
[image: image]

Ultimate Monorepo
and Bazel for Building
Apps at Scale

[image:]

Level up Your Large-Scale Application
Development With Monorepo and Bazel
for Enhanced Productivity, Scalability,
and Integration

[image:]

Javier Antoniucci

[image:]

www.orangeava.com

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: May 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,

N1 7AA, United Kingdom

ISBN: 978-81-97223-91-4

www.orangeava.com

Dedicated To

My Beloved Wife Julieta, My Son Franco, and My Daughter Sofia,
Whose Unwavering Support and Love Have Been My Bedrock

To the architects of innovation, the engineers of progress, and the curators of efficiency,

This book, Ultimate Scalable Monorepo Apps with Bazel, is dedicated to you, the technical pioneers who continually push the boundaries of what’s possible in the realm of software development. In an era where the complexity of applications grows exponentially and the demand for scalability is non-negotiable, you rise to the challenge with unwavering determination and ingenuity.

To the developers who juggle myriad libraries and modules, striving for coherence in a sea of code, this work acknowledges your struggles and offers guidance. To the architects who design systems that stand robust against the test of scalability and change, this book aims to be a beacon, illuminating the path toward more streamlined and efficient workflows.

We dedicate this volume to the unsung heroes in the server rooms, the thinkers in the quiet corners of bustling tech hubs, and the educators shaping the minds of the next wave of software savants. Your commitment to embracing and mastering new paradigms, like Monorepo and Bazel, inspires a future where large-scale applications are not just feasible but flourish with unprecedented efficiency and reliability.

In these pages, may you find the knowledge to craft your monolithic repositories with precision, to harness the power of Bazel in orchestrating builds and tests, and to elevate your projects to new heights of performance and manageability.

Together, let’s build not just applications, but legacies — robust frameworks and systems that will empower generations of developers to come. Here’s to the builders of the digital age — may this book serve as both a tribute and a tool in your journey toward creating software that defines the future.

With admiration and respect,

Javier Antoniucci

About the Author

Javier Antoniucci is a seasoned software engineer and architect with a profound passion for engineering processes and efficient team dynamics in software development. Beginning his programming journey at the tender age of 11, he has accumulated over 25 years of industry experience, with a significant portion dedicated to large financial and insurance corporations.

His expertise extends to leading digital transformation projects and defining organizational models for software governance, demonstrating a keen ability to navigate complex technical and cultural landscapes. Notable achievements include the deployment of corporate models for Global Open API Governance across several tier-1 and tier-2 banks and spearheading pivotal digital transformation initiatives.

As a head architect, he has been instrumental in developing online banking platforms, branch banking systems, and DevOps architectures, showcasing a comprehensive understanding of the financial sector’s technological needs. His contributions to Big Data, including smart alerts and forecasting, highlight his proficiency in leveraging data to enhance business intelligence.

Before focusing on his current role as Chief Technology Officer at GFT Group, Javier honed his skills at prestigious firms such as Deloitte and Altran Technology, managing elite multidisciplinary teams and driving technical and organizational transformation. His academic credentials, including a degree in Software Engineering, an executive-level Master’s degree in Business Administration, and another Master’s degree in Big Data and Business Intelligence, complement his hands-on experience in the industry.

In his current role, he continues to influence the tech landscape, leading Thought Machine Vault and Open API practices globally, and driving innovation in technology at GFT Technologies. His commitment to excellence is evident in his oversight of high-performance teams delivering critical projects for top-tier banks and financial institutions, showcasing his prowess in integrating technology innovation at scale.

Javier’s comprehensive background, spanning technical leadership, strategic planning, and educational achievements, positions him as a trusted voice in the field of software development, making Ultimate Scalable Monorepo Apps with Bazel an essential read for developers looking to scale their expertise in today’s dynamic technological environment.

About the Technical Reviewer

Abhay Joshi is currently working as a Principal Software Engineer at tiket.com with over 10 years of experience in the software development industry. His career showcased exceptional technical prowess, leadership abilities, and a passion for driving innovation. With a strong foundation in computer science and software engineering principles, Abhay has successfully led numerous high-impact projects from conception to delivery, earning a reputation for excellence and reliability among peers and stakeholders alike.

As a Principal Software Engineer, he provides technical leadership, architectural guidance, and hands-on expertise to cross-functional teams. He excels at designing and implementing scalable, robust, and maintainable software solutions that meet the complex requirements of modern applications. Leveraging his deep understanding of software design patterns, development methodologies, and emerging technologies, he collaborates closely with product managers, designers, and engineers to deliver cutting-edge solutions that drive business success and exceed customer expectations.

His expertise spans a wide range of technologies, including Golang, Java, Python, JavaScript, Kotlin, Swift, Kubernetes, CI/CD tools, and cloud platforms such as AWS and Google Cloud. He excels in building distributed systems, microservices architectures, and highly available applications that are resilient to failures and adaptable to changing business needs. With a keen eye for optimization and performance tuning, he continuously strives to enhance the efficiency and reliability of software systems, ensuring optimal performance, cost, and scalability at all levels.

Beyond his technical skills, he is known for his leadership, mentorship, and commitment to fostering a culture of collaboration, innovation, and continuous learning within organizations. He thrives in dynamic and fast-paced environments, where he can leverage his expertise to solve complex problems, drive strategic initiatives, and inspire teams to achieve excellence, empowering teams to reach their full potential and deliver impactful results.

With his blend of technical expertise, leadership acumen, and passion for innovation, he continues to make significant contributions to the software development community and shape the future of technology.

Acknowledgements

This book is not just a compilation of insights and methodologies; it’s a tapestry woven from the collective wisdom of a vibrant community, the dedication of exceptional individuals, and the intellectual curiosity of you, the reader.

The Community at Large

At the heart of this book’s genesis are the dynamic and ever-evolving Bazel, Aspect Build, and Monorepo tools communities. The Bazel community, with its commitment to building reliable and efficient software at scale, has been a beacon of inspiration and knowledge. Aspect Build’s enhancements and extensions to Bazel have provided critical insights into optimizing development workflows. Similarly, the diverse array of Monorepo tools and their respective communities offer strategies to manage codebases effectively, enabling a holistic view of large-scale application development.

Exceptional DevOps and Contributors

Special acknowledgment to DevOps experts like Son Luong Ngoc, Sergio Fernandez, Salim Boudriiya, Gonzalo Ruiz de Villa, Daniel Garcia, for sharing their experience and uplifting the community. Their contributions inspire countless professionals in the field.

Emilio Guillot

A distinct and heartfelt acknowledgment is reserved for Emilio Guillot, a beacon of knowledge and inspiration in the realm of global architecture. His wisdom has influenced many core concepts and strategies discussed in this book. Emilio’s experience and vision have been a guiding light, much like a lighthouse, illuminating the path forward in digital transformation and application development.

You, the Reader

Lastly, but most importantly, this acknowledgment extends to you, the reader. Your curiosity, desire for skill enhancement, and dedication to navigating large-scale application development challenges give purpose to this work.

As you embark on or continue your journey in building robust and scalable applications, may the contents of this book serve as a reliable compass and a source of inspiration. Remember, the path of learning is perpetual, and each challenge surmounted is a step toward mastery. Thank you for allowing this book to be a part of your professional voyage.

Foreword

–by Emilio Guillot
(Former BBVA CTO)

In the ever-evolving landscape of software development, organizations are continuously challenged to adapt, innovate, and streamline their processes to stay competitive and efficient. This book explores how the monorepository (monorepo) approach, coupled with the Bazel build tool, is not just a technical shift but a transformative strategy for organizations, particularly for sectors resistant to change, such as banking.

The transition from legacy systems to modern processes is challenging, particularly in conservative organizations with deeply ingrained practices. Monorepo offers a streamlined platform that bridges the gap between old and new, simplifying the transition and minimizing disruption. In banking, for example, monorepo can integrate cutting-edge technologies while maintaining the rigor and reliability that the sector demands.

Another challenge is the disconnect between management and technical teams. Monorepo's centralized structure provides a clear view of development, fostering better understanding and alignment.

Finally, managing numerous tools and processes can be chaotic. Bazel, integrated with monorepo, automates and streamlines builds and tests, bringing order to the development process. This book will guide you to leverage monorepo and Bazel to create a robust, scalable, and maintainable software ecosystem.

As we embark on this journey together, our goal is to not only understand the mechanics of monorepo and Bazel but to appreciate their potential to transform the very DNA of organizations, ushering them into a new era of efficiency, collaboration, and innovation.

Preface

Managing large-scale applications development has become increasingly complex, necessitating robust methodologies and tools to streamline the process. Ultimate Scalable Monorepo Apps with Bazel serves as a comprehensive guide, offering in-depth insights into leveraging Monorepo and Bazel to enhance productivity and scalability. This book is structured to provide a logical progression, starting with foundational concepts and advancing to intricate techniques, catering to both newcomers and seasoned practitioners.

Chapters 1-5: The initial chapters lay the groundwork, introducing the Monorepo approach and Bazel’s pivotal role in this ecosystem. Readers will gain a clear understanding of th synergy between Monorepo and Bazel, appreciating how this combination simplifies dependency management, improves build times, and fosters collaboration.

Chapters 6-10: Subsequent chapters delve into practical applications, guiding users through setting up Bazel, configuring build rules, and implementing effective testing strategies within a Monorepo setup. These sections are designed to equip readers with the skills necessary to leverage Bazel’s full potential in real-world scenarios.

Chapters 11-14: Advanced topics are explored in the latter chapters, addressing the challenges of scaling, dependency management, and continuous integration in the context of Monorepos. The book also looks ahead, discussing future trends and the evolving landscape of Monorepo tooling, preparing readers to adapt to forthcoming changes in the industry. Through a blend of theoretical concepts, practical examples, and real-world case studies, this book aims to provide a holistic view of building and managing large-scale applications with Monorepo and Bazel, enabling developers and teams to harness these powerful tools to their fullest potential.

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/OrangeAVA/Ultimate-Monorepo-and-Bazel-for-Building-Apps-at-Scale

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/7tl9f8u

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction

Introduction

In this chapter, we will delve into the world of Monorepos and their significance in modern software development. We will start by gaining a comprehensive understanding of the Monorepo approach and how it ushers in a true era of continuous integration, breaking down the traditional silos that have plagued Polyrepo structures. We will explore the drawbacks of Polyrepo systems and contrast them with the numerous benefits that a Monorepo can offer. To appreciate the roots of Monorepos, we will take a brief journey through their historical evolution. Along the way, we will address common fears and challenges associated with implementing a Monorepo and discuss the transformative power of Bazel in Monorepo development. Delving into the history, features, and design logic of Bazel, we will help you grasp why it is such a valuable tool in this context. To guide your decision-making process, we will also discuss when to opt for a Monorepo and when it might not be the right fit, as well as when to choose Bazel and when it might not be the best choice. Lastly, we will provide a list of recommended readings to further enrich your knowledge in this exciting realm of software development.

Structure

In this chapter, the following topics will be covered:

	Understanding the Monorepo Approach

	The Power of Bazel in Monorepo Development

	When to Use Monorepo and When Not to Use it

	Bazel Features

Understanding the Monorepo Approach

A monorepository, often referred to as a Monorepo, is an approach to software development that involves managing distinct “code parts” with well-defined relationships within a single repository. These “code parts” can vary in granularity, from entire applications to intermediate-sized functional units such as business operations, or even individual architectural components.

While these sections may have dependencies, they typically maintain logical autonomy and are overseen by different teams. Each has clear dependencies on others, as well as on external libraries, resources, and similar elements.

[image:]

Figure 1.1: Application projects and its dependencies with common shared projects

Monorepos are not a silver bullet; there is no universal solution in software development. Yet, by the end of this book, you should understand the potential benefits of a monorepo, the challenges you might face, and whether it aligns with your organization’s needs.

In a monorepo setup, multiple projects are housed within one repository. These projects can depend on each other, enabling code sharing. When you make changes, there is no need to rebuild or retest every project in the monorepo. Instead, focus on rebuilding and retesting only the projects directly affected by your changes. This approach is often called “incremental builds”.

[image:]

Figure 1.2: Teams maintain one or more interdependent projects

Incremental builds grant teams within the monorepo a degree of independence. If two projects do not depend on each other, they remain shielded from one another’s impacts. One team can advance with development, testing, PR merges into the main branch, and other related activities without having to run code from the second team. While the second team might face challenges like unstable tests, poorly typed code, or broken code and tests, these issues will not disrupt the first team’s progress.

Welcome to the True Continuous Integration

A Polyrepo embodies the traditional approach to application development: each team, application, or project maintains its own repository. Generally, each repository yields one build artifact and adheres to a linear build pipeline. Polyrepo configurations often depend on previously published artifacts. Ideally, every repository integrates continuously (CI) with the latest version of its dependencies, facilitating smooth integration.

[image:]

Figure 1.3: At a Polyrepo, components are shared through published artifacts

In a Monorepo, all code changes (commits) belonging to the same code contribution (a complete and accepted feature) is viewed as a pull request, or a merge request in case of using the GIT version control system. These requests must synchronize with the most recent commit in the main branch, but there are similar concepts in other tools. This synchronization ensures that all internal dependencies match the current source code version, and external dependencies align with the newest globally defined version. This rigorous procedure ensures that code contributions integrate fully with the latest changes in the main branch.

Drawbacks of Polyrepo

The Polyrepo approach has gained traction in the industry largely because of a pivotal factor: team autonomy. Teams desire the liberty to choose their libraries, decide the timing of app or library deployments, and determine who can contribute to or use their code.

However, the challenge with Polyrepos is that autonomy often stems from isolation, which can impede collaboration. In contrast, a monorepo achieves autonomy by endorsing detailed project management, supporting incremental builds (as discussed earlier), and implementing pull-request continuous integration with both manual and automated approvals. These approvals might include tools like CODEOWNERS files, which assign specific individuals or groups as the custodians of the code in a repository. These custodians are involved during code contributions, especially when changes affect their projects.

In Polyrepo configurations, shared code typically requires a separate repository. Setting this up means configuring the necessary tools, establishing a CI environment, adding authorized contributors to the repository, and creating mechanisms for package publishing to allow dependencies from other repositories. Additionally, harmonizing conflicting versions of third-party libraries across repositories can be challenging.

Setting up a shared repository within a Polyrepo can be time-intensive. As a result, many teams might decide to create their own versions of common services and components within their respective repositories. While this might be expedient initially, it escalates the effort needed for maintenance, security, and quality control over time as these elements evolve.

Once a shared repository is operational, initiating cross-repository changes to shared libraries becomes an arduous task. Developers have to adjust their environments to enact these alterations across various repositories, each with its unique revision history. This requires significant coordination concerning versioning and package releases.

In a Polyrepo setting, teams often use their unique command sets for tasks such as testing, building, serving, linting, deploying, and more. This inconsistency adds cognitive load, as team members must recall the appropriate commands for different projects.

Benefits of Monorepo

Initiating new projects is streamlined to creating a folder paired with a project descriptor. These projects readily tap into the existing CI setup, negating the need to release versioned packages when all users are housed in the same repository.

In this cohesive setup, every component interacts seamlessly with each commit. As a result, modifications across various projects converge into a single atomic commit—changes are either fully implemented or not at all. This methodology dispels the notion of breaking changes as any concerns are addressed within the same commit.

Compatibility concerns stemming from projects using clashing versions of third-party libraries are eliminated. All such dependencies are precisely cataloged in a centralized, shared third-party dependency definition file. The threat of a library becoming obsolete due to team unavailability is reduced. Any team can modify a library version (subject to certain automated checks), and the CI system guarantees that all projects stay operational by running extensive unit tests—a safeguard ensured by unit testing.

Moreover, a monorepo fosters developer flexibility among teams. It instills a uniform approach to building and testing applications, even when they are developed using varied tools and technologies. Developers can contribute to projects overseen by different teams, ensuring their changes’ safety and compatibility.

A Bit of History

In version control systems’ early days, like CVS (Concurrent Versions System) and SVN (Subversion), separate repositories for individual software projects or components were the norm. This methodology was apt when software initiatives were largely compact and independent.

The rise of distributed version control systems, notably Git, in the mid-2000s, ushered in greater flexibility for developers. Git’s decentralized architecture empowered them to operate across multiple branches and repositories, simplifying collaboration on expansive codebases.

Google often receives credit for advancing the monorepo paradigm. Internally, they adopted an extensive monorepo around 2008, encompassing nearly all their software projects’ source code. This approach afforded Google more streamlined management of its vast codebase through an internal tool named Piper. The efficiencies, such as enhanced code sharing, unified dependency management, and standardized tooling, spotlighted by Google’s Monorepo, sparked intrigue in the wider developer community.

Subsequently, tech behemoths like Facebook, Twitter, and Microsoft embraced Monorepos. They discerned the perks of a consolidated repository to oversee their extensive codebases that spanned varied languages and platforms. To make Monorepos more palatable for entities beyond these giants, a slew of open-source tools and frameworks emerged. These include Gradle Build Tool (by Gradle, Inc), Lage (by Microsoft), Lerna, Nx (by Nrwl), Pants (courtesy of the Pants Build community), Rush (by Microsoft), and Turborepo (by Vercel).

The Monorepo methodology has steadily carved a niche within the developer community. Numerous entities, from start-ups to conglomerates, have transitioned to Monorepos, optimizing their development workflows and bolstering code sharing. The Monorepo discourse remains dynamic, with ongoing deliberations on best practices, tool enhancements, and strategies to navigate the intricacies of vast Monorepos.

Typical Fears about Monorepos

In this section, we will address some of the common apprehensions and concerns that software developers often have when considering the adoption of Monorepos, shedding light on the practical solutions and benefits that can alleviate these typical fears.

Scalability Concerns with CI Cycles

The Polyrepo approach often results in extended CI cycles, requiring complete rebuilds and retests for each commit—a decidedly non-scalable method, especially with numerous projects. However, adopting a monorepo paired with incremental build tools lets you rebuild and test only the segments affected by changes. While this method offers improved scalability, it is not a magic fix. For large repositories comprising numerous extensive applications, you might experience delays when making changes impacting multiple dependencies. While such scenarios are not frequent, they may necessitate leveraging multiple machines, also referred to as remote workers, to streamline the CI process.

Potential Git Limitations

There is a valid concern that standard Git tools may struggle with repositories comprising millions of files. Yet, it is vital to recognize that most Monorepos do not house thousands of applications. They typically comprise a handful of applications by a singular organization, housing thousands of files with millions of lines of code. Under these conditions, most tools can efficiently handle the workload.

Monolithic Deployment Concerns

A prevalent misconception is equating a Monorepo with forced simultaneous binary releases, based on the thought that “Monoliths are disadvantageous”. The source of this code and deployment considerations are two separate entities. Ideally, CI/CD best practices involve constructing and storing artifacts during the CI phase, deploying these stored items across various environments during deployment. Thus, accessing a repository should not be a requirement during deployment. Emphasizing, a Monorepo does not equate to a monolithic structure. Monorepos enable easy code sharing and inter-project refactoring, simplifying the process of developing libraries, microservices, and micro-frontends. This setup can offer greater deployment flexibility.

Unauthorized Code Changes

The fear that anyone can modify code within a Monorepo, potentially jeopardizing a team’s application without their knowledge, originates from an over-reliance on repository-level permissions. Several tools enable folder-level ownership settings. For instance, GitHub and other Git platforms provide a feature termed CODEOWNERS, allowing structured file creation as follows:

domains/domain-1/* @john

tools/scripts/* @peter

With the specified configuration, a pull request modifying domain-1 necessitates John’s approval. If it is solely about scripts, then Peter must give the nod. However, for pull requests touching both domain-1 and scripts, approvals from both John and Peter are essential.

This system enhances control over code ownership. To further understand its efficacy, consider the following example:

[image:]

Figure 1.4: Project visibility in Monorepo helps to manage sharing between teams

In this example, the Dev Team 1 shares an API definition project between its frontend and backend projects. This API definition project is intentionally private, as both teams aim to preclude other teams from leveraging it. This choice stems from a desire to evade undue inter-team dependencies. If Dev Team 2 wants to use this API definition, it would obligate Dev Team 1 to accommodate additional requirements during modifications to the shared library.

In a Polyrepo environment, nothing deters teams from adding “api-definitions” to their dependency file (package.json, pom.xml, and so on). The dilemma? Dev Team 1 remains uninformed as these additions occur in an external repository. Contrastingly, most Monorepo tools, Bazel included, allow for precise library visibility delineation.

Monorepo is going to turn into a project’s spaghetti (dependency entanglement), making it challenging to comprehend and maintain applications

There is a prevalent misapprehension that Monorepos inevitably lead to entangled project structures. It is true that in numerous repositories, any given file could technically import another. While structured approaches do emerge through code reviews, these can deteriorate over time, resulting in intricate dependency networks.

For clarity, envision a medium-scale project. Chart out its component dependencies. Upon juxtaposing this with the actual repository, you may discern several surprising interconnections.

However, Monorepos empower developers to construct libraries with clear public APIs. The streamlined library creation process encourages more frequent library usage. Hence, a typical app often gets segmented into multiple libraries, interacting solely via their public APIs.

Monorepos endorse software modularization and detailed granularity. Their structure simplifies both the initiation of new projects and the refactoring of existing ones, particularly when expansion necessitates splitting.

Typical Challenges in Implementing a Monorepo

Implementing a Monorepo is not a smooth journey. Monorepos have their own challenges, and these are the most common ones.

Onboard development teams to new methods and tooling

Introducing new methods and tools typically comes with a learning curve. Developers must invest time and effort to grasp how these tools function and how they integrate into their workflow. This learning curve can impede productivity during the initial stages. People, in general, are often resistant to change, and developers are no exception. Many are accustomed to their current tools and methods, and introducing new ones can encounter resistance, potentially reducing morale and efficiency.

Integrating new tools and approaches with existing processes can be challenging. A seamless transition might necessitate adjustments to established workflows, and these changes might face opposition from team members set in their ways. Onboarding teams to fresh techniques and tools often demands more resources, like time for training and expertise to oversee the transition. Scarce resources can hinder the onboarding process.

Transitioning to novel methods and tools might interrupt ongoing projects. There might be concerns about potential delays or errors during the induction period. Compatibility challenges between new tools and current systems can pose significant obstacles. It is vital to ensure that new tools mesh well with the existing tech stack. Veteran developers, having profound knowledge of the prevalent tools, may oppose changes they deem superfluous or intrusive.

If the advantages of embracing new tools are not lucidly conveyed or do not offer evident value, team members might hesitate to adopt them. It is pivotal to offer ample training and sustained support for a smooth transition. Lack of adequate training or support can culminate in frustration and reluctance.

Choose the good “Go to Monorepo” strategy

Start by evaluating the scope of your projects. Decide which projects will pioneer the Monorepo approach and establish a roadmap for the rest. Monorepos thrive when handling multiple interconnected projects or components benefiting from shared code. Ensure your projects genuinely demand the integration and code sharing that monorepos provide. When selecting projects, account for your team’s structure and dynamics. Monorepos excel for teams on intertwined projects where collaboration and shared code are paramount.

For every project earmarked for migration, scrutinize your development workflow and procedures. Ascertain if a monorepo aligns with your current CI/CD pipelines and tools. The chosen strategy should enhance your workflow, not impede it. Also, gauge your codebase’s complexity. Projects with intricate interdependencies or significant reliance on shared code can find management simplified in a Monorepo. However, if your codebase is monolithic or made of broadly structured modules, consider refactoring into more detailed components.

Another vital aspect is versioning requirements. Monorepos typically necessitate a versioning system capable of managing distinct components separately. Determine if your team requires detailed version control for various code sections. The Monorepo structure’s design critically influences project scalability. As the codebase grows, Monorepos risk becoming cumbersome. Choose a Monorepo approach that can handle future expansion without significant performance hindrances. Be prepared for continuous refactoring during the Monorepo’s lifespan to optimize its structure.

Examine the tooling and support available for your strategy. Tools and frameworks tailored for Monorepos can simplify both the transition and ongoing management. Explore the presence of these tools within your organization’s ecosystem.

Transitioning to a Monorepo or a new methodology necessitates a shift in team culture and practices. Ensure your team embraces this shift, and you have laid out a robust change management plan. A Monorepo promotes long-term code consistency across projects. Ensure your strategy mirrors your organization’s long-term vision.

Lastly, remain receptive to experimentation and iterative approaches. The choice between Monorepo and Polyrepo isn’t set in stone. Experiment with one strategy and pivot to another if it aligns more with your evolving requirements.

Introduce Trunk-based Development

Monorepos typically do not synergize well with long-lived feature branches. As a result, you might need to adopt a trunk-based development variation and regularly employ git rebase. Transitioning to this style can be challenging for some teams as it introduces new practices, like feature toggles.

Trunk-based development is a strategy focusing on simplicity, collaboration, and swift delivery. At its heart, it pushes for continuous code integration into a shared branch, known as the trunk or main branch. This method contrasts with long-lived feature branches, where developers work separately for extended durations before merging into the primary codebase.

With trunk-based development, code changes are integrated into the main branch frequently, sometimes multiple times daily. This keeps the main branch updated and stable. Developers are urged to commit small, incremental changes, which eases code reviews, minimizes integration conflicts, and facilitates swift issue detection and resolution. Essential to this approach is automated testing. Automated tests run persistently, offering immediate feedback on code quality and correctness. Feature toggles or flags enable selective activation or deactivation of certain code features, allowing incomplete or experimental features to remain hidden until ready for release. This strategy enhances collaboration as developers consistently work on the main branch, with the absence of long-lived branches spurring more frequent code reviews.

Benefits of trunk-based development include:

	Continuous delivery of new features and fixes.

	Reduced software product time-to-market.

	Minimized merge conflicts due to frequent, smaller merges.

	Early issue detection and resolution, curtailing defect-fixing costs.

	Elevated collaboration from a unified codebase.

	Improved code quality and sustainability from concise commits and continuous testing.

However, implementing trunk-based development might mean:

	Transitioning from feature-branch workflows, necessitating culture and practice shifts, including adopting feature toggles.

	Handling complexities as developers use toggles to hide unfinished features.

	Investing significantly in automated testing infrastructure since continuous testing demands ample resources.

Trunk-based development is considered to promote superior code quality and development pace, regardless of repo size. Still, it requires careful consideration. For instance, if you are on a feature branch and the trunk branch (also known as “master” or “main”) gets new commits, rebasing your feature branch onto the main can position your work post those commits.

As for git rebase, it is a Git command allowing changes from one branch to be “reapplied” onto another. It is particularly useful in refining commit history and integrating branch changes. Rebasing maintains a linear commit history, unlike merging. While rebasing might encounter conflicts, they can be resolved before the process continues. Crucially, rebasing alters commit history. Pushed commits that are later rebased can create divergent histories, leading to potential confusion. It is wise to rebase only unpushed commits to shared repositories.

Mind the gap between Monorepo and your current tooling ecosystem

Adopting a Monorepo in an organization can yield significant advantages, but it is not without hurdles, especially when incorporating existing tools not tailored for Monorepos. A primary concern is ensuring tools, like static code analyzers (SonarQube, Find Bugs, and ESLint) or security linters (Fortify, Checkmarks, Veracode), mesh with the Monorepo structure. Many classic tools presume single-repository settings, making their integration into Monorepos potentially intricate and lengthy. Bringing in non-Monorepo tools often means custom development or outsourcing, leading to added time, cost, and potential vulnerabilities.

Reconfiguring CI/CD pipelines for Monorepos is essential. This may involve unique scripts or CI/CD tools adept at managing a Monorepo’s multifaceted build and deployment needs. Tools like Bazel, for instance, need a shared remote cache for all CI workers to bypass full rebuilds and effective repository management across CI cycles. Automated tests must be robust, ensuring a change in one component does not inadvertently disrupt another. Dependency management, especially across various languages or platforms, requires careful handling, and robust version control is crucial. As Monorepos expand, so do concerns over performance. Entire codebase operations can become time-consuming, demanding swift build and deployment techniques to counteract potential lags. Simultaneous issues across various components can complicate monitoring and debugging, necessitating proficient diagnostic tools and practices.

A Monorepo’s introduction can mandate a shift in development culture and practices. Teams may need to embrace new methods like trunk-based development or feature toggles, which might encounter resistance. Promoting effective team collaboration within the monorepo setting can be daunting, especially for those accustomed to secluded workflows. Therefore, clear code-sharing and ownership protocols are indispensable.

For a successful transition to Monorepos, organizations should meticulously plan their shift. This entails evaluating tool compatibility, making necessary tool adjustments or swaps, and ensuring teams have ample training and support. The long-term benefits of enhanced code sharing, efficient collaboration, and streamlined dependency management can make navigating these hurdles well worth the effort.

Deal with large-scale changes

Monorepos offer a streamlined mechanism for executing extensive changes in specific contexts. When refactoring various applications made of multiple libraries, a Monorepo ensures that every component operates seamlessly before finalizing the alteration.

Yet, Monorepos demand a nuanced strategy for sweeping changes, occasionally complicating certain processes. For instance, modifying a shared library affects every application dependent on it. If such a change is drastic and lacks automation, it necessitates backward-compatible adjustments. This means introducing dual versions of parameters, methods, classes, or packages and directing users to transition from the legacy version to the updated one.

The Power of Bazel in Monorepo Development

Monorepo development, which involves managing multiple projects or components within one version control repository, has earned substantial traction recently. Its capacity to enhance collaboration, promote code sharing, and refine dependency management sets it apart. Yet, with the growth and intricacy of monorepos, overseeing the build process across multiple programming languages and platforms can become overwhelming. Enter Bazel, the build tool tailored for such challenges.

[image:]

Figure 1.5: Bazel in monorepo development

Bazel’s prowess is particularly evident in the realm of Monorepo development, especially when juggling multiple programming languages and platforms. Key attributes, such as its language-neutral approach, hermeticity, adept dependency management, comprehensive platform support, and emphasis on incremental builds and scalability, render it a top pick. Organizations aiming to tap into Monorepo advantages without compromising on build efficiency and dependability will find Bazel indispensable. In harnessing Bazel, development squads can sustain a unified and efficient workflow, supporting remote execution, even amidst the most multifaceted code environments.

A Bit of History

Bazel’s origins trace back to Google’s in-house tool, Blaze, developed in the mid-2000s. Created to tackle the mounting scalability and efficiency challenges of a rapidly expanding Google, Blaze introduced groundbreaking features. Notable among them were hermetic builds, ensuring build isolation from host environments, and a distributed caching mechanism, minimizing redundant build tasks.

In 2015, Google offered a slice of Blaze to the public, branding it “Bazel.” This open-source venture aimed to share Google’s scalable and reproducible build proficiency with the wider developer community.

The software realm soon noticed Bazel’s robust build, testing capabilities, and multilingual support. Recognized projects like Kubernetes and TensorFlow integrated Bazel into their build and test operations. Bazel’s developers kept broadening its linguistic scope, enhancing its appeal for polyglot projects. With contributions pouring in from diverse sectors, while Google remained a primary contributor, Bazel morphed into a collaborative open-source initiative.

In CI/CD pipelines, Bazel’s merits shine. Its commitment to hermetic, reproducible code building and testing complements contemporary software development ethos. Industry giants like Uber, Dropbox, and Pinterest have incorporated Bazel into their tech stack, signifying its pivotal role in sophisticated software infrastructures. With Bazel continually adapting to the dynamic software milieu, Google and its community persistently roll out enhancements, refining its capabilities, and expanding its versatility.

Bazel Features

Bazel is a distinguished build system created especially for Monorepos. It champions the principles of efficiency, scalability, and reproducibility in software development. Notably, it finds its niche in dealing with expansive codebases and intricate projects. Here are the core features that define Bazel’s proficiency in building and overseeing software ventures:

	
Local Computation Caching: This refers to Bazel’s adeptness in preserving and repurposing the outcomes of file and task operations. For individuals operating on the same computer, there is no necessity to redo builds or tests for the same tasks. When a specific command is given, it gets executed initially, caches the result, and subsequent invocations utilize this cached outcome.

	
Local Task Orchestration: Bazel is equipped to orchestrate tasks in a sequential as well as concurrent manner.

	
Distributed Computation Caching: This feature ensures that cached results are spread across varied environments. In essence, within an entire organization, including the CI agents, redundant builds or tests for similar components become obsolete.

	
Distributed Task Execution: Bazel can disseminate a command over several machines, all while preserving the feel of operating it on a singular machine. It is noteworthy that Bazel’s application here is incredibly sophisticated, capable of managing repositories with billions of code lines. Yet, setting it up might pose certain complexities.

	
Transparent Remote Execution: Bazel boasts the ability to unobtrusively run commands across multiple systems during local development, a unique trait that distinguishes it from its counterparts.

	
Impact Analysis: By assessing the potential ripple effect of changes, it permits the targeted execution of build and test processes for the impacted entities. Bazel might not natively offer this, but tools like target-determinator exploit Bazel’s query language to fill this void.

	
Workspace Analysis: Bazel has the prowess to fathom the project structure within the workspace sans extra configurations. Though Bazel expects developers to craft BUILD files manually, several firms have pioneered tools to auto-generate these files by scrutinizing the workspace content.

	
Dependency Visualization: With Bazel, one can visualize project/task interdependencies through graphical illustrations. This interface is interactive, bolstered by Bazel’s proprietary query language, ensuring precise information sifting.

	
Code Segmentation: Bazel facilitates easy sharing of code segments. Any directory can be flagged as a project and shared. This sharing is anchored by Bazel’s build protocols, promising a seamless developer interaction.

	
Uniform Tooling: Regardless of the tech stack—be it diverse JavaScript frameworks or languages like Go, Rust, and Java—Bazel guarantees a consistent experience. Its extensible nature, empowered by build rules, functions much like modules catering to varied tech landscapes.

	
Code Generation: While tools like NX or Pants natively support code generation, Bazel, in contrast, taps into external generators, offering a broader scope.

	
Project Regulation and Visibility: Bazel allows the crafting of rules to dictate dependency pathways within a repository. Developers have the liberty to earmark projects for their teams exclusively. Plus, tech-based categorization ensures no overlap between backend and frontend components. Bazel’s visibility protocols ensure a clear demarcation between what is shared and what is private.

Wrapping up, Bazel stands tall as a formidable build system addressing the nuances of today’s software development landscape. With its unwavering commitment to performance, reproducibility, and adaptability, it has won the favor of entities with sizable and multifaceted code repositories. Be it a Monorepo, a multi-language endeavor, or a distributed workforce, Bazel’s arsenal promises to elevate the development process, ensuring impeccable and swift builds.

Understanding the Logic Behind Bazel’s Design

Bazel is not just another build system; its foundational philosophy distinguishes it in a crowded ecosystem. To truly appreciate Bazel’s uniqueness, it is pivotal to grasp the foundational principles steering its design, including:

	
Reproducibility: A non-negotiable principle for Bazel. It understands the significance of consistent build results across varied settings. This is accomplished through rigorous dependency tracking and hermetic builds, ensuring they remain untouched by external influences.

	
Scalability: Tailored for heft and complexity, Bazel is adept at managing voluminous code repositories. Conceived with Google’s colossal repositories in mind, its intrinsic design and caching facilities seamlessly support projects sprawling across thousands of developers.

	
Incrementality: At Bazel’s heart lies the ethos of incremental builds. With every code modification, it meticulously recompiles and tests only those segments directly impacted, slashing build durations, especially for hefty codebases.

	
Polyglot Support: In acknowledging the diverse linguistic tapestry of modern software development, Bazel natively accommodates an array of programming languages. Its adaptability extends to welcoming additional languages when the need arises.

	
Flexibility and Extensibility: Bazel’s build doctrines are articulated in Starlark, reminiscent of Python. This design choice empowers developers to craft project-specific build rules. Moreover, its malleable nature welcomes third-party integrations, enriching its capabilities.

	
Hermeticity: Bazel’s allegiance to hermeticity ensures builds are insulated from host environments, relying solely on explicitly stated dependencies. This strategy amplifies the consistency, reliability, and repeatability of builds.

	
Parallelism: Bazel’s prowess in exploiting parallelism is unparalleled. Whether it is distributing tasks across multiple cores or spanning multiple machines, it optimizes build periods and boosts efficiency.

	
Dependency Analysis: With sophisticated dependency scrutiny, Bazel meticulously discerns and traces dependencies. This precision is vital to pinpoint elements requiring rebuilds following changes, reinforcing its incremental build prowess.

	
Community and Collaboration: Bazel is nurtured by a robust open-source community. A mosaic of contributors from myriad organizations fuels its evolution, ensuring it benefits from a plethora of insights and experiences.

To encapsulate, Bazel’s approach is shaped by its unwavering commitment to core software development tenets like reproducibility, scalability, and incrementality. It is designed to cater to the demands of expansive, intricate, and multilingual software ventures without compromising on dependability and efficiency. Bazel’s steadfastness to these ideals has cemented its position as an indispensable ally for developers and organizations, regardless of project size.

When to Use a Monorepo

You want to opt for Monorepo if you identify the following needs:

	
Simplified Dependency Management: If multiple projects share common dependencies, a Monorepo can simplify dependency management, ensuring that every project is using the same version of a shared library.

	
Atomic Changes Across Projects: If there are changes that need to be made atomically across multiple projects, a Monorepo can make this easier, as you can modify multiple projects in a single commit.

	
Code Sharing and Reusability: It becomes simpler to share code across projects in a Monorepo. This can encourage more modular and reusable code.

	
Easier Refactoring: When you refactor shared code or libraries, it is easier to do in a Monorepo because you can instantly see and update all the places where it’s used.

	
Unified Versioning: With a Monorepo, you can have a single version number for all the projects. This makes it straightforward to understand which versions of different projects are compatible.

	
Improved Collaboration: Developers can work across multiple projects without switching between different repositories. This can improve team collaboration, as it is easier to coordinate and understand the broader ecosystem.

When Not to Use a Monorepo

Be careful choosing a Monorepo if you find the following scenarios:

	
You are unable to refactor applications: As your codebase grows, build times and tooling can become slower, especially if not optimized for a Monorepo structure. This can lead to longer test and integration times.

	
You do not have enough collaboration with other involved teams: Having everything in one place can be overwhelming, especially for new developers who might not need to know about all parts of the system.

	
Tighter Coupling: While not inherent to monorepos, there is a risk that projects can become more tightly coupled, making them harder to split apart in the future.

	
Security Concerns about reading all the available code: In a Monorepo, everyone typically has access to all the code. This can be a security risk if certain projects have more sensitive code.

	
Vendor Tooling: Some version control systems (like Git) might not perform well with extremely large repositories, though there are tools and strategies (like Git’s sparse checkout) to mitigate these issues.

	
Overhead in CI/CD and you do not have enough collaboration with DevOps teams: Continuous integration and deployment can become more complex as you will need to determine which projects need to be rebuilt and redeployed based on the changed files.

The decision to use a monorepo depends largely on the specific needs and challenges of your projects and team. Some large organizations like Google, Facebook, and Twitter use Monorepos effectively, while others prefer a more modular approach with multiple repositories.

It is essential to weigh the pros and cons and consider factors such as the size of your team, the interconnectedness of your projects, your CI/CD setup, and your overall development workflow.

When to Use Bazel

Bazel is more than just a tool; it is a specialized solution designed to address challenges that surface when an organization hits certain growth ceilings. When faced with these unique challenges, Bazel stands out as arguably the best solution available.

Though Bazel’s adoption comes with a significant cost, contributions from industry giants like Google, Apple, Twitter, VMWare, Alibaba, Tencent, Adobe Cloud, Uber, Lyft, SpaceX, Spotify, Pinterest, Tinder, and Reddit are rapidly reducing this barrier. However, it is worth noting that Bazel might not be the most suitable choice for smaller teams, such as a startup with a handful of engineers.

The journey of transitioning to Bazel is becoming less daunting, thanks to an influx of resources. The tech community is seeing a surge in open-source tools, extensive documentation, tech talks, and blog posts focusing on Bazel migration. Moreover, professional services are emerging to assist with Bazel infrastructure setup, crafting custom build rules, and training teams to decipher Bazel’s intricate functionalities.

Choosing to adopt Bazel should always be a pragmatic decision, grounded in the needs of your organization. It is crucial to resist the allure of technological hype or the fear of missing out. Instead, take a close look at your business operations and development process. Identify any bottlenecks, hypothesize solutions, and if Bazel appears to be the missing piece to your puzzle, then consider integrating it into your workflow.

When Not to Use Bazel

Bazel is an undeniably powerful building and CI solution, best suited for large and complex projects. However, it might not be the best fit for every team or project. Let us delve into scenarios where Bazel might not be the ideal choice:

	
Small Teams and Startups: If you are working within a small team, managing a simple project, or navigating the early stages of a startup, Bazel’s inherent complexities might outweigh its advantages.

	
Resource Implications: Adopting Bazel is not just about using a tool. It demands a strategic recruitment plan to onboard Bazel experts. Additionally, you must invest in training programs to familiarize your current team with Bazel. Infrastructure also comes into play, as running Bazel at scale requires specific setups. In some cases, you might even need to build custom software to fully harness Bazel’s capabilities.

	
Single Programming Language Projects: If your project revolves around a single programming language, particularly one that already boasts robust building tools, Bazel might be overkill. Languages like Go come with native building tools, while languages like Python have a plethora of effective external building tools available.

Bazel’s strength shines in large-scale, intricate projects. However, for many scenarios, especially those on a smaller scale, the associated complexities and overheads might not justify its adoption. It is crucial to evaluate your project’s unique requirements, gauge your team’s familiarity with the tool, and consider long-term maintenance aspects before committing to a build system.

Conclusion

In this chapter, we learned that while monorepos come with challenges like the need for stricter trunk-based development, specialized CI/CD pipelines, and careful consideration of large-scale changes, they offer significant advantages. These benefits include ensuring all code works together at each commit, facilitating cross-functional code verification, promoting modularity, simplifying dependency management, streamlining toolchain setup, and enhancing developer experience with workspace-aware code editors and IDEs. Additionally, monorepos provide more deployment flexibility, enable granular ownership policies, and offer improved code structure, all while scaling well using familiar tools. Ultimately, the decision to adopt a monorepo structure depends on your specific needs and priorities, but the potential benefits are undeniable.

In the next chapter, we will embark on a journey to demystify Bazel, empowering software developers to harness its full potential for efficient and reproducible builds.

Recommended Readings

	Monorepo
https://monorepo.tools/

	Benefits and Challenges of Monorepo Development Practices | CircleCI
https://circleci.com/blog/monorepo-dev-practices/

	Understanding Monorepos. Introduction | by Roman Sypchenko | Medium
https://medium.com/@r.sipchenko/understanding-monorepos-ad9c4ac7b504

	What is Monorepo? (and should you use it?) - Semaphore
https://semaphoreci.com/blog/what-is-monorepo

	Understanding Monorepos - Ionic Blog
https://ionic.io/blog/understanding-monorepos

	Monorepos in Git | Atlassian Git Tutorial
https://www.atlassian.com/git/tutorials/monorepos

	Misconceptions about Monorepos: Monorepo != Monolith | by Victor Savkin | Nx Devtools
https://blog.nrwl.io/misconceptions-about-monorepos-monorepo-monolith-df1250d4b03c

	About Code Owners - GitHub Docs
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners

	Go Monorepo with Bazel - Uber
https://www.uber.com/en-IN/blog/go-monorepo-bazel/

	How We Designed our Continuous Integration System to be more than 50% Faster
https://medium.com/pinterest-engineering/how-we-designed-our-continuous-integration-system-to-be-more-than-50-faster-b70a59342fe2

CHAPTER 2

Getting Started with Bazel

Introduction

With our current understanding of the key concepts, we are well-prepared to navigate the world of Monorepos and see Bazel’s role as the primary tool for incremental builds. This chapter will guide you through setting up Bazel in your local development setup, followed by a thorough exploration of Bazel’s fundamental components.

Structure

In this chapter, the following topics will be covered:

	Installing and Setting Up Bazel

	Bazel Basics: Targets, Workspaces, and BUILD Files

	Building Your First Bazel Project (Java)

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewers

		Acknowledgements

		Foreword

		Preface

		Errata

		Table of Contents

		1. Introduction
		Introduction

		Structure

		Understanding the Monorepo Approach
		Welcome to the True Continuous Integration

		Drawbacks of Polyrepo

		Benefits of Monorepo

		A Bit of History

		Typical Fears about Monorepos

		Typical Challenges in Implementing a Monorepo

		The Power of Bazel in Monorepo Development
		A Bit of History

		Bazel Features

		Understanding the Logic Behind Bazel’s Design
		When to Use a Monorepo

		When Not to Use a Monorepo

		When to Use Bazel

		When Not to Use Bazel

		Conclusion

		Recommended Readings

		2. Getting Started with Bazel
		Introduction

		Structure

		Installing and Setting Up Bazel
		Installing Bazelisk

		Building Your First Bazel Project (Java)

		Bazel Basics
		WORKSPACE File

		BUILD Files

		Build Rules

		Targets

		Labels

		Packages

		Queries

		Dependencies

		Bazel Sandboxing

		Conclusion

		Recommended Readings

		3. Bazel Build Rules and Configuration
		Introduction

		Structure

		Exploring Bazel’s Rule-based Build System
		Your First Bazel Rule

		Dissecting a Core Bazel Rule

		Customizing Build and Compilation Rules
		Key Components in Rule Creation

		Solving any Custom Needs not Served by Default Rules

		Writing and Executing a Genrule

		Bazel Configuration
		WORKSPACE File

		BUILD File

		Bazel Flags

		.bazelrc File

		Location

		Syntax

		Best Practices

		Commonly Used Options

		Conclusion

		Recommended Readings

		4. Testing Strategies in a Monorepo
		Introduction

		Structure

		Testing Strategies in Bazel
		Efficient Testing Strategies

		Scalable Testing Strategies

		Implementing Testing Strategies

		Writing and Running Unit Tests with Bazel
		Managing Multiple Unit Tests

		Reporting Unit Test Coverage

		Performance Testing

		User Acceptance Tests (End-to-end)

		Achieving Test Isolation and Parallelism
		Test Isolation

		Test Parallelism

		Conclusion

		Recommended Readings

		5. Dependency Management and Versioning
		Introduction

		Structure

		Managing Internal and External Dependencies
		Internal Dependencies

		Best Practices

		External Dependencies

		Conflict Resolution

		Bazel MODULES: A Modern Way for Handling External Dependencies
		Declaring Dependencies with MODULES

		Configuring an Air-Gapped Bazel Build

		Enforcing Versioning and Compatibility in a Monorepo
		Querying Dependencies and Getting Graphs

		Integrating Bazel Within an IDE

		Conclusion

		Further Readings

		6. Hello-World Using Other Languages and Platforms
		Introduction

		Structure

		Android/Kotlin
		Setting up Your Android/Kotlin Bazel Project

		Organizing Your Android App

		Building and Running Your Android App

		Best Practices Using Android/Kotlin in Bazel

		Python
		Setting up Your Python Environment

		Organizing Your Python Project

		Building and Running Your Python App

		Best Practices Using Python in Bazel

		NodeJS/Typescript
		Aspect Build

		Setting up your NodeJS/Typescript Environment

		Organizing Your NodeJS/Typescript Project

		Building and Running Your NodeJS/Typescript App

		Best Practices Using NodeJS/Typescript in Bazel

		Golang
		Setting up Your Golang Environment

		Organizing Your Golang Project

		Building and Running Your Golang App

		Best Practices Using Golang in Bazel

		iOS
		Setting up Your iOS Environment

		Organizing Your iOS Project

		Building and Running Your iOS app

		External Dependencies

		Using iOS Best Practices in Bazel

		Conclusion

		Recommended Readings

		7. Streamlining Development Workflow
		Introduction

		Structure

		Code Contribution Workflows
		Feature Branching

		GitFlow

		Trunk-based Development

		Setting Up Continuous Integration with Bazel

		Enabling a Sort of Local CI with Bazel

		CI Worker Set up Models
		Ephemeral Workers

		Single Stateful Worker

		Multiple Stateful Workers

		Hot-pool of Workers

		Sharded Worker Sets

		Remote Build Execution

		Conclusions About CI Worker Models

		Managing Code Quality Tools
		Formatting

		Linting and Static Code Analysis

		Conclusion

		Recommended Reading

		8. Structuring Monorepos for Success
		Introduction

		Structure

		Designing an Effective Monorepo Layout
		Directory Structure Best Practices

		Code Sharing and Reusability

		Testing Strategies

		Centralized Configuration Management

		Refactoring and Code Maintenance

		Security Considerations

		Common Pitfalls and Ways to Avoid Them

		Organizing Code into Packages and Modules

		Naming Conventions for Packages and Modules

		Conclusion

		Recommended Reading

		9. Managing Large Codebases and Scale
		Introduction

		Structure

		Dealing with Large Monorepo Codebases
		Managing Internal and External Dependencies

		Integration of Code from Other Repositories

		Handling Third-Party Libraries

		Advanced Modularization Strategies

		Code Sharing and Reuse

		Efficient Code Organization and Readability

		Managing Inter-Module Dependencies

		Advanced Strategies for Collaborative Environment Management

		Refining Branching, Merging, and Code Review Practices

		Minimizing Merge Conflicts and Build Breakages

		Navigating Common Challenges

		Upkeeping Bazel Build Configurations

		Debugging Build Issues

		Best Practices and Common Pitfalls

		Performance Optimization for Monorepo Builds
		Setting Up and Configuring RBE for Large-Scale Monorepos

		Strategies for Cache Management and Sharing

		Utilizing Bazel’s Profiling Tools to Identify Bottlenecks

		Analyzing Build Performance Data to Pinpoint Inefficient Patterns and Configurations

		Advanced Caching Techniques

		Parallelism and Resource Management

		Dynamic Build Graph Optimization

		Developing Custom-Build Rules for Performance-Critical Scenarios

		Optimizing Existing Build Rules for More Efficient Execution

		Performance Optimization for Monorepo Builds

		Writing Efficient Starlark Code

		Profiling and Optimizing Starlark Scripts

		Structuring Monorepos in Version Control Systems

		Managing Source Code Changes

		Conclusion

		Recommended Reading

		10. Building and Deploying Services
		Introduction

		Structure

		Optimizing Container Images Builds
		Fine-grained Targets

		Use of OCI Images

		Layered Approach

		OCI Image Building and Exporting

		Parallelization and Caching

		Running the Example

		API Dependency Management in Microservices
		Managing Transitive Dependencies

		API Versioning Strategies

		Automated Dependency Updates

		Software Configuration Management

		Orchestrating Microservices in a Monorepo
		Advanced Microservice Orchestration Techniques

		Feature Toggling

		Monitoring and Scaling Microservices

		Conclusion

		Recommended Reading

		11. Monitoring and Debugging Bazel
		Introduction

		Structure

		Monitoring Bazel Performance
		Interpreting Profiling Data for Performance Bottlenecks

		Utilizing Custom Scripts to Parse and Analyze Profile Data

		Utilizing Command Line Tools to Analyze Profile Data

		Visualizing Profiling Data

		Understanding and Utilizing Bazel’s BEP

		Converting BEP Output to Prometheus-friendly Format

		Developing Automated Tests for Performance Regressions

		Implementing Benchmarks and Performance Baselines

		Continuous Monitoring of Performance Metrics

		Advanced Usage of Remote Caching and Execution
		Monitoring Remote Cache Hit Rates

		Diagnosing Cache Misses and Inefficiencies

		Optimizing Remote Execution Performance

		Debugging Techniques for Bazel Rules
		Step-by-step Approach for Debugging Custom Bazel Rules

		Utilizing Starlark’s Debugging Capabilities

		Best Practices for Logging and Error Handling in Rule Development

		Performance Tuning for Large-scale Monorepos
		Divide and Conquer

		Advanced Configuration Settings for Improved Scalability

		Case Studies on Performance Improvements in Complex Projects

		Conclusion

		Recommended Reading

		12. Advanced Bazel Concepts
		Introduction

		Structure

		Comprehensive Exploration of Caching

		Publishing Your Own Bazel Rules

		Migrating a Maven Project to Bazel

		Hermeticity

		Bazel Hot Reload

		Building Custom Toolchains

		Aspects

		Aliases

		Exploring Experimental Bazel Features

		Conclusion

		Recommended Reading

		13. Case Studies and Real-World Examples
		Introduction

		Structure

		Case Study 1: Building a Full Stack Digital Service
		Motivation for Adopting Bazel

		Implementation Strategy

		Challenges and Solutions

		Results and Impact

		Lessons Learned

		Future Plans and Considerations

		Outcome

		Case Study 2: Building a Serverless Service Platform
		Motivation for Adopting Bazel

		Implementation Strategy

		Challenges and Solutions

		Results and Impact

		Lessons Learned

		Future Plans and Considerations

		Outcome

		Case Study 3: Using Bazel in a Developer Hub
		Motivation for Adopting Bazel

		Implementation Strategy

		Challenges and Solutions

		Results and Impact

		Lessons Learned

		Future Plans and Considerations

		Outcome

		Conclusion

		14. Future Trends and Considerations
		Introduction

		Structure

		Evolving Practices in Monorepo Development
		Integrating AI and Machine Learning in Bazel Builds

		Enhanced Remote Caching and Execution Strategies

		Advanced Dependency Management Techniques

		Security Enhancements in Monorepo Infrastructure

		Fostering Collaboration through Enhanced Code Review and Integration Practices

		Sustainable Development Practices in Monorepo Management

		The Road Ahead for Bazel and Monorepo Tooling
		Bazel’s Modular Dependency Management: Bzlmod

		Planned Features for Bazel 7 and Beyond

		The Future Path: Bazel 8 and 9

		Implications for Monorepo Tooling

		Considerations for Future Development

		Anticipating Challenges and Adapting Strategies
		Migration to Bzlmod

		Enhanced Performance and Caching

		Expanded Language and Platform Support

		Robust Extension Model

		Adapting to Continuous Updates

		How to Migrate Existing Projects from Bazel 6

		Recommended Readings

		Conclusion

		APPENDIX A Bazel Cheat Sheet
		Quick Reference Guide to Bazel Terminology

		Quick Reference Guide to Bazel Commands
		Bazel Command Structure

		Core Commands

		Advanced Commands

		APPENDIX B Additional Resources
		Recommended Books

		Online Communities
		Understanding Bazel and Monorepo Communities

		Participating in the Community

		Contributing to the Community

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction

