of 28 V and 70 A under the 550 Torr helium atmospheric pressure. They observed that the Ni filled anode stimulated the growth of SWCNTs [46]. Similarly, Saitio et al. also reported the rapid growth of SWCNTs by using the fine Ni particles and Zhou et al. reported radial growth of SWCNTs by using the Yttrium carbide deposited anode.


        The MWCNTs synthesis through the arc discharge method is very simple. Shimotani et al. [47] synthesized MWCNTs by using the arc discharge method under helium, acetone, ethanol and hexane atmosphere at different pressures from 150 to 500 Torr, and concluded that the arc discharge method produces MWCNTs three times more in ethanol, acetone and hexane as compared to helium atmospheric condition. This can be explained as follows: acetone, ethanol, and hexane may be ionized. The molecules may decompose to carbon and hydrogen atoms. These ionized species may contribute to the synthesis of MWCNTs, resulting in higher yields MWCNTs. MWCNTs yield increases in the presence of an organic atmosphere with increasing pressures up to 400 Torr [47]. The arc discharge deposition is usually promising with DC arc discharge and pulsed technique. Jung et al. synthesised high yield MWCNTs by arc discharge method using liquid nitrogen, and they concluded that the arc discharge method can be used to synthesize MWCNTs at a large scale with high purity. Montoro et al. [47, 48] synthesised high-quality SWCNTs and MWCNTs through arc discharge method using pure graphite electrode using the H3VO3 aqueous solution. The DWCNTs have been synthesized through the arc discharge method, but the process is not easy though some research groups have reported the successful synthesis of DWCNTs. Hutchison et al. first reported the successful synthesis of DWCNTs through arc discharge method under the mixture of hydrogen and argon atmosphere and SWCNTs were obtained as a by-product during the synthesis of the DWCNTs using arc discharge methods. Sugai et al. reported a novel synthesis of DWCNTs with high temperature pulsed arc discharge method using the Y/Ni alloy catalyst [49]. Qiu et al. [50] also reported their successful synthesis from coal through arc discharge method in hydrogen free atmosphere.

      


      
        Laser Ablation


        This method has been used to synthesize high-quality and high-purity SWCNTs. In 1995 [51], Smalley’s group first used this method, which has similar principles and mechanism as of arc discharge, but laser hitting of a graphite pellet containing nickel or cobalt [52] catalyst was used to produce energy. Almost all lasers used for the ablation has been Nd:YAG and CO2. Zhang et al. used continuous CO2 laser ablation without applying any additional heat to the target for the preparation of SWCNTs, and they observed that the average diameter of prepared SWCNTs through CO2 laser was increased with the increase of laser power [53-55].

      


      
        Chemical Vapour Deposition


        In this process, CNTs are prepared by heating the catalyst materials in a furnace (relatively lower temperature 500–1000 °C) under the flowing hydrocarbon through the tube reactor for a certain period of time. The catalysts are transition-metal nanoparticles having a high surface area and the catalysts serve as a seed to the growth of nanotubes.

      

    


    
      SOLAR ENERGY STORAGE DEVICES


      Solar energy storage systems are classified in different ways. The solar energy storage systems are classified as: (1) thermal storage, (2) electrical storage, (3) chemical storage, (4) mechanical storage, and (5) electromagnetic storage. The different solar storage systems used to store the solar energy are shown in Fig. (5). The solar thermal energy storage devices are traditionally classified into three major categories [56] depending on the physical principles used for energy conversion and storage [11]. The first method relates with general property of matter to experience bulk heating, and the energy storage is proportional to the specific heat capacity of the energy absorbing materials, which is often called sensible heat [11, 57]. The second method involves the heat absorption/release (latent heat) properties of the materials during the phase transition [58, 59]. In the third method, the chemical reaction process requires to produce chemical compounds having high energy chemical bonds, and which release their energy upon disruption [11, 60].
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Fig. (5))

      Schematic diagrams of various solar energy storage systems.

      Another method was also added in this series which is based on the absorption of a photon and the generation of electron hole pairs in energy storage devices such as lithium ion rechargeable batteries [11, 61] which is also combined with the generation of hydrogen. The above method can also be classified in the high energy (the light is utilized in the visible range) domain and another in low energy (IR light) domain of solar energy, which is converted as stored energy [11]. The electronic excitation in absorber materials involves absorbing the photons in the visible region of the solar radiation, and the electrical energy is produced by the photovoltaic cell, which may store energy in the form of chemical energy via a photochemical reaction. This method is referred to as the photonics conversion method and these are electrochemical batteries fed by photovoltaic cells. Photosynthesis and electrochemical energy storage devices directly absorb the photons by photo-electrode and produce a chemical fuel. The materials absorb the IR light of solar radiation, which excites the photons and produces heat that can be stored, and the method is conventionally called the thermal conversion method. The method is based on heat-induced chemical reactions and is classified into sensible and latent heat-based.

    


    
      CNT NANOCOMPOSITES IN SOLAR ENERGY STORAGE DEVICES


      CNTs are a good candidate as a filler in composite materials to enhance thermal transport due to their high thermal conductivity [62, 63]. Many research groups have reported enhanced thermal conductivity of the PCMs with the addition of CNTs [64-68]. Ji et al. reported the functionalised MWNTs/plasmatic acid composite materials to prepare PCMs in thermal storage systems [62]. Solar energy collector is an important part of solar energy storage device, which converts the solar energy directly into heat [69]. In 1970, Minradi et al. proposed an idea about the direct absorption solar collectors (DASC) [70]. The DASC system directly absorbs the solar energy radiation through heat transfer fluid and decreases the radiation heat loss [71] by avoiding the heat resistance between medium and absorption surface. The photo-absorption and thermo-physical properties of heat transfer fluids have affected the receiving efficiency of the DASC system [72]. Hence, to increase the receiving efficiency, it has been proposed to use novel slurry with fine optical and thermo-physical properties. Recently, some research groups have enhanced the optical absorption properties of working heat transfer fluid with the dispersion of the metal nanoparticles [73] and carbon-based composites [74]. However, the working fluids have very low specific heat capacity, which makes it impossible for them to store more energy, and hence, the reception efficiency is insignificant. Since PCMs have large specific heat capacity, it has been found that when the PCMs are dispersed with heat transfer carrying fluid, the latent functional heat of fluid can enhance the thermal energy storage capacity of the working fluid [75, 76]. Ma et al. used CNTs effectively to prepare PCMs for utilization in solar energy storage materials [69].


      The optimized amount of CNTs has been previously incorporated in PCMs, which enhanced the thermal conductivity, solar radiation absorption efficiency, solar heat storage capacity and specific heat capacity of the heat transfer working fluid. The effective receiving efficiency of the heat transfer fluid is determined by using the following equation (2) [77]:


      
        
          	[image: ]

          	(2)
        

      


      where, η is the receiver efficiency, mass of the heat transfer slurry is m, Cp is the specific heat capacity, Gs is the intensity of solar radiation, T represents the real time temperature of the slurry, A is the area of energy received by the light source, the radiation time of the sample is t. The GsA t in the equation (2) represents the heat received by the simulated light source/collector from the sun, and the m ∫ Cp (T) dT represents the heat actually absorbed by heat transfer fluid through the irradiation to increase its temperature. The ratio of these two provides the so called receiving efficiency [69]. Ma et al. calculated the effective receiving efficiency from equation (2) for water, 5 wt.% paraffin@SnO2 and paraffin@SnO2/CNTs, which are shown in Fig. (6a) as a function of temperature. The CNTs mixed slurry was observed to exhibit higher effective receiving efficiency as compared to water and 5 wt.% paraffin@SnO2, and also high photo-conversion efficiency or absorption as compared to the base fluid. UV-vis spectroscopy was used to determine the optical properties of prepared slurry, and from such measurements, it has been observed that the absorption of paraffin@SnO2/CNTs composites exhibits three times more efficiency as compared to paraffin@SnO2 slurry. Tong et al. [78] also used CNTs in solar radiation collectors, using different concentrations of MWNTs in MWNTs/water nano-fluid employed in u-tube solar collectors. When MWNTs with 0.24% volume concentration were employed in the nano-fluid, they enhanced the heat transfer coefficient by 8% between the tube and working fluid as compared to the base nano-fluid (without MWNTs).
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Fig. (6))

      (a) Effective receiving efficiency of 5 wt.% paraffin@SnO2 microcapsules and paraffin@SnO2/ CNTs dispersion slurry; and (b) UV-vis reflection spectra of paraffin@SnO2 microcapsules and paraffin@SnO2/CNTs dispersion slurry. Reprinted with copyright permission from Ref [69].
    


    
      CONCLUSION


      CNTs are an important class of nanomaterials derived from carbon with unique properties, which makes them more attractive for use in various technologies. Although their scope of application is extremely wide and exhaustive, in this chapter, we have specifically dealt with the synthesis and application of CNTs based nanomaterials in solar energy storage devices. An optimum amount of CNTs needs to be added, for instance, in PCMs, to enhance the thermal conductivity and solar heat storage capacity of the materials (heat transfer working fluid in such a case) resulting in an increase in the efficiency of the storage device. A good number of important recent research studies are available in this field. Therefore in this chapter, we have focused on the important synthesis methods (laser ablation, arc discharge, CVD, etc.) and various types of CNTs, namely SWCNTs, DWCNTs and MWCNTs, characteristic properties and application of the CNTs, which are responsible for the boosting of nanotechnology applied to solar energy storage.
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      Abstract


      Carbon-based nanostructured materials have derived substantial attention as novel functional materials towards the fabrication of various biosensing platforms owing to their interesting physicochemical and optoelectronic properties, as well as desired surface functionalities. These nanomaterials provide increased and oriented immobilization of biomolecules along with maintaining their biological activity in view of their lower cytotoxicity and higher biocompatibility. The integration of carbon nanomaterials with biosensing platforms has provided new opportunities and paved the way for the efficient detection of various biomolecules and analytes. These nanostructured materials-based biosensors have improved biosensing characteristics, including broader linear detection range, lower detection limit, better selectivity, and higher sensitivity. This chapter summarizes the results of different electrochemical and fluorescent biosensors related to various nanostructured carbon materials, namely carbon nanotubes (CNTs), graphene and its derivatives (reduced graphene oxide (rGO), graphene oxide (GO), graphene quantum dots (GQDs) and carbon dots (CDs).
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      INTRODUCTION


      The interest in developing advanced biosensors accompanied by nanostructured materials is rapidly increasing over the last two decades. With the advent of nanoscience and nanotechnology, these biosensors can provide various desirable


      characteristics, including higher sensitivity, good selectivity, low cost, faster response, miniaturization, portability, simple operation, and accurate detection [1-6]. Among the various types of nanostructured materials, carbon nanomaterials have aroused enormous scientific attention toward creating biosensing platforms because of their fascinating functional, optical, electronic, physiochemical, mechanical, catalytic, and biocompatible properties [7, 8]. Additionally, these nanomaterials possess strong adsorption ability, larger surface area, greater electron-transfer kinetics, ease of surface functionalization, enabling the oriented immobilization of biomolecules, providing enhanced analytical performance with desirable biosensing characteristics [1, 9, 10].


      The family of nanostructured carbon materials includes fullerene, carbon nanotubes (CNTs), graphene and its derivatives (GO, rGO), nanodiamond, carbon dots (CDs), carbon nanofibers, and graphene quantum dots (GQDs), etc. [11, 12]. The graphite with sp2 hybridization and diamond with sp3 hybridization are the two commonly known allotropic forms of carbon [13]. These nanostructured materials are classified according to the geometrical structure of the particles (spheres, ellipsoids, horns, rods, sheets, foams, or tubes) and dimensionalities (OD, 1D, 2D, and 3D). For instance, Fullerenes 0D form of carbon possesses spherical or ellipsoidal nanoparticles [14], whereas CNTs 1D form of carbon contains tube-shaped particles [15]. Interestingly, carbon-based nanostructured systems can lead to the development of novel bioanalytical technologies, advantageous for detecting various infectious and non-infectious diseases [16, 17]. The surface properties of carbon nanomaterials can be easily tailored, facilitating them to conjugate with different diagnostic or imaging agents toward the development of next-generation biosensors [1].


      As stated by the International Union of Pure and Applied Chemistry (IUPAC), the biosensor is “a device that utilizes specific biochemical reactions mediated by isolated organelles, whole cells, tissues, immunosystems or enzymes for detecting chemical compounds or analytes generally via optical, thermal or electrical signals” [18]. Basically, a biosensing system comprises three key components: a bio-recognition element, also known as a bioreceptor that selectively recognizes the target analyte, an immobilization matrix wherein biomolecules are immobilized, and the transducer that converts the input biological signal into a measurable output signal [19, 20]. The nanostructured materials can be used as an immobilization matrix in the electrochemical biosensors to integrate the biomolecules with a transducer surface. Owing to strong adsorption ability and a larger surface-to-volume ratio, these nanomaterials offer increased biomolecule loading and maintain immobilized biomolecules’ functionality. Moreover, these materials provide faster electron transfer kinetics between the electrode surface and active sites of biomolecules, prevailing the fabrication of an efficient biosensing platform [21]. Alternatively, owing to the inherent photoluminescent and interesting optical (absorption in UV or NIR regions) properties, carbon nanomaterials (CDs and GQDs) are utilized as energy donor species for the fabrication of fluorescent biosensor [7]. On the other hand, graphene-based layered materials have been used as energy acceptor species or fluorescence quencher to detect various analytes [22].


      In this chapter, efforts have been made to present the recent advancements over the last decade in carbon nanostructured-based biosensors. This chapter’s application is restricted to electrochemical and fluorescent biosensors based on various nanomaterials, including CNTs, graphene, GO, rGO, CDs and GQDs. The first section focuses on CNTs based biosensors. The second section outlines graphene and its derivatives-based biosensors. The third section explores the recent advancements pertaining to CDs and GQDs based biosensors.

    


    
      CNTS BASED BIOSENSORS


      CNTs are the 1D allotropes of carbon and were discovered by S. Ijima in 1991 [15]. CNTs can be classified into two dichotomies: multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs). SWCNTs are the single graphene sheet rolled into a cylinder, whereas MWCNTs are the stacked concentric graphene sheets, having 0.34 nm interlayer spacing and rolled into a cylinder. The basic structure of CNTs can be chiral, armchair, or zigzag, described by a vector (n, m) that decides the chemical and physical characteristics of CNTs [1]. In general, CNTs possess a unique sp2-hybridized carbon surface, higher thermal and electrical conductivity, high surface area, high mechanical strength, and excellent chemical stability [2]. Besides, CNTs provide the ease to functionalize with numerous targeting ligands and polymers (functional groups) through noncovalent or covalent interactions [1]. In line with this, Farias et al. reported the carboxylic functionalized MWCNT (MWCNTf) based electrochemical biosensor toward the sensitive detection of flutamide (an anticancer drug) in urine and pharmaceuticals samples using the cyclic voltammetry (CV) technique. The presence of MWCNTf presented an improved catalytic ability to reduce or oxidize the flutamide [23]. In another work, Nasrabadi and the team demonstrated the electrochemical biosensor based on fullerene functionalized ionic liquid (1-butyl-3-methylimidazolium tetrafluoro borate) and CNT for the quantification of diazepam in real samples (tablets, urine, and serum). Enhanced electrocatalytic behavior toward the reduction of diazepam was observed with a limit of detection (LOD) of 87 ± 2 nM and a linear detection range of 0.3–700.0 μM [24]. Nishimura and co-workers reported the sulphuric acid (H2SO4) functionalized SWCNT-based flexible electrode for dopamine detection with an improved LOD of ~100 nM compared to the non-functionalized electrode with LOD of ~1 μM. It was mentioned that the acid functionalization of SWCNT introduced the defects providing the increased electron transfer kinetics [25]. Singh and co-workers designed an immunosensor for determining the food toxin named aflatoxin (AFB1) by electrophoretically depositing the carboxylic MWCNT on the working electrode. The as-designed sensing platform revealed lower LOD (0.08 ng mL−1) and higher sensitivity (95.2 μA ng−1 mL cm−2) owing to the excellent electrocatalytic activity of MWCNT [26]. Recently, Huang et al. reported MWCNT/polymeric nanoparticle nanocomposite (PAKB/NPs-CNTs) coated screen-printed carbon electrode (SPCE) based highly sensitive enzymatic biosensor (Fig. 1a) toward hydrogen peroxide (H2O2) detection. The proposed bioelectrode exhibited good stability, short response time, excellent selectivity, and high sensitivity with a broader detection range (0.02 to 6.48 mM) and lower LOD (2.7 μM). The improved sensing characteristics were attributed to the synergistic effect of PAKB/NPs-CNTs that provides faster electron transfer, increased and stable enzyme immobilization, and higher specific surface area [27]. Further, Waqas et al. modified the glassy carbon electrode (GCE) with a composite of sulfur-doped MWCNT and Cu2O microspheres (Cu2OMSs/S-MWCNTs) for the non-enzymatic glucose quantification (Fig. 1b). The Cu2OMSs/S-MWCNTs composite offers highly defected structures having greater catalytic active sites, resulting in an improved electrocatalytic activity [28]. Bafrooei and co-workers fabricated an ultrasensitive biosensing platform utilizing rGO-MWCNT/AuNPs for the quantitative detection of prostate-specific antigen (PSA) over the detection range of 0.005–100 ng mL−1 and LOD of 1.0 pg mL−1 [29]. Kumar et al. utilized conducting paper for carcinoembryonic antigen (CEA) detection based on the nanocomposite of CNT and poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). The modified paper was further processed with formic acid for improving the conductivity from ~6.5 × 10−4 to 2.2 × 10−2 S cm−1. The fabricated conducting paper-based biosensor revealed higher sensitivity (7.8 μA ng−1 ml cm−2) toward CEA detection [30]. Singh et al. used the GO rapped MWCNTs as transducer material toward the development of a microfluidic biochip. The developed biochip was utilized for the Salmonella typhimurium estimation with an LOD of 0.376 CFU/mL [31].
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Fig. (1))

      (a) PAKB/NPs-CNTs coated SPE based enzymatic biosensor for H2O2 detection Reprinted with permission from reference [27] Copyright © 2020 American chemical society (b) Cu2OMSs/S-MWCNTs based non-enzymatic glucose biosensor (c) process flow for the preparation of Cu2OMSs/S-MWCNTs composite Reproduced with permission from reference [28] Copyright © 2020 American chemical society.
    


    
      GRAPHENE AND ITS DERIVATIVES BASED BIOSENSORS


      Graphene is the 2D carbon material representing a single graphite sheet wherein carbon atoms are present in the honeycomb structure. It was discovered by Novoselov et al. in 2004 utilizing the scotch tape method by mechanically exfoliating the graphite [32]. It is regarded as the building block of other carbon allotropes, namely graphite, CNTs, and fullerenes. When graphene is stacked up, it becomes 3D Graphite, whereas it forms fullerene upon wrapping and CNTs upon rolling up cylindrically [33]. Graphene depicts interesting thermal, physiochemical, and mechanical characteristics such as high surface area, good biocompatibility, better thermal and electrical conductivity, and high Young’s modulus [34]. Owing to its exciting properties, this 2D material has derived enormous interest for various biomedical and environmental applications over the last decade [35]. Pristine graphene provides ease of conjugation to different biomolecules through hydrophobic interactions and π–π stacking [1]. However, lack of surface functional groups, low aqueous solubility are the main obstacles associated with graphene. Therefore, to bridge the gap, graphene derivatives, namely GO and rGO, were explored through the chemical method that opened up a new window to graphene research [36]. These graphene derivatives are rich in functional groups (epoxy, carboxylic, hydroxyl) and provide higher aqueous solubility, offering unparalleled opportunities to fabricate biosensing platforms [37]. In this context, Jaiswal et al. reported the electrophoretic deposition of carboxylated graphene nanoflakes (c-GNF) and aminopropyltrimethoxysilane (APTMS)-functionalized zinc oxide (ZnO) nanorods for detecting E.coli through the electrochemical impedance spectroscopy (EIS) technique. The deposited nanohybrid offers multiple functional groups for the efficient and increased loading of probe DNA, resulting in excellent biosensing characteristics including low detection limit, better sensitivity, and wider detection range [38]. Augustine et al. demonstrated the molybdenum trioxide and rGO nanohybrid (MoO3@rGO) based ultrasensitive biosensor for the quantitative detection of breast cancer-specific biomarker named human epidermal growth factor receptor-2 (HER-2) (Fig. 2a). Herein, 1D MoO3 was anchored onto 2D rGO that provided improved surface area, faster heterogeneous electron transfer kinetics, increased mechanical stability and better charge transferability. The fabricated biosensor revealed remarkable biosensing parameters towards HER-2 detection with a broad detection range (0.001–500 ng mL–1) improved sensitivity (13 uA mL ng–1 cm–2) [39]. Sandil and co-workers utilized tungsten trioxide (WO3) and rGO based nanocomposite as an immobilization matrix for the efficient detection of human cardiac biomarker Troponin I (cTnI). The WO3

































