

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

  

    
      [image: ]


        
    

OEBPS/images/ebook_page_image_241749_35.jpg
2 SINUSOIDS, PHASORS AND COMPLEX NUMBERS

2.1 - Working with sinusoidal alternating currents and voltages

Sinusoidal quantities are objects that, from a mathematical point of view, cannot be
considered simple scalars and therefore cannot be fully described by means of real
numbers alone. The mathematical apparatus required to deal with calculations on
alternating current electrical systems is essentially based on the correspondence
between sinusoids, rotating vectors, phasors, and complex numbers. The
calculation method is called the symbolic method.

2.2 - Rotating vectors and sinusoids. Vector diagrams

Avector ¥, of magnitude \}7| = Yy applied in the origin of a Cartesian plane, can be
decomposed according to the directions identified by the x-axis and y- axis. The
vector forms an angle Bwith the x-axis and its components are given by:

Y, =YycosfB
Yy =Yysinp

Sinusoids describing electrical quantities
(or harmonic oscillations in general) have as
argument a time-dependent angle according
to alaw = wt. With this linear dependence
of Bon time, the vector ¥ becomes a rotating
Fig. 2.1 - Cartesian components of a vector with angular velocity w, and its

vector. projections have the form:
@1 Yy =Yy coswt
@2) Yy =Yy sinwt
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1.7 - A voltage v(t) = Vy sinwt is rectified by a half-wave bridge. The rectified
voltage has the form shown in the figure.

Determine:
a. The average value
b. The RMS value
¢ the form factor.

Fig. 1.18 — Half wave rectified [15.9V; 25V; 1.572]
sinusoid.

1.8- For the sawtooth function shown in the figure determine:

a. The average value
b. The RMS value
c. the form factor.

Fig. 1.19 - 'Sawtooth’ wave and its square. [1V;1.155V; 1.155]

1.9- In relation to the proposed problem 1.1, time begins to count when the coil forms
an angle of 20 degrees with the horizontal plane.
a. Howmuch is the total emfafter 10 ms from the initial instant?

b. After how long does the first positive maximum of the emf
occur?

[13,6 V; 6,08]
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which, individually taken, represent harmonic oscillations along the Cartesian axes.

While in Physics (2.1) is commonly used in the description of harmonic
oscillations, here we prefer the expression (2.2), essentially for ease of
representation, but, as sin (wt + g) = cos wt, the results are absolutely equivalent.
So formula (2.2) says that the instantaneous values of the sinusoid are given by the
projection of the vector on the ordinate.

A widely used graphical representation, shown in [Fig. 2.2], provides an effective
picture of the correspondence between rotating vectors and sinusoids.

Y,

wt
i _\ Yy sin(wt)

Fig. 2.2 - A sinusoid as a projection of a rotating vector with angular velocity w.

The rotating vector ¥ (wt), a notation we will use instead of ¥ (wt), is displayed
in various positions as time goes by. The corresponding time intervals are reported
on the abscissa of the Cartesian graph. On the ordinate, the projections of the vector
identify the points of the sinusoid. The prerequisite for the representation of
sinusoids by means of rotating vectors is that the correspondence is one-to-one, i.e.,
bi-univocal: each rotating vector corresponds to one and only one sinusoid, and vice
versa.

A sinusoid describing a harmonic oscillation of a physical system is identified by
three parameters:

1. frequency f of the oscillation or angular frequency w = 2nf
2. amplitude
3. phase

A rotating vector is identified by:
1. frequency of rotation f or angular velocity w

2. magnitude
3. phase

26
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Let us now calculate the RMS value 4 2
according to the definition (1.26), with y
y(t) in place of i(t), replacing the 3
integral with the value just found for the
area: 2

= ¢ Tz dt = 1005—153 0
= [ youe= [z005=1. .

5ms

NI

Fig.1.15 - y2 (t) for RMS calculation.

1.7.1.3 - Form factor of a non-alternating square wave

The form factor is the ratio between the RMS value and the average value, calculated
here over the entire period (non-alternating periodic function):

K = L —1'58—316
" Yepe 05

as expected well beyond the range that characterizes sinusoidality.

1.8 - Phase of an alternating current or voltage

The concept of phase, or more

appropriately phase angle, is

particularly important in the

study of alternating current
electrical circuits.

The phase, together with the

amplitude and  frequency,

W uniquely identifies the sinusoid.

4 Reactive components, i

| those that can store energy,

| such as inductors  and

capacitors, have an effect on the

s

phase angle.
pena The meaning of phase angle is
well understood if ¢ = 0 is
placed in the expression of the
generic sinusoidal quantity:

Fig. 1.16 - Phase angle ¢ of a sinusoid.

y(t) = Yy sin(wt + @)
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1.3- An open rectangular coil rotates with constant velocity in a constant magnetic field
of intensity 1 T. At the instant when the emf on the active sides is zero, the coil is
crossed by a magnetic flux equal to 0.24 Wh. The active sides of the coil are 40 cm
long and a maximum voltage of 45.24 V is measured at the open terminals of the
coil.
Determine:

a. the distance of the active side from the axis of

rotation;

b. the peripheral speed of the active sides;

c. the frequency of the induced voltage.

[30 cm; 56.6 m/s; 30 Hz]

1.4 - An open rectangular coil has 30 cm long active sides placed at 28 cm from the axis
of rotation. The coil is immersed in a constant magnetic field and completes one
rotation in 12.5 ms. When the coil forms a 45° angle with the horizontal plane, the
emfmeasured at its terminals is 50 V. Determine:

a. the frequency of rotation

b. the frequency of emf

¢ the maximum value of the concatenated flux
d. the strength of the magnetic field.
[80 Hz; 80 Hz; 0.141 Wb; 0.84 T]

1.5 - Given a sinusoidal voltage v(t) = Vy, sin wt ofamplitude Vi =100V,

a. determine the average value
b. calculate the RMS value and prove that: V = %’

2O e v(t) voltage at the terminals of R

[63.7 V; 707V, Hint: p(t) =~

1.6 - A voltage v(t) = Vysinwt is rectified by a full-wave bridge. The rectified
voltage has the form shown in the figure.

50 o Determine:

W a. The average value
b. The RMS value

. c. the form factor.

2

0 [31.85V; 35.35 V; 1.1098]

Fig. 1.17 — Full wave rectified sinusoid.
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In that case one has:
y(0) = Yy singp

which represents the value assumed by the sinusoid at the initial instant. For
example, if the sinusoid at the initial instant has a value that corresponds to half of
its maximum value, it is true that:

Yu
2 = yyysi
2 u Sin @

from which it follows that the phase angle must satisfy the relationships:

. 1 ol
sing =5 ¢ =arcsing =&

In this case, the complete analytic expression becomes:

y(t) = Yysin (wt + g)

Please note that in [Fig.1.16] the sinusoids are represented as a function of the
angle wt. The respective phases ¢ then correspond to the highlighted angles.

In a standard graphic representation (positive directions to the right), the phase
change for positive increasing values causes a shift of the sinusoid to the left (the
sinusoid is Jeading with respect to the previous position), while a change for
negative increasing values leads to a shift to the right (the sinusoid is /agging with
respect to the previous position).

1.9 - Problems

1.1 -An open rectangular coil, measuring 30 x 40 cm, rotates about an axis parallel to
the shorter side. The coil completes one rotation in 31.25 ms within a constant
‘magnetic field of intensity B = 0.8 T. What is the maximum potential difference
measured between the open terminals of the coil?

[19,3V]

1.2 - The magnetic field, in the previous problem, is reduced to 0.7 T. You want to keep
the total emfunchanged by acting on the rotation frequency. At what frequency
must the coil rotate to keep the PD at the terminals unchanged?

[36.5 Hz)
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1.6.1 - Obtain the RMS value from the definition

Based on the previous example, we will define the RMS (Root Mean Square) or
effective value of a periodic quantity as follows:

the RMS value of a periodic quantity is given by the square root (R) of the average
value over a period (M) of the square of the quantity (5).

Special cases of periodic quantities are alternating and sinusoidal ones.
Differential calculus must therefore be used to obtain the average of the square of a
function over period 7. In our case, the definition involves the calculation of the
following expression:

(1.26) e J’ o
0

We calculate the integral with the substitution of the integration variable t— wt

T T 12 2
J’ 2(t)dt = Iﬁ,f sinfwt dt = —M[ sin?wt d(wt)
o o @ Jo

using the expression (1.20) for sin®wt:

T ]2 2 112 2m 1 '2 2m
f i2()dt = ﬂf sinfwt d(wt) = J’j d(wt) W—”f cos 2wt d(wt) =
o w Jy 2w, 2w,

L} [ﬁ’fm 2wt d(2wt) L i in 2wt]3™ i
=k W), €0s 2w wt) =~ 4m[sln wt]§ S

Therefore, based on definition (1.26), remembering that wT = 2m:

LN |G
(1.27) I= FJ;LZ(t)dt— ﬁn_g'ﬁ

1.6.2 - Form factor

The form factor is defined as the ratio between RMS value and average value in the
half-period of an alternating quantity, e.g., a current:

(1.28) K =—
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g I3
(1.21) i2(t) = Igsin*wt = 7“ - 7Mcos 2wt

Formula (1.21) explains well what can be seen in [Fig.1.13]: the term

2 2
—'—;’—cos 2wt is the negative co-sinusoid of double frequency, the term !2M is the
quantity by which the latter is translated upwards, so that it is completely positive

and tangent to the time axis.
Power can be obtained by multiplying the square of the current (1.21) by &

I
(1.22) p(t) = Ri*(t) =R7M—R7M0052wt

The average value of this power over the period 7'is given by:

I
(1.23) Pue =R

this is because the average over the period of cos 2wt is zero, as for any sinusoidal
alternating quantity.

We now define the RMS value /of a sinusoidal alternating current of amplitude
Inas:

- IM

(1.24) I= =5

so that the average power already written in (1.23) can be expressed as the product
of the resistance times the square of the RMS value:

Iy In In
125 Ppe=RE-—p LM _pp
.25 G

The height of the rectangle shown in [Fig.1.13] is the average value of the
squared current. The area of the rectangle is equal to that subtended by the curve
i2(t), as can easily be deduced by observing the figure itself (imagine cutting out
the two peaks above the rectangle; cut each of them into two symmetrical halves
according to the height; these four shapes fit perfectly into the 'voids' of the
rectangle, filling them). This value multiplied by R gives the average power.

The graph of the function Ri?(t) is the power graph. The area of the rectangle
then has dimensions [watt] x [time] = [joule], i.e., those of an energy.

This leads to interpreting the RMS value of an alternating currentas the value of
a direct current which, over a period, produces the same average energy effects as the
alternating current itself We can extend this result and define the RMS value in
general as will be done in the next section.
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We derive some important
v information from the graph.
The function is periodic, non-
alternating, with a period 7 of
20 ms, maximum value: 2,
_______ . minimum value: —1.

i The function y(f) represents

T ¢ 5 a generic quantity for which

-1 2 the units of measurement are
5ms not of interest here.

1.14 - A non-alternating periodic function

1.7.1.1 - Average value of a non-alternating square wave

Based on the above discussion, we can determine the average value as the ratio
between the area between the curve and the x-axis and the period 7. We calculate
the value over the entire period since the function is periodic, but not alternating.

Area

‘ave T

In the first half-period the area is positive, in the second negative. The
calculation, given the form of the function, is simple. We denote by A+ the positive

area and by A- the negative area: A* = 2% =2-0.010 = 0.020, A~ = —1% =-1-
0.010 = —0.010, while for the total area we have: A = A* + A~ = 0.020 — 0.010 =

0.010.
Calculating the average value according to the above definition then gives:

0.010 _

Yave = 5520 = 05

1.7.1.2 - RMS value of a non-alternating square wave

To obtain the RMS value, we must first plot the y2(#) curve and then calculate the
underlying area, which, as we can see [Fig. 1.15], is all positive:

T T
Area = 4E+ 15 =2T +0.5T = 2.5T = 2.5-0.020 = 0.05
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The typical value obtained if the alternating quantity is sinusoidal is:

In
V2 T

(1.29) =t =—=x111
72_[,M 2V2

The more the form factor differs from this value, the further the quantity moves
away from the sinusoidal shape. For practical and measurement purposes, a
quantity is considered sinusoidal if:

1.07 <K, < 115

1.7 - Non-sinusoidal alternating currents

Alternating and sinusoidal refer to different characteristics, the latter being more
restrictive than the former.

When studying and practicing electrical circuits, one often has to deal with
periodic and alternating quantities, or waveforms, the latter not necessarily
sinusoidal.

Periodic functions of period 7obey the condition:

(1.30) f+T)=f(x)

alternating functions to the more restrictive condition:

@31 f(x+;) = —f()

Due to (1.31), the alternating quantities have zero average value over the period.
However, the definitions of average value, RMS value and form factor are still valid
for these functions as well.

1.7.1 - Average value, RMS value and form factor of non-sinusoidal
functions

Average values, in these cases, are calculated by applying the definitions, also
remembering that integrals such as foT i2(t)dt represent areas under curves (Sec.

8.4).

To clarify the procedure to follow, let us try to calculate the average value, the
RMS value and the form factor of the function y(¢) shown in [Fig. 1.14].
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Fig. 1.1 - Rotating coil in a magnetic field.

With respect to a given reference system, it
makes no difference which of them is moving
and how. What matters is that a relative
velocity exists between field and conductor.
The following example provides a starting
point for understanding a widespread
electromotive force generation system, its
characteristics, and some theoretical aspects.
The example is carried out and commented in
the following sub-sections.

Example 1.4.1
An open rectangular coil ABCDEF, with
dimensions BC = 40 cm, CD = 2r = 50 cm (1 is
the radius of the circumference described by
the sides BC and ED during rotation), rotates
counterclockwise around the axis parallel to BC
and ED, with a frequency of 50 Hz, within a
constant magnetic field of intensity B = 0.8 T

(tesla) [Fig.1.1].

1.4.1 - Maximum emf value on active sides

By the term active sides, we denote those parts of the coil, in our case the conductors
BC and DE, which become the seat of induced electromotive force (emf). The other
parts of the coil make no significant contribution to emf since their motion in the
magnetic field occurs essentially without cuttingthe field lines.2

The emfinduced in each of the active sides can be calculated by applying the law:

e(t) = Blvsin wt

where wtis the angle that the coil forms with a reference axis x and w coincides

with the angular velocity of the coil.

In example 1.4.13:

w = 2nf = 2m-50 = 314.2 rad/s

The peripheral velocity, r being the radius of the circular motion, is given by:

2 If we want to be fussy, there would be a small contribution due to the thickness of the
conductors, but this is completely negligible. Ideally, we can then consider the coil to have no

thickness.

3 Throughout the text, numerical values are expressed using the convention of the dot as

decimal separator.
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The angular frequency w comes from the concept of angular velocity. If Tis the
period (time required to complete one revolution, or one complete oscillation) and
f the frequency (number of revolutions or oscillations in the unit of time), we have:

1
=2nf rad/s f:FHz

1.3 - Sinusoidal voltage

Electric charges, like any physical system, move if there is a difference in potential
energy between their current position in space and the one they will occupy at a
later instant. Positive charges move from regions of higher potential energy toward
regions of lower potential energy; vice versa for negative charges.

To move electrical charges, it is then necessary to create a potential energy
difference AU = U, — U between two positions A(x,, 4, 2,) and B(xg, y5,25) in
space.

Instead of AU, measured in joules (J), we prefer to use a correlated and directly
measurable quantity: the electric potential difference or voltage AV, generically
denoted by the letter ¥ and sometimes by £ the electromotive force (emf), a
characteristic of voltage sources or an effect of electromagnetic induction
phenomena.

If we indicate with U the potential energy of a point with respect to another,
taken as the zero reference point for the potential energy (AU = Uy — 0 = U and
AV =V, — 0 = V), and with Qthe amount of electric charge that is moved between
those two points, the electric potential difference, measured in volts (V), is:

If the potential difference is sinusoidal® :
v(t) = Vy sinwt

the motion of the charges will also be of sinusoidal oscillatory type.

1.4 - Generating a sinusoidal emf. Rotating coil in a magnetic field

A relative motion between a conductor and a magnetic field Fisatthe origin of the
potential difference or induced electromotive force (emf) on the conductor.

11In the following, to simplify the writing of the formulas, we will omit the parentheses in the
notation of trigonometric functions, unless ambiguities arise. Thus, for example:

sin(wt) - sin wt, but we will retain the use of parentheses where necessary as in sin (wt +
). Note the use of lowercase letters when dealing with a generic function of time such as

v(t).
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a7 E=-(#xB)
(1.8) |E| = E = vBsina

Assuming for simplicity that the two charge distributions are concentrated at the
ends of the conductor of length [, we can calculate the electric potential difference,
or emf, due to the existence of the electric field:

(1.9) e(t)=E-I=El=Blvsina

Taking the x-axis as the angles reference, [Fig. 1.2]
shows that @ = 7 — wt.
Since sin(m — wt) = sin wt it follows that:

(1.10) e(t) = Blvsinwt

Given the geometry of the system [Fig. 1.2], we
identify the x-axis component of the velocity
(transverse component with respect to the
magnetic field):

(1.11) v, = vsinwt

Comparison with (1.10) allows us to state that
only the velocity component perpendicular to the
field lines has an effect on the production of S
induced emf.
Fig. 1.2 - Decomposition of the

active side peripheral velocity.
1.4.3 - Special cases: maximum emf and zero emf
It follows from the above that the induced emf assumes its maximum value when

the transverse component of the velocity v, is maximum (1.11), which occurs when
the angle that the coil forms with the x-axistakes on the values:

wr= g+kn (k=0,1,2,..)

The induced emf is zero at instants when the transverse component of the
velocity has zero value. This occurs when:

wt=0+kr (k=0,1,2.)

Note that in this situation the peripheral velocity of the active sides is parallel or
antiparallel to the magnetic field lines.
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v=or=o—o-= 314.2:0.25 = 78.6?

For each active side, there is an induced emf:
e(t) = Blvsinwt = 0.8 0.4 - 78.6 sin wt
We conclude that on each active side there is a sinusoidal emf :
e(t) = 25.2sin314.2t

which takes on a maximum value (amplitude) of 25.2 V (volts), in absolute value,
when wt = §+ km, with k = 0, 1, 2, ., and |sinwt| = 1. We observe that
sin G + kn) = —1if kis odd. So, every half turn of the coil the sign of the emf is
reversed, i.e,, the instantaneous polarity or direction of the emf is reversed.

1.4.2 - Induced electromotive force and Lorentz force

The expression e(t) = Blv sin wt of the induced emf is derived from the structure
of the Lorentz force, expressed by the cross product:

e F=q(#xB)

This force acts on electric charges moving in a magnetic field B with velocity 7.
Its magnitude, by definition of cross product is:

(1.5) |F| = F = quBsina

where ais the angle formed by the two vectors ¥ e B.

Due to the Lorentz force, mobile charges (electrons in conductors), are pushed
along the active conductor, causing an accumulation at one end. At the other end,
stationary positive charges remain unbalanced in an amount corresponding to the
displaced electrons, effectively creating a separation between charges of opposite
sign.

Separation of the charges produces an electric field E (not to be confused with
emf E) which, when equilibrium is reached, generates a force:

(1.6) qE = —q(# x B)

equal and opposite to the Lorentz force. Hence the minus sign that appears in the
formula. So, for the electric field vector and its magnitude we will have:

4 The product 0.8-0.4-78.6 = 25.152 is rounded up to 25.2
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INTRODUCTION

The idea of a hypothetical "journey around beautiful and powerful mathematics” takes
its inspiration and beginning from the symbolic method used in the study of steady-state
alternating currents, which, in turn, introduces one to the "magic” of complex numbers.

The firstsix chapters are devoted to this study, with which one can build a foundation
of fundamental knowledge and skills in various fields of science and technology:
electronics, telecommunications, signal theory, etc.

Decades of teaching experience have suggested an exposition that is as
straightforward and complete as possible, always reasoning about the concepts and
seeking, at times, alternative explanations than the standard, based, in general, on
differential and integral calculus.

Precisely because the ultimate goal of this book is "to help understand,” a number of
"mathematical interludes” are scattered throughout the text, with which it is intended
to "bring to level" even those who do not have the specific mathematical knowledge (or
do not remember it). Even experts, however, will be able to find in them ideas and
information not always sufficiently highlighted during their studies.

The second part begins with chapter seven devoted to the study of transients, mainly
developed through a method of numerical calculation, known as Euler’s method, which
1 personally judge to be of great teaching effectiveness as I explain in the dedicated
sections.

Chapters eight and ten present some of the most powerful and widely used tools of
‘mathematical analysis: the series and the Fourier transform, indispensable in acoustics,
as in the formalization of quantum mechanics, passing through physical optics, signal
theory, image processing etc, while chapter nine describes the theoretical framing of
these tools through the unifying concept of vector space.

This Is not, nor is it intended to be, a theoretically exhaustive treatment, which the
undergraduate student will not fail to undergo in his or her courses, but rather an
attempt at an overview and understanding of the raison d'étre of these formidable tools.

Finally, let me add that this is the kind of text | would have strongly wished to read
in the crucial transition from High School to the University Course in Physics and then,
before tackling Mathematical Methods, Quantum Physics and Radioactivity.

Now I have written it, I hope it will help.

January 2024
SR

Vi
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1 SINUSOIDAL ELECTRICAL QUANTITIES

1.1 - The alternating current

Electric current is generated by the movement of mobile electrical charges, which
in conductors are electrons. The amount of charge AQ flowing through a certain
surface, observed over a time interval At, allows us to define the electric current
intensity as:

Faitd

At
This flow of charges can be unidirectional and constant in time, in which case we
have a direct current. If, on the other hand, the set of moving charges oscillates
around an equilibrium position, we speak of alternating current. In this case, the
charges, on average, do not move significantly from their original position. If these
oscillations can be globally described in terms of harmonic motion, the alternating
current is said to be sinusoidal since it can be mathematically described by a

sinusoid.

1.2 - Sinusoids

A sinusoid is the graphical representation of the sine function of an angle « as it
varies. If the angle depends linearly on time, for example, according to the law:

a=wt

with a constant w, the sinusoid is well suited to describe harmonic oscillations.
A sinusoidal alternating current can be expressed by a function like:

i(t) = Iy sin(wt)

where the sine function is multiplied by a constant Iy, the amplitude, so that
quantities with values greater than 1, or less than —1, can also be represented.
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Symbols and commonly used abbreviations

Complex or vector quantities are indicated with bold letters:
The same letters in normal font indicate moduli or magnitude:
The imaginary unit is indicated with j where j = V-leg Z=3 +j4

The shortened polar form notation for a complex number Z is: Z = Z2¢p

where Zis the modulus or magnitude, and the angle symbol is preceded by the £
sign. The complex conjugate is marked with an asterisk:

if I=A+jBthenI"=A—jBorif I =Ispthenl"=1s—¢.

The maximum values of quantities (amplitudes) have the subscript M: Vi, /n, etc.
Continuous or RMS values are represented by ordinary letters: V, / etc.
Trigonometric functions, where possible are written without parentheses: sin x,
cos wt, but sin (wt+0).

Main abbreviations
AC, ac alternating current
DC, dc direct current
EMF, emf electromotive force
VD voltage drop
PD potential drop
PF power factor
PFC power factor correction
Symbols
v for each
€ belongs to
f= subset of
= implies, if ... then
< ifand only if
N set of natural numbers: [0], 1, 2,3, ...
N* set of natural numbers without zero: 1, 2, 3, ...
R set of real numbers
C set of complex numbers
N a summation over the k index:
N
Zak=a]+az+---+aN
k=1
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Algebraically, the total area subtended by the sinusoid is then zero.

This fact has the following interpretation: the amount of charge flowing in one
direction during the first half-period is exactly equal to that flowing in the opposite
direction during the second. The total flow of charge through any section of a
conductor over one period is zero.

1.5.1 - Average over half a period

The amount of charge flowing in one direction or the other can be determined by
calculating the area under the sinusoid i(t) over half a period. The problem of
determining this area can be exactly solved only with the integral calculus (Sec. 8.4).
Having not enough skills in this field, it is advisable to at least memorize the final
result.

The charge carried in a half-period by the current i(t) is given by the area
subtended by the sinusoid representing the current:

i(t) = Iy sinwt

This area is calculated using a procedure called integration (Sec. 8.4):

r %
(1.16) 0= jzi(t)dt: leM sinwt dt
o s

The amplitude Iy is constant in this case and can be taken out of the integral
sign. We see that it would be better if the integration variable was wt so we multiply
and divide by w, to realize the variable substitution t - wt.

Since wis constant, wdt = d(wt) and the integral (1.16) becomes:

Iy

Q= ;J; sinwt d(wt)

Obviously, the variable substitution also entails the modification of the
integration limits. Since the integration variable is now the angle wtinstead of time,

the integration limits must be modified as follows: 0 = 0, 2 >
A primitive (see Sec. 8.4) of sin x is —cos x, therefore:
In In
=l

(1.17) Q =—[-coswt]f = .

I, I,
— cos 7 + cos 0] :ﬂ[,(,1)+1] =2
w w w

Geometrically, (1.17) represents the area subtended by the sinusoid limited to
half a period; physically, the electric charge carried during the same half-period.

14
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other, contrary to what happens with direct current. To understand this statement,
it is necessary to think about the definition of the current intensity and the average

value of a sinusoid.
An electric current of intensity:

it)

_%0®

At

implies that, in the interval At, an amount of charge equal to:

AQ(8) = i(t)At

has been moved.

i)

Gaznsaas
)

it

ZEEE

Fig.1.11 - Calculation of the area under the
sinusoid.

In a graphical representation of the
current as a function of time, [Fig.1.11],
the area of the dashed rectangle below the
sinusoid has the dimensions of an electric
charge: [ampere] X [seconds]=
[coulomb]. The area subtended by the
sinusoid can be calculated, as an
approximation, by summing the areas of
several rectangles obtained by dividing
the period 7'into Nidentical At intervals.
The greater the number NVand the smaller
the amplitude of the intervals, the better
the approximation.

The area thus calculated represents the
amount of charge carried by the current
i(t) overa period 7.

When, in the second semi-period, the
sinusoid takes on negative values, we
attribute a negative value to the
corresponding area.

Physically, the positive or negative sign of
these quantities is linked to the direction
of the current: thus, having established a
positive direction, the current flowing in
the opposite direction will be negative.
But what meaning should be attributed to
the negative area?

Since in this case the area corresponds to a quantity of electric charge, it is logical to
interpret its negative value as a flow of electric charge of the same sign, but in the
opposite direction to that represented by the positive area. Moreover, it is also evident
that the positive and negative areas have equal value. So, the total subtended area is

zero.

13
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(1.19) Area = J’ y(wt) d(wt) = YMf sinwt d(wt) = 2Yy
o o

however, this does not change the expression of the average value:

2
Yape =~ ¥iy = 0637 ¥y

1.6 - RMS value of a sinusoidal alternating current or voltage

The RMS (Root Mean Square) values of an alternating current or voltage are
quantities related to the average power and energy transferred over a period.
Energy and power depend on the squared voltages or currents. For example, the
instantaneous power dissipated by a resistor R when a sinusoidal current flows
through it, can be expressed by:

vE) Vi

p(t) = Ri%(t) = RI}sin*wt p(t) = R = Fsmzwt

Technically, the RMS value, is the square root of the average value over the
period of the square of the quantity.

A squared sinusoid, as seen in [Fig.1.13] in the case of i(t), is always positive and
of double the frequency of the starting sinusoid, a fact easily demonstrated by
known trigonometric relations.

From the cosine double-angle formula: cos 2wt = cos?wt — sin*wt we get the
sine squared: sinwt = cos?wt — cos 2wt.

From the Pythagorean identity

sinwt + cos?wt = 1
we derive the cosine squared to be
substituted into the previous
expression of the sine squared:

sinwt = 1 — sin*wt — cos 2wt

With one further simple step:

— cos 2wt

(1.20)  sinfwt 2

Multiplying by the amplitude of the
current and separating the fraction:

Fig.1.13 - For RMS value calculation.
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1.5.2 - Average value of an alternating current over a half-period

Since the total area under the sinusoid is zero, the average value of i(t) = Iy, sin wt
calculated over the entire period is also zero.

The average value of a sinusoidal quantity, as of all alternating quantities, is
therefore calculated over the semi-period.

Now the question is: what constant
(direct) current can carry, in the time of
half a period, the same quantity of
charge Q? This is equivalent to finding a
rectangle with a base equal to T/2 and
height Zuve such that it has an area equal

' to @

i)

Iul e

=Q

Tave

T
2

Isolating I, and replacing @ with the
previously found value:

Fig.1.12 - Average value over half-period.

IS}

<

Il
4y 2
ol 2 m™

lave =

N ~1|s |

and because %: 0.637 the average value in the half-period is:

2
(1.18) Lave =~ Iy = 0637 Iy

The previous result is general for any sinusoidal time-dependent quantity, such
as:

y(t) = Yy sinwt
but if the graphical representation is in function of wt (independent variable), as in:
y(wt) = Yy sinwt

in which case the variable change is not needed, the area has a different” value from
(1.17), being simply twice the amplitude:

7In (1.17) the area corresponded, numerically and dimensionally, (ampere - second) with
the electric charge Q. If the independent variable is the angle w?, the area (Ampere - radians)
no longer represents an electric charge.

15
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This can then be expressed in the form:

dcoswt

= —wsinwt
de

a —_— . .
where the operator & (derivative of... with respect to £) summarizes the concept of

limit of the incremental ratio expressed above. The operation represented by the
left-hand side of the previous equation is then the "derivative with respect to time
of the cos wt function ".

If we multiply the previous expression by the constant amplitude of the flux @,
and change the sign, we have (see 1.14):

d®y cos wt

@ = wdy sinwt = e(t)

which again is the formulation of Faraday's law.

1.4.7 - Note on the difference (A) and displacement (E) operators

The difference operator A, applied to a function, gives its variation when its
independent variable is increased:

Af(x) = flx +Ax) - f(2)

The incremental ratio approximates the derivative if Ax is reasonably small:

Af() _fGe+80) - f(x) _df(x)
Ax Ax T Tax

The shift operator £ applied to f(x) returns f(x 4+ Ax):
Ef(x) = f(x + Ax)
Using the shift operator £ Af(x) becomes:
AF() = Ef () = f() = (E = Df () = (E ~ Df(x)
where /is the identity operator, If (x) = f(x), from which:
A=E-1

1.5 - Electric charge and average value of an alternating current
Strange as it may seem, an alternating current, on average over the long term, does

not involve any net transfer of charge from one part of the electric circuit to the

12
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In [Fig. 1.9], the intervals are 40% as wide as those used in [Fig. 1.8]. It is
immediately noticeable how the step curve comes significantly closer to the — sin x
function (dashed).

Fig. 1.10 The interval is further reduced. The step curve is very close to the function — sinx.

Figure [Fig. 1.10] shows how, further reducing the interval (to 20%), the trend
becomes clear.
It can then be concluded that, making the interval Ax tend to very small values:

Acosx
Ax

- —sinx

The ratio on the left tends to approximate the function — sinx. This is why we have
used the arrow (=) rather than the equal sign (=). The mathematically correct
expression would be:

Acosx _ .
Ay o
" w— . " . Acosx 2 "
which states that the limit to which the incremental ratio v tends, infinitely
reducing the amplitude of Ax, is precisely the function = —sinx.

Now, however, a further step is needed to return to the discussion on alternating
currents.
. — A t A .
Recall that with the substitution x = wt we had _c:stw =022 Returning

then to the original variable t we have:

A cos wt

im = —wsinwt
a0 At

11
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Fig. 1.8 - A portion of the cos x curve with an approximation of the
slopes and their representation with a stepped curve.

we try to approximate the curve of the function cosx by means of several small
straight segments.

The smaller the segments, the better the approximation, and when the segments
are reduced to points, the curve is represented exactly.

Fig. 1.9 By reducing the interval width Ax, the approximation improves.
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(1.13) e(t) = 2 Blvsinwt
We can substitute: v = wr, obtaining® :
e(t) = 2 Blwr sinwt
but the product 2r/is the surface area Sof the coil, then:

e(t) = wBS sin wt

N
A
8 4
: 7
;
v
s
Fig. 1.5 - Maximum flux, zero emf. Fig. 1.6 - Zero flux, maximum emf.

but &, = BS is the maximum value of the chained
flux, which occurs when the coil is in a horizontal N
position [Fig. 1.5], therefore: —_—

T

(1.14) e(t) = wdy sinwt

The maximum flux value occurs when the
induced emf is zero [Fig. 1.5], whereas the flux is
zero when the loop is in a vertical position [Fig. 1.6],
a situation in which the emf reaches its maximum.
The flux through the coil is determined by the cross-
section S of the coil [Fig. 1.7]:

S, =1-2rcoswt = Scos wt

Fig. 1.7 - Cross section of
the coil for flux calculation.

5 Recall that o also represents the angular velocity of the coil, @ == 2mf. This is a
uniform circular motion, and the peripheral velocity (of the active sides of the coil) is the ratio

of the circumferential length to the period: v = 225 = 22y = ¢y,

T 7
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Fig. 1.3 - Emf has its maximum value. Fig.1.4 - Emf value is zero.

1.4.4 - Emf directions and maximum potential difference across the coil

A potential difference is measured between the terminals A and F of the coil which,
instant by instant, is the sum of the emfs induced in the single active sides. Its value
depends on the directions of the emf, which can be determined empirically with the
right-hand rule (thumb - velocity, index finger - magnetic field, middle finger —
emf).

In [Fig. 1.3] the instantaneous directions of the emfs are represented when the
maximum values are obtained: the emf is outgoing (towards the reader) for the
upper active side, incoming for the lower one. Going through the coil we observe
that the directions agree and therefore the values must be added. Since the two emf
are equal, ey; = ey at the ends A and F of the coil there will be a double emf:

ey =ey1+ey, =2-252=504V

where we used indices 1 and 2 to distinguish the two emf. On each active side the
emf will invert twice for each rotation, but the reciprocal directions will not change
and the two emf will therefore always add up.

1.4.5 - Towards Faraday's law with differential calculus
The expression of Faraday's law of electromagnetic induction is:

@.12) e(t) = —%f”

Now let us see if by appropriately transforming the formula Blv sin wt it can be
deduced from Faraday's law. In the meantime, let us observe that the coil has two
active sides and thus for the whole coil:
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The time dependence of the flux function is given (1.15) by:
D(t) = Py cos wt
and, being ), constant:
AD(t) = Py A cos wt
we can only deal with the variation of cos wt:
Acoswt = cos(wt + wAt) — cos wt
and its incremental ratio:

Acos wt
At

For greater generality, we can put x = wt from which Ax = wAt follows:
Acosx = cos(x + Ax) — cosx

To retain the value of the previous ratio, we perform the substitution, noting that in
A
the denominator we will have At = ;x and then:

Acos wt Acosx
a T

If, for example [Fig. 1.8], we consider the points P, (initial) and P, (final) of the
Acosx APy

4P,
cosine curve, the ratio is given by ﬁ which represents the slope of the
2

segment P, P; (negative, because AP, < 0, in fact, from P, to P; cosx is decreasing).
At the beginning, this slope is small as the points are not far from the maximum
of the cosine function, but moving along the x-axis in the positive direction, the slope
gradually increases.
Representing on the same graph the values that the slope assumes in the

intervals APy, BP2, CPs, ... we obtain a stepped curve, like the one in [Fig. 1.8]. The
Acosx

latter constitutes a (very) approximate representation of the ratio

We observe that it has a value (relatively) close to zero where the cosine function
assumes the maximum value, while it reaches a maximum value in the interval of
passage through zero of the cosine.

Suppose now to progressively reduce the width of the intervals 4x, while
increasing their number.

Points Po, Py, Pz, Ps, ... are then closer and segments PyPy, P, Py, P, P;, ... get
closer to the curve and approximate it better. In other words, with this procedure
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which is the projection of the surface onto a plane perpendicular to the field lines.
Being therefore ® = BS, we conclude that the flux time dependence also has a
sinusoidal shape:

(1.15) P(t) = Py cos wt

One can immediately recognize in the expression wsinwt in (1.14) the
derivative with respect to time of the function —cos wt (see Se. 7.2), therefore:

dd,y, cos wt

wdy sinwt = —
L dt

Finally, from equations (1.14) and (1.15), we obtain the expression of Faraday's
law:

do(t)

O =-—z

1.4.6 - Towards Faraday's law knowing little or nothing about derivatives®

Let us imagine that we do not possess the concept of derivative. By reasoning with
finite differences, we will come to better understand the key passage in the preceding
argument, namely that the rate of change of the cosine function (its first order
derivative) coincides with the sine function changed in sign, as well as what happens
when dealing with composite functions, such as sin wt.

Faraday's law can be expressed in approximate form as the incremental ratio of
magnetic flux:

_Ao (t)

“O=""5

where the difference operator A means “variation of the quantity”: if t represents an
instant of time and t' a later instant, we will have:

At=t'—t
If the flux varies in the transition from instant ¢to the next ¢; there is a variation:

AD(t) = d(t + At) — d(t)

6 Why this section? Of course, those who are sufficiently comfortable with the previous
discussion (Sec. 1.4.5) can safely omit reading it. The unquestionable power of differential
calculus, however, tends to render some of its operations mechanical, hiding its deeper
meanings, which it is good to bring to the surface once in a while. More on derivatives we shall
say in Chapter 7.





