

[image: image]

Microservices with
Spring Boot and
Spring Cloud

[image:]

Develop modern, resilient, scalable and highly
available apps using microservices with
Java, Spring Boot 3.0 and Spring Cloud

[image:]

Tejaswini Jog

Mandar Jog

[image:]

www.orangeava.com

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information.

First published: September 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-93-88590-91-4

www.orangeava.com

Dedicated to

Ojas and Neko

About the Authors

Tejaswini Jog is a professional educator with over a decade of experience. She has helped hundreds of thousands of students all over the world find their way into Java, and that number continues to grow day by day. She has also authored some of the best books in the industry, which work as a reference point for amateurs and professionals alike.

When she’s not teaching or editing her books, she loves following along with the likes of Bob Ross and Picasso to create her own tour de force masterpiece. Not only is she an excellent acrylic artist, but her cooking skills also corroborate her being a culinary maven, and the plants in her home garden definitely flaunt her horticultural adroitness.

Mandar Jog Equipped with more than two decades of experience, over the last few years, Mandar Jog, a professional educator and consultant, has been helping students everywhere enter the ravishing, captivating, and fascinating world of Java.

He is the author of three books that help amateurs and professionals, alike, to get a different outlook on Java while simultaneously piquing their interest and making them fall in love with Java over and over again.

When he's not on his computer, writing or editing a new book, or even teaching, he loves to play chess. Also, being very fond of singing, he always finds time to hone his skills and better himself. He is a hardworking software enthusiast who strives to become the best version of himself.

Technical Reviewers

Gil Zilberfeld has been in software since childhood, writing BASIC programs on his trusty Sinclair ZX81. With more than 25 years of developing commercial software, he has vast experience in software methodology and practices.

Gil has been applying agile principles for software development for more than a decade. From automated testing to exploratory testing, design practices to team collaboration, scrum to kanban, traditional product management to lean startup – he’s done it all.

He is still learning from his successes and failures.

Gil speaks frequently at international conferences about unit testing, TDD, agile practices, and product management. He is the author of "Everyday Unit Testing" and “Everyday Spring Testing”, blogs and posts videos, co-organizer of the Agile Practitioners conference, and in his spare time he shoots zombies, for fun.

Ankit Kumar is currently working as a lead software engineer for a backup and recovery company based out in Minnesota. He is passionate about designing scalable microservices applications using Spring Boot. He is based in Toronto, Canada. He graduated with a bachelor’s in computer science from North Dakota State University (USA) and did a master’s in Software Engineering from the University of Minnesota (USA). He has worked for about 10 years in various industries retail, backup and recovery, and healthcare to name a few as a backend software engineer. When he is not learning or doing coding for fun and work; he loves to cook, try new restaurants, go for hikes with his wife (Shaurya Chawla), and travel the world. He believes that programming is a true art that requires nurturing by constant learning, but once you start enjoying this art you realize that sky is the limit.

Acknowledgement

Without any doubt, writing a book is a formidable undertaking, demanding extensive teamwork and coordination. Right from the first task of choosing the book title to take it to publication, we were fortunate to receive continuous support from the exceptional team at Orange Education, AVA. Their dedication made this endeavor possible, and we are immensely grateful to the entire team for their invaluable contributions.

Moreover, we extend our heartfelt appreciation to our parents and friends, whose constant encouragement motivated us to share our knowledge with others through the pages of this book. Their belief in our vision was an inspiration that spurred us forward.

We sincerely thank each and every individual who contributed to making this book a reality.

Preface

This book is a complete guide for building and designing microservices. The book not only focuses on the theoretical concepts of microservices but also shows how to use different tools in order to make sure that the microservices are scalable, maintainable and highly available.

The book starts by explaining the basic skills required for microservices. In this book, the microservices are developed using Spring Boot. So, one must be aware of Spring Boot and how to create REST endpoints using Spring Boot. Both these concepts are explained thoroughly in this book.

The second part of the book is mainly aimed towards different concerns that one should take care of while designing the software using microservice architecture. This section talks about inter-service communication, service discovery, API Gateway Service, etc.

The last part of the book typically talks about advanced concepts like handling service failures, securing services and deploying the same. The section covers different tools like Resilience4J and Oauth2 and also container-based deployment of the services.

Chapter 1 will explore the fundamentals of Spring Boot. It covers how to develop, configure and deploy simple Spring Boot applications.

Chapter 2 will cover the basics of REST. This chapter talks about what the endpoint or service is. Along with this, it also covers how to handle different types of data and database communication in the REST. There is also a section about handling exceptions and writing self-descriptive messages.

Chapter 3 will introduce the reader to the concept of microservices. The chapter deals with in detailed discussion about why we need microservices, their advantages and limitations, etc.

Chapter 4 will cover the approach of centralized management configuration in microservices. The chapter emphasizes on using GIT as a centralized repository for Spring Cloud configuration.

Chapter 5 will deep dive into inter-service communication. This will cover different ways to establish inter-service communication using RestTemplate and Feign Client, etc.

Chapter 6 will cover the concept of service discovery. The chapter will discuss in detail about how to register your service and locate it using the Eureka Discovery Server.

Chapter 7 will talk about the need for Gateway API Service and the usage of the same. The chapter will also cover different GatewayFilter Factories used while we implement the routing.

Chapter 8 is all about monitoring. The chapter will discuss what is distributed tracing and how to use the Zipkin server to monitor the behavior of the service.

Chapter 9 will cover the concept of dealing with service failure. The chapter will discuss the reasons for service failure and approaches to handle such failures. It will also cover the usage of Resilience4J.

Chapter 10 will discuss how to secure the services. It will explore how to implement OAuth2 Token for security.

Chapter 11 will cover deployment. The chapter will discuss the container-based deployment of microservices.

Get a Free eBook

We hope you are enjoying your recently purchased book! Your feedback is incredibly valuable to us, and to all other readers looking for great books.

If you found this book helpful or enjoyable, we would truly appreciate it, if you could take a moment to leave a short review with a 5 star rating on Amazon. It helps us grow, and lets other readers discover our books.

As a thank you, we would love to send you a free digital copy of this book, and a 30% discount code on your next cart value on our official websites:

www.orangeava.com

www.orangeava.in (For Indian Subcontinent)

[image:] Here's how:

Leave a review for the book on Amazon.

Take a screenshot of your review, and send an email to info@orangeava.com (it can be just the confirmation screen).

Once, we receive your screenshot, we will send you the digital file, within 24 hours.

Thank you so much for your support - it means a lot to us!

Downloading the code
bundles and colored images

Please follow the link to download the
Code Bundles of the book:

https://github.com/OrangeAVA/Microservices-with-Spring-Boot-and-Spring-Cloud

The code bundles and images of the book are also hosted on
https://rebrand.ly/1b9169

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

The Foundation

It’s around 2.00 midnight, somewhere in Silicon Valley. Rakesh, a Software Architect, was still working on his desk. He was stressed and frustrated with lots of questions in his mind. He and his team have been developing a large-scale business solution for the last few months. They have formulated many of the business needs into small programs which can be integrated into the software. Their Product Owner was equally happy with the overall performance of the team. But a few days back, the one of the developer came up with a recommendation of choosing the framework over traditional application development. The idea was right because the framework would have made the application development more efficient, maintainable, and standardized. But the idea was abstract. The team had to take a call on which framework to choose. From that day one, a lot of brainstorming was generated in the scrum meetings. A few of the team members were using the convergent thinking approach and others were not reluctant to use the divergent thinking approach to come up with some solution. But following all that research, it was difficult to choose the framework, which would fit a hundred percent of all the business needs.

Rakesh is not the only software professional, who is facing to choose the correct option question. He represents a group of all such software professionals who are in dire need of finding the answers to all the questions that she is facing. This chapter aims to help you understand which is the best framework you can use for most of your business needs.

Structure

In this chapter, we will discuss the following topics:

	Framework: The savior

	Introduction to Spring framework

	Spring Boot: The solution

	Quick start

	Introduction to Bootstrapping

	Exploring Runners

	Executing the application

	Working with properties

	Short visit to deploy to server

Framework: The savior

Writing code is not an uphill task nowadays. We all are so well versed in the technical skill sets required to accomplish the required solutions. But nowadays mere coding skills are not enough for successful enterprise application development. Apart from just coding, developers also need to take care of security aspects, scalability, and so on. To be very honest, life is too short to do everything. While you strive to accomplish everything, you might end up achieving nothing. Many great philosophers and businessmen also faced similar issues in their early life. One of the famous authors and entrepreneurs Gary Keller quotes, What's the ONE Thing I can do such that by doing it everything else will be easier or unnecessary?. Well, that’s what the framework does for developers.

Framework provides you with different services like centralized configuration, code standardization, logging, data flows, and so on. All the services which developers used to write manually earlier are now configured or wired automatically by the framework. The life of a developer was not so easy before. Fantastic, isn’t it? When we decide to develop an enterprise application, what questions come to our mind? Obviously, the very first thing is the technology, or frameworks from the technology to choose. Today, as a developer, we have a wide range of choices to choose from. And that is where things get a little tricky. The richest person on the earth sometimes seems confused, because he has multiple options to choose from. Choosing the best framework is solely dependent on what criteria you apply. Let us discuss one by one of different criteria that play a vital role in framework selection.

Type of application

The very first question we need to answer is, what is the sole purpose for which we need a framework? We need to check if the framework we are looking for is suitable for a web application, web services or standalone application. There are different frameworks available for the different types of applications, they are specialized for that type of application.

Licensing of framework

Are we looking for distributing the application commercially? If the answer is yes, we need to check if the framework which we are going to choose needs some licensing. Extra licensing costs may increase the cost of our application. Also, the license might need regular updates with some additional cost. So, one of the options is to choose an open-source framework like Spring framework.

Design pattern

When we are developing web services, it is important for us to keep the data separate from that logic. One of the design patterns which very well allows us to keep the data, that is, the Model, the logic that is, the Controller, and the user interface, that is, the View separate from each other is - yes, you’ve guessed it correctly! MVC design pattern. So as we are interested in MVC, we need to precisely look for the framework which can support MVC architecture design.

Persistency

Not every application needs a persistence layer, but many of them require it. Most of the time, we need to perform CRUD operations on the data. Writing the code for such CRUD operations is really painful. It involves the tedious use of APIs for database connectivity, transaction management, and so on. Using the DB layer involves forming SQL queries to perform CRUD operations on data stored in the database. Developers will be immensely pleased if someone else takes up the responsibility of writing this code. If any framework can provide this service, then the developer can focus more on business logic rather than investing more time in database-related APIs. Not only this, but sometimes we need also services using which we can migrate the database very easily. This means the framework should provide ease in DB integration as well as migration. ORM frameworks available in the market offer us automated SQL queries for DB operation which make DB communication simpler.

Deployment process

Once we are done with application development followed by testing in the development environment, it’s time to deploy the application. Deployment is obviously a complicated process, as it involves the packaging of the application along with the dependencies, and so on. Once that is done, we need to deploy the application on the deployment server. Often it is observed that after the application goes live, based on the feedback we need to make modifications to the application. This modification will force the redeployment of the application which is a tedious process if done manually. We need a way by which we can achieve easy packaging and an easy deployment process. And if any framework makes it easy for us, why not to choose it?

Scalability

What pleasant days those were! We used to sit back and relax when the application was deployed successfully and business was flourishing. But, trust me, now things are not so easy when it comes to enterprise applications. You will need to monitor the application continuously. On one fine day, you will observe that your application is a big hit in the market. The number of visitors is increasing, which is a soothing feeling. But suddenly, you may observe that the application is not able to respond or not able to sustain when the load is increased. As we have deployed only one instance of the application, it is not able to provide the service to a greater number of users at the same time. In order to achieve this, we also need to make use of a load balancer. We need something by which our application will be scaled up automatically when the load increases. We need such a framework using which we can preconfigure the load balancer, which will be fired as and when the need arises.

Learning curve

Now that we know all the criteria for choosing a framework, we need to choose the best-suited framework out of say, ten frameworks. We may have the best framework to tackle all the criteria but the learning curve could be very steep. Often the framework has its own set of rules for naming convention, package structure, configuration, and so on. On the other hand, some frameworks provide flexibility in terms of naming conventions and package structures, and so on. These frameworks do provide some default strategies but support customization whenever you need them. One point we cannot overlook is the language that the framework uses. What if we need to learn the language right from scratch? And how easy or difficult will it be?

Documented

When the framework is well documented, it is easy to learn. If it has enough configuration and sample examples with explanations, along with tutorials it will be easy to follow. It will also become popular among developers and bring them in. The framework with confusing, distributed documentation will confuse the developers. It’s always better to choose a framework which is well-documented.

Community

An easy-to-learn and well-documented framework will attract more developers. If we are beginners, or spend some time with the framework, what if we stuck? If you have an issue or need help to perform a certain thing in a proper way, what should you do? In such a scenario, the community behind the framework will help us, teach us to learn the framework and get the work done. A framework with strong community support will make the framework a success. Try to choose a framework with strong community support.

In this book, we will be discussing the highly available, loosely coupled microservices sometimes talking to DB and to be deployed to cloud taking advantage of load balancers, configuration management, any many more. Let’s start with a quick introduction of Spring framework with an answer why we are choosing it over others.

Introducing Spring framework

The very first version of Spring was written and released by Rod Johnson, in October 2002. In June 2003, it was first released under the license of the Apache Foundation. It’s flexible and provides a variety of modules to develop both standalone as well as server-side enterprise applications. The framework allows developers to leverage Dependency Injection, Inversion of Control, and templates for repetitive code. This provides developers ease to develop and test the application. However, developers using the Spring framework need to have a thorough knowledge of the framework. Developers should know how to do configuration, which annotations are available, server configuration for deploying applications on the server, and so on.

Let us assume that you want to develop a console-based application with minimum configuration which should be easy to launch or you want to develop web application/web services with minimum configuration. The question is Shall I use Spring Framework? Well, if I had not known of any other alternative, I would have chosen Spring as the best solution. But, as I know the alternative, I would suggest, You can go with Spring if you want to develop applications where object management, templates for repetitive codes and cross-cutting concerns were managed by the framework. But the point of concern is we need to configure the objects, templates, or aspects either in the XML file or the class definition using annotations which we need to learn.

It is a big relief that now we are not responsible for the object lifecycle as it is managed by the framework. In spite of that, we need to learn the configuration. We need to know it thoroughly to leverage the services of the framework. Often, you would get frustrated with the learning and tend to go back to the traditional approach of object creation. But trust me, this happens with every new concept you try to learn. Let it be from technology or daily routines. Spring is no exception.

In April 2014, Spring Boot 1.0 was launched as an extension of Spring, so as to develop applications in a faster and easier way with minimum or no configuration. The latest version 3.x was released in November 2022. We can develop stand-alone as well as web applications using Spring Boot. Many times, we read or come across the Spring framework or Spring Boot framework. And then curiously we start thinking are these two different frameworks? Is there something common in them? Which one shall I choose for my application development? Let’s get into a detailed comparison of Spring and Spring Boot before discussing it.

Spring 1.0 was released in 2003 to provide flexibility in managing the instances and allowing them to focus on business logic which is the main task of a developer. Spring uses Inversion of Control to manage the application instances which can then be used in another part of the application using Dependency Injection. Does Spring Boot support IoC and DI? Of course, it does. Spring Boot being an extension of Spring supports all the features provided by Spring with minimum fuss.

In Spring, when we develop a web application or web service, we need to configure the external web server. However, Spring Boot comes with an inbuilt server like Tomcat or Jetty.

When it comes to database communication in Spring, we need to configure the Driver class name, URL, Username and Password of the database either in the XML file or in the configuration class using annotation. Spring Boot makes it much easier for two reasons:

	Firstly, Spring Boot has zero XML configuration.

	Secondly, we can configure these properties in the properties file which is just a key-value pair combination.

Spring comes in modules and to use these modules in the application we need to add some .jar files to the application. Being developers we are all aware of how painful it is to select jars with specific versions and also their dependent jars. Spring applications need each and every module to be configured separately. But Spring Boot comes with handy starters to configure in a file managed by tools such as Maven or Gradle. We will discuss many of these in detail in the upcoming discussions. So just relax.

“Life is really simple, but we insist on making it complicated.”

— Confucius

Consider developing an application for the Student Management System. We need to create an application, choose the jars to include, choose the database to persist the student-related records, and choose the server on which applications need to be deployed. Once the difficult choices are made, it is now time to manage the application and the required instances. For example, the connection instance using which CRUD operation can be performed. Oh, come on! You might not have expected a simple Student Management System to be so complicated. It’s a lot to do! Do we have a better choice?

Spring Boot: The solution

Spring Boot makes the development of the web as well as stand-alone applications easy and is ready for production. We need Just to run the application and it’s done. It allows the developers to quickly bootstrap the application along with arrangements to maintain and monitor it in the production environment. The way by which Spring Boot manages the beans configured is much easier than Spring as it basically uses the properties for dependency injection rather than managing complicated XML files. This means one can configure database properties and Spring Boot will manage the beans. Am I going to learn altogether a new thing just to get an instance? Do you think I am crazy? Wait, have patience dear. As I just told you, there is still a lot to explore. It’s not so straightforward to cover everything in a paragraph. You are a big fan of database CRUD operations so let me explain the power with its help.

When you want to add a new record for a student to a database, what do you do?, I was asking this question to one of the new software developers, Joy, who was part of my team in one of the projects. Are you kidding?, Joy was surprised by this question as everybody knows the answer. Yes, everybody knows, but still just once let me know what will you do?, I was still expecting an answer from Joy.

I will get the connection for the database with which I want to communicate and insert the record in its table. I will obtain an instance of PreparedStatement using that connection. Using the PreparedStatement instance, we will fire a query to insert a record of a new student in the table, Joy was bang on! Brilliant! Now, what will you do to insert a record for an employee or a company or product for that matter?. Joy was looking a bit frustrated now, I will repeat the same steps just by changing the name of the table and values of the columns along with the number of columns. But, why are you asking?

With a little smile, I asked further, Joy, have you ever thought of the code redundancy you are doing?, Redundancy? Where is that generating from? First, I worked with student records, then employee, then product, and so on. I don't see any redundancy. Joy wanted to prove himself in every possible way now. Let me give you another perception. I totally agree when you said I worked with different types of records. However, observe the steps that you followed effectively by establishing a connection, obtaining a PreparedStatement, creating a query, and firing it with different values. What did you change? Absolutely nothing. The steps mean the lengthy process, remains the same, only the parameters of the query and the column name changed. While I was explaining this to Joy, I observed his eyes lighting up, as if he had won some lottery. Many of the developers think in the same way as Joy used to. Such redundancy issues can be handled by Spring Boot effectively. In Spring Boot, we can configure the database connection properties in the configuration file and use templates to perform CRUD operations. Even at some point of time in future the team decides to change the database nothing will change in the code, only configuration changes and database migration will take place smoothly as compared to Java enterprise applications.

Now, think of the .jars you need to include to use JPA in the application. Yup, more than 15 jars are needed just to go with JPA, then Spring -JPA integration jars and how can we forget .jars for supporting modules of Spring such as core, bean, context, or EL? Are we going to include each of these entries one by one in the project configuration file? It will be too lengthy and complex to manage. Dear friends, Spring Boot comes with handy starters to add all the basic .jars required for the module we need.

From time to time, we need to customize the properties of the application. It may be properties to communicate with the database or properties of the server where the application is deployed such as the port number of the server. Spring boot supports externalizing the configuration either in the properties file or the YAML file. Cool! However, does Spring boot support the type safety of these properties? Yes, it provides a strong type safe configuration, so as to govern as well as validate the configuration written. In day-to-day development, we need to test the application in different environments, the Spring Boot allows the developers to configure these different environments under different configuration files.

Once you are ready with the application development, it's time to go to the production stage. Do you need to follow the lengthier process of war creation followed by its deployment? Frankly, it’s the choice you have to make wisely. If you decide to use an internal server for the deployment, Spring Boot comes with Tomcat or Jetty server with minimum or no configuration. Once we start with the code and configuration, we will discuss this in detail, so for the time being just relax and remember it’s possible. At the same time, if you decide to deploy the application on the external server, it’s also possible.

Application deployment is not the end of the project lifecycle. In fact, sometimes the real problem starts after that. Suddenly the application starts behaving weirdly and throws some exceptions. Remember everything has a reason. You must act like a metaphysician and find the reasons causing such exceptions. You should also be able to get information about JVM memory, the application’s health, its readiness probe, environmental properties, and so on. Under normal scenarios, finding this information is very tedious. However, Spring Boot provides the Actuator as the module which enables the developers to expose application-related information which can be used by the administrator to monitor the application.

The list continues…..

Quick start

Let’s take a pause for a while before we go in-depth and create our Spring Boot application. Basically, it's a Maven-based Java project. We can start from scratch and create the structure. However, it’s a bit lengthy and unnecessary. I am saying it is unnecessary because we have other easy ways to create the project.

Using CLI for creating Spring Boot project

Spring Boot CLI is a command line tool that we can use to bootstrap a new project developed from start.spring.io. It has a Groovy compiler and it uses Grape as a dependency manager. The Spring Boot CLI supports Groovy Scripts without external installation.

Installing CLI

As we are going to use Spring Boot 3.x.x version, it internally is based on JDK 17. This is the minimum Java version requirement for Spring Boot 3.x.x. So, the very first thing before you start is to check the Java version on your system, and if you don’t have JDK 17 then continue with the installation. You can refer to the following link and set up your Java:

https://www.oracle.com/java/technologies/downloads/

Don't forget to check that you are pointing to the correct version of Java from the Command Prompt just by entering, java --version.

If you already have the required Java version, proceed further, and download Spring Boot CLI from the given link as follows:

https://repo.spring.io/ui/native/release/org/springframework/boot/spring-boot-cli/3.0.1/

It will download a .zip file. Please unzip it to some location. I am using the Windows platform, so I just created a folder Spring Microservices Book on D drive and unzipped the CLI at that location.

To use the Spring commands, you need to set up the path as shown:

[image:]

We can cross-check if the path is correctly set by the command, spring --version. It should display, Spring CLI v3.0.1 if the downloaded version is 3.0.1.

Cool, the stage is all set. Now it is time to create our first project. I will not add anything custom right now. We will do that next time. Execute the following command on the Command Prompt from any directory where you want your project to be stored:

spring init Spring_CLI_Demo_Basic

It will create a Spring Boot project having Java 17 for the 3.0.1 version. You can confirm it from the build file from the project structure.

In the same way, we can develop a Maven-based project having web as the dependency by the following command:

spring init-d=web --build=maven Spring_CLI_Demo_Basic_Maven

The preceding command will create a Maven-based project with support for the Spring web module. If you are very much curious, refer to the pom.xml file and confirm the Java, Spring Boot version, and supported module under the dependency tag. We will be discussing the dependencies in depth shortly.

Let’s now focus on how the basic structure of the project can be developed using Spring Initializr from the start.spring.io site.

Using Spring Initializr

The Spring Initializr provides an extensible API to the developers for generating JVM-based projects. It allows the developers to inspect the metadata used for generating the basic structure of the projects. It also enables choosing the Spring Boot version from the list as well as the available dependencies for the modules which the developers want to use in the application.

Let’s visit the page start.spring.io:

	The first section allows developers to select the type of project as Maven-based or Gradle based along with the basic language as Java, Kotlin, or Groovy.

	In the second section, we can choose the Spring Boot version.

	In the third section, project metadata as name of the project, ArtifactId, Group name, Version of Java, and so on.

	In the fourth section, we can include modules to be included in the application such as web, JPA, LDAP, and so on, under the Dependencies tab.

You will observe the GUI as shown in Figure 1.1:

[image:]

Figure 1.1: Using Spring Initializr

Here, we have selected a Maven-based Java 17 project with Spring Boot 3.0.1 version to be packaged as JAR with web module support. Now, click on the GENERATE button which will download a .zip file having the name demo which is the field value of Name under the Project Metadata section. We can now unzip the file and import it into the IDE of our choice and start developing the application further.

Using IDE

Now the final way of using IDE to generate the Spring Boot project. IDEs such as IntelliJ, Eclipse, and Visual Studio support the development of Spring Boot-based applications. You can use any of them as per your choice. Here, we will be discussing where to download the specific IDE and use it.

Let’s start with Eclipse. The Eclipse IDE comes with Spring Tools Suites plugin, which you can integrate into your Eclipse for Spring Boot development. Or you can download the Spring tools suite separately and that’s it. Here we will discuss both ways.

Integrating the STS plugin in the Eclipse

If you have already eclipse IDE installed then it is great. Just before going ahead, find the Java version support as we need a minimum Java 17 to go further. If you don’t have an IDE, you can download it from https://www.eclipse.org/downloads/packages/site as per your platform.

Once the download is complete, extract it, and launch a workspace using it. I have launched the workspace and will now start integrating the STS plugin from the marketplace by clicking the Install button shown in Figure 1.2:

[image:]

Figure 1.2: Installing Spring Tools in Eclipse

Select the default choices and continue with the process. Once the process of downloading is complete, a dialog will appear to restart the workspace and the changes will be reflected. After the workspace is restarted, we can check the changes by clicking on File -> New -> Spring Starter Project option, we will get the following dialogue confirming our plugin is installed properly and we can use it as shown in Figure 1.3:

[image:]

Figure 1.3: Spring boot project creation in Eclipse

The STS tool communicates to the same site http://start.spring.io/ and fetches the details. As we did in the earlier step, here too we will add the details and dependency by clicking on the Next button and adding web module dependency in the application.

Using STS

Spring Tools Suite (STS) is a specialized version of eclipse dedicatedly used for Spring Boot-based development. The latest version can be downloaded from https://spring.io/tools as per your preferred platform. I am downloading a Windows-based version. Once the executable .jar is downloaded, double-click it. Once the extraction is done you will get the sts-4.x.x.RELEASE folder. Now, launch the workspace using an application file named, SpringToolSuiteX. Once the workspace is launched, follow the same steps to create an application as we did in the earlier step. We in the book will use STS extensively, but as I said you can choose any IDE as per your choice.

Using Intellij

If you already have the community edition, you can continue with integrating the plugin. However, if you wish to download the community edition of Intellij, use the following link for windows:

https://www.jetbrains.com/idea/download/?fromIDE=#section=windows

Once the download is complete, launch the IDE, you will visit the dialog box directly where you can choose the plugins for integration. You can refer to Figure 1.4:

[image:]

Figure 1.4: Adding Spring plugins in Intellij

We need to choose Spring Boot Assistant and Spring Initializr and Assistant plugins for integration. Follow the instructions and complete the STS plugin integration. After the integration is done, you can now choose the type of project as Spring Initializr as shown in Figure 1.5:

[image:]

Figure 1.5: Creating spring boot project in Intellij

Now continue to provide values such as the name of the project, type of project, language to use, and other metadata information along with the version of the Spring Boot application and its dependencies. The look and feel are different, but the process is very much the same, as we did in earlier steps for new application creation as shown in Figure 1.6:

[image:]

Figure 1.6: Configuring Spring boot project in Intellij

Apart from this, you can also download the ultimate edition of Intellij from this link:

https://www.jetbrains.com/lp/intellij-frameworks/. The ultimate edition comes with inbuilt support for spring boot application development.

We can also use the VSCode Editor to create Spring boot application. Please refer to Appendix-1, to know how to configure VSCode to achieve the same.

Introducing Bootstrapping

Bootstrapping is to start with only essential minimalist resources needed to kickstart the application. The bootstrap loader is the first piece of the code, which executes to start the initial part of the application and then, the rest of the complicated part of the application loads. It not only enables the developers to choose what they need in the application, along with structure, and configuration but also provides ways of customization.

The easiest and widely accepted way of bootstrapping a Spring Boot application is by using Spring Initializer. We, in the earlier section, already have used the Spring Initializr in various ways to get the basic infrastructure of our application. It may be Maven-based or Gradle based, but it provides you with some basic structure. Before going further with development, let us first explore the basic structure, the files, their importance, and if we need customization then how to do it. Let’s start with the file structure. The project structure for Gradle as well as Maven based project is as shown in Figure 1.7:

[image:]

Figure 1.7: Project structure of Spring Boot application in Grade and Maven

The main components of the projects are:

	The main application file

	The application configuration file

	The metadata configuration file to set up Java, dependencies, packaging, and so on.

The Spring Boot application has the main class definition by default generated by Spring Initializr. The name of this class can be any user-defined name. However, the default naming convention for this class is the name of the application post fixed by Application word. In our case, you can observe the class name is the Name of Application + Application as, SpringBootBasicGradleApplication or SpringBootBasicMavenApplication.

This class is annotated by a class-level annotation @SpringBootApplication. This annotation is called meta-annotation. This is a combination of three different annotations:

The first is class-level annotation, @Configuration which indicates, the annotated class provides an application configuration that is located automatically.

The second is, @ComponentScan which enables scanning the packages for the @Component annotation.

The third annotation is @EnableAutoConfiguration, which enables the automatic configuration mechanism of the application. This auto-configuration takes place automatically depending upon the .jars added to the class path.

This class definition contains a standard public static void main() method. As in any Java application, it indicates the entry point within the application. In our case, it also acts as the entry point. The main method then delegates the application class by calling the run method as follows:

SpringApplication.run(SpringBootBasicMavenApplication.class, args);

The Spring application bootstraps our application by launching the Spring container and starts to auto-configure the web server depending upon the metadata configuration. Here, if needed, we can also send some command line arguments to add customization.

Now, the question is what exactly happens when we say configuration is located and actions are taken? Spring container locates the configuration and the beans are configured and stored for future use. In Spring, the XML file or annotation-based configuration is located and the action is taken. However, Spring boot has no XML configuration. So, all the action needs to be taken based upon the annotations applied to the classes or methods. The application also needs some application-level beans such as DataSource, LDAP or RabbitMQ. Our application is going to be either Gradle or Maven based. The Gradle has build.gradle and Maven has a pom.xml file containing the dependencies tag providing the information about which Spring modules are supported by the application as shown in Figure 1.8:

[image:]

Figure 1.8: Setting dependencies in Maven and Gradle project

As we only have added a web module at the time of application creation only one dependency has been added. The test module is by default for writing test cases. But, have you observed that it is not only just a dependency; it’s actually a starter for the dependency? Yes, Spring Boot provides starters to include. Before Spring Boot was introduced, the developers needed to add each and every individual required dependency one by one. Though the tools like Gradle and Maven make this process easy, the developers still need to spend lots of time. The starters make this time-consuming and complex process easy. This enables the developers to easily add the modules we need to include in the application and all its dependent jars will be included in the classpath automatically. Spring boot has 50+ such starters. Here we have included web-starter, the basic Spring jars such as spring-beans, spring-context, and spring-core along with spring-boot, spring-autoconfigure, spring-boot-starter, and so on, are included in the classpath and which jars to include are completely dependent upon the dependencies added in pom.xml or build.gradle.build file as shown in Figure 1.8.

We just discussed the process of adding third-party .jars. But what about bean management? How does Spring Boot manage the beans needed by the application? As Spring Boot is zero XML based, the configuration is much simpler. At the time of application start-up, the container looks for class level and method level annotations to create the instances and manage their lifecycle. It also scans classpath to find the information about the modules included and accordingly which beans are needed. When we include web-module in the classpath, application needs at least a bean for the front controller. If the spring-jdbc module is included, then the bean for DataSource and JdbcTemplate will be managed by the container. But now the question is how the container finds the values of the URL, username, and password for the database connectivity. The container will use the values configured in the application’s properties file and use them to generate a bean and further manage its life cycle. Be careful! When you add a dependency in the pom.xml file, the .jars are downloaded and added to the classpath. The classpath is scanned to manage the required beans. So, if you add some dependencies without providing values of its properties, for sure bean cannot be managed, and hence, the application will fail to start.

Exploring Runners

Now we are aware that, at the time of application start-up, bootstrapping will take place and the application will be launched. But still, one question is unanswered. Will the application be started as a standalone application or will it be a web application? To answer this question, we need to discuss the runners.

By default, whenever we create a Spring Boot application, it is a type of web application. One can have it as a full-fledged web application having its presentation layer, or it can be a web service-based application which exposes the endpoints. If you are considering using CommandLineRunner to develop standalone applications, you are guessing it wrong. The ApplicationRunner, as well as CommandLineRunner, are used to run some logical code just at the time of application startup, along with passing runtime arguments to it. Both ApplicationRunner and CommandLineRunner have run() methods which need to be overridden to execute the custom logic. The following code snippet will show how to access command line arguments in the run() method:

@SpringBootApplication

public class SpringBootBasicMavenApplication implements CommandLineRunner {

public static void main(String[] args) {

SpringApplication.run(SpringBootBasicMavenApplication.class, args);

}

@Override

public void run(String… args) throws Exception {

System.out.println("Displaying the command line arguments");

for (String arg : args) {

System.out.println(arg);

}

 }

 }

You can execute the application by command:

java -jar SpringBootBasicMavenApplication.jar argument1 argument2

This will show the output as:

Displaying the command line arguments

argument1

argument2

Unfortunately, CommandLineRunner only allows us to pass values to the application and then by remembering the order or by applying the String parsing methods we may need to parse or use the values as per the scenario. Is there a better way to send the values for a particular property?

The ApplicationRunner is a savior here. Using ApplicationRunner, one can pass the key-value pair from the command line argument and can be used in the application’s run method as shown by the following code snippet:

@SpringBootApplication

public class SpringBootBasicMavenApplication implements

ApplicationRunner {

public static void main(String[] args) {

SpringApplication.run(SpringBootBasicMavenApplication.class, args);

}

@Override

public void run(ApplicationArguments args) throws Exception {

System.out.println("Displaying the command line arguments");

for (String arg : args.getOptionNames()) {

System.out.println(arg);

}

System.out.println(args.getOptionValues("application.name"));

System.out.println(args.getOptionValues("server.port"));

}

}

You can execute the application by command:

java -jar SpringBootBasicMavenApplication.jar application.name=sampleapp server.port=8081

This will show the output as:

Displaying the command line arguments

sampleapp

server.port

[sampleapp]

[8081]

Executing the application

The Spring Boot application is basically a Java application with the main() method. So, one can execute it as a Java application. However, we have STS plugin integrated. We can also execute this as a Spring Boot app. It will also be executed as a Java application with a few extra options as shown in Figure 1.9:

[image:]

Figure 1.9: Executing Spring Boot application

This is how we execute the application from IDE. But what if I want to execute the application from the Command Prompt? Good question. Well, you have various options to choose from. The easiest one is when you are the developer and want to execute it using the Maven tool. We created this as a Maven based application so we can use the mvnspring-boot:run from the Command Prompt.

Working with properties

Spring Boot is a highly customizable application, the easiest way. One can set up various application-related properties in the application.properties or application.yml file. Though the list of these properties is unceasing, it is not feasible to discuss all of them here. We can categorize these properties into 16+ different categories such as Core, Cache, Mail, JSON, Database and Transaction, Web, Templating, Server, Security, Actuator, Dev-tool, and Testing. We are aiming to develop a service, so let’s start by customizing some server-related properties. For the first time, we are adding some details to the application.properties file. The beginning might look a little difficult to digest, but that’s what the learning process is all about. If the kid gives up, the moment he falls, then he will never be able to learn how to walk. Let’s open the application.properties file from the resources folder and press ctrl + space to get the properties as shown in Figure 1.10:

[image:]

Figure 1.10: Setting server port

If on your system some applications are already running on port 8080, then launching a Spring Boot application on the same port number is not possible. What shall we do in such a case? Very easy, to change the port number for the Spring Boot server, in our case Tomcat, by setting server.port=XXX, where XXX can be any valid available port number on the system, where we want our server to launch. Once you set this property to 8081, your application will be launched on 8081 as shown in Figure 1.11:

[image:]

Figure 1.11: Spring Boot project launch with a modified port

In the same way, we can change the other properties of the server. You can get all the properties on the fly by pressing the server, followed by, ctrl + space as shown in Figure 1.12:

[image:]

Figure 1.12: Loading the properties

Let us do an interesting thing. When we start the application, a banner appears on the console. Let us play along and disable it or change it. To disable the banner from both consoles as well as log files, we can set the banner-mode to off as spring.main.banner-mode=off. Sometimes we want to print the banner on the console or in the log file only. In this case, we can set the banner-mode to log or console. Hey, but what if we want the banner but not the boring Spring Boot one? Is it possible to achieve that? Obviously, we can change it anytime by adding a banner.txt file in the classpath. If you add a file with text with some asterisk as This is a new banner you will observe the change in the banner text as shown in Figure 1.13:

[image:]

Figure 1.13: Setting up the banner text

You can also use the application.yml instead of the application.properties file. The properties that you configure do not change. But the structure of the file changes. YAML file is structured as compared to the application.properties file.

For example, the server port configuration can be written as:

[image:]

As you can observe, this is more structured. All the properties related to the server can be configured similar to the port.

Short visit to deploying to the server

Once you have tried and tested the application and you are satisfied with it, you want your teammates to use the application, or you want to distribute the application. What should we do? We have again various choices for how to distribute the application. But before going into details, I would like to discuss a bit about what happens when we run the application.

A Spring Boot application is ready to run a production-grade application. That means we literally do nothing or very little to get into production mode. When we create an application, we have selected the packaging mode as JAR. So, when we run the application, an executable .jar will be generated by the IDE and it will be executed. At the time of .jar execution, it will launch a Tomcat server in which our application is deployed. Once the Tomcat server is ready, one can start using the application either from the browser if it's a web application or the client consuming it if it is a web service. What I am trying to say is we don't need to rely on the external configuration of the server and then follow the application deployment process. It saves a lot of time. The executable .jar is dedicated to a server hosting an application. Here, we are following the application per server design pattern. Don’t worry we will discuss the deployment design patterns in detail in the respective chapter. For the time being just remember, by default our application will be hosted on the Tomcat server when we run the application in IDE.

Once we know in detail about the process of what happens when we run the application. Now, let’s focus on the distribution process.

This is very easy and many of you might have already guessed it as well. We can get the application packaged in the JAR and distribute the JAR. On the client system, run the executable .jar and that’s it. May it be a normal system or a cloud we only need to fire the Java command to run the JAR. Now, you might be wondering how to get the JAR. I said it might be because many of you have packaged the application as an executable .jar a number of times, or are at least aware that the IDE has such a system. However, we have developed our application as a Maven application, it will be the best choice to use the tool for packaging. In the Command Prompt, you can use the mvn install command or in IDE right click the application → Run As →Maven install as shown in Figure 1.14:

[image:]

Figure 1.14: Deploying the Spring Boot application

It will generate a .jar in the target folder. Once you have the jar you can upload it to the cloud or execute it on the client system. The application will be ready to use. Isn’t it simple?

Sometimes we want the application to be packaged as War to deploy it in the server of our choice. We can select the packaging as War at the time of creating an application as shown in Figure 1.15:

[image:]

Figure 1.15: Generating the war or jar file

Once the application is ready, we can get the war file by mvn install command to get the war file in the target folder. We can then deploy the application on the external server of your choice.

Conclusion

In this chapter, we discussed the basics of the Spring Boot framework. We talked about how to develop the simple Spring Boot application and execute it. We also discussed the different types of runner lines ApplicationRunner, and CommandLineRunner, and their usage. Also, we learned the basic structure of the application and how to customize different properties of the application using the properties file. Finally, we discussed how to deploy the application on the Tomcat server. In the next chapter, we will discuss the basics of REST application, and develop an end-to-end service talking to database, and then test it using Postman.

OEBPS/images/Figure-1.3.jpg
(] o
New Spring Starter Project
SeniceURL | hitps://startapringio <
Neme Spring_Boot Basic
Use defaultlocation
Location D:\Eclipse STS Integration\Spring_Boot Basic Browse
e Maven [sar
JavaVersion: |17 |Java -
Group com.example
Artifact Spring Boot Basic
Version 00.1-SNAPSHOT
Description | Demo project forSpring Boot
Package com.example.demo
Working sets
[Add project to working sets

Warking sets

@

Einish

OEBPS/images/Figure-1.5.jpg
=
m Maven
@ Gradle
= Android

@& Intely Platform Plugin

i
© Groovy

K Koun

5 Empty Project

Choose Spring Initaiz

Project sOK: | g 17

%) Default startspringio »

Custom

Cancel

Help

OEBPS/images/Figure-1.4.jpg
] wel

Maretpiace Installed @ %
It IDEA

Type / t0 see options H

Spring Boot Assistant %
Downloaded (3 of 3 enable. Update all .i

projecs PENGFEL 0171
+ @ Enabled

Gl 0A7.1 PENG FEI
Pugins °

R I T e ———r
Leam ntelly IDEA o Spring Boot configurtion s sppicaionymi

e
= SpringBootGen
10 lixiaohua Features:
) Dsbleail | 1 Auto-completonof th confguration

properties in your yam. files based on the
spring boots autoconfiguration jas are
presentinthe classpath.

bundied

2 Auto-completion of the configuration

e,

build is property configured

AT | 3 Short form search & search for element deep.
bundled ‘within is also supported. i.e. sp.d will show

OEBPS/images/Figure-1.7.jpg
2 Package Explorer X b S e

2 Spring_Boot Basic_Gradle [boot] * v [Spring Boot Basic Maven [(booi])
v (® src/main/java v (# src/main/java

© 8 comexampledemo 8 com.exampleemo
(3] SpringBootBasicGradleApplicationjava @ > [SprngBoctBsichavenspplcationjovs (1)
v (@ src/main/resources. © (#® sic/main/resources

S =
s Rrenies
o — A —
B src/test/java B src/test/java
> B JRE System Library [JavaSE-17] 5 i\ JRE System Library [JavaSE-17]
i e e
% i
" o
=6 » ol
> s © o
gradiew (=] mvnw.emd
Ciacal Resraley
[HELP.md

@ settings.qradle

OEBPS/images/logo.jpg

OEBPS/images/Figure-1.6.jpg
E] New Project

Project properties

Groupld
Artfact g

Version

Project type
Language
Packaging

Java version
Projectname.
Project desciption

Package name

comexample.

demo.

00.1-SNAPSHOT

Maven -
e~
v
v~

demo.

'Demo project fo Spring Boot

comexampledemo

OEBPS/images/line.jpg

OEBPS/images/Figure-1.9.jpg
@ Boot Dashboard X =S5
L E0EE/O0- V-t

Type tags, projects, or working set names to match (incl.*an|

v @ boal
= Spring Boot Basic Maven % Restart
) L 1B Reldebug

on right clicking | o g

- Open b Bonser

Open Ngrok Adrmin Ul
© Open Console
{2 Openn Package Explorer
[Show Propertes

Live Data Connections.

N

Open Config
Duplicate Config

Delete Config

(Re)start and Expose via ngrok
(Re)debug and Expose via ngrok
‘Add a Cloud Foundry Target
Add a Docker Target

b Al

Ctrl+Alt+Shift+B, R
Ctrl+Alt+Shift+B, D
CtrAlt+ Shift B, S

Ctrl+Alt+Shift+ B, F

OEBPS/images/Figure-no-number.jpg
\Spring Microservices Book\spring-boot-cli-3.8.1-bin\spring-3.0.1\bin;%PATHX

OEBPS/images/44.jpg
server:
port: 8081

OEBPS/images/Figure-1.8.jpg
ponsml

cdependencies>
Clependency>
<ireur 1o springfromevork.bootgrousids
Tl g o starer webe /oL faceits
<tependencys

<apendency>
<iroupiiorg. springfromevork bootc/groupids
T g ook starier teste/ ot oct i
ecpesteste/icorss
<dependancy>
dependenciers

dependencies

Leplesentation o spingfromevork.boot:spring.
eitTaplenentation:‘org.soringf omevork.bootspring-boot.starter test”

-boot-starter-veb®

OEBPS/images/Figure-1.1.jpg
& sunsprngio

e
Lo p—
o

spona oo
Oseasusser @301 Orssuesen 017

pm—

s @ O

am 06 @ On Of

-

spomgwer K0

(oo emomr] o

OEBPS/images/Figure-1.10.jpg
42 “application properties X

4 debug

4 logging.charset.console

4 logging.charset file

4 logging.config

4 logging.exception-conversion-word

4 logging filename.

4 loggingfile path

4 logging.group

4 logging.evel

4 logging.log4j2.config.override.

4 logging.ogback.rollingpolicy.clean-history-on-start
4 logging.ogback rollingpolicy file-name-pattern
4 logging logback.rollingpolicy.max-file-size
4 logging.logback.rollingpolicy.max-history.
4 logging logback rollingpolicy total-size-cap
4 logging.pattern.console

4 logging.pattern.dateformat

4 logging pattern.file

4 logging pattern.level

4 logging.register-shutdown-hook

4 serveraddress

4 server.compression.enabled

4 server.compression.excluded-user-agents
4 server.compression.mime-types

4 server.compression.min-response-size

4 servererrorinclude-binding-errors

OEBPS/images/Figure-1.11.jpg
T
(81 Probiems & Jovado (@, Deciraton © Console X 5 Progress ix ke RpeP@® r0-0--
e e e e UL ELRRRE

fogine 5 Starting Serulet eogines [hpache Tomcat/10.1.4]
Inieiatsing Sping coedsed semppiicat

P r——
in] eoaee rement 1 o}
] o ot vnct Fomcatinserer
e T aegptteation

150 ecinds (rocess running for 2.798)

OEBPS/images/Figure-1.12.jpg
4 “application properties X

1
2
H

server.port=5051.

4 server.address
4 server.compression.cnabled

4 server.compression.excluded-user-agents
4 server.compression.mime-types

4 server.compression.min-response-size
4 server.errorinclude-binding-errors

4 server.errorinclude-exception

4 server.error.include-message

4 server.error.include-stacktrace

4 server.error.path

4 server.errorwhitelabel.enabled

4 server forward-headers-strategy

4 server.http2.enabled

4 serverjetty.accesslog.append

4 serverjetty.accesslog.custom-format

4 serverjetty.accesslog.enabled

4 serverjetty.accesslogfile-date-format
4 serverjetty.accesslog filename

4 serverjetty.accesslog format

4 serverjetty.accesslogignore-paths

4 serverjetty.accesslog.retention-period
4 server,etty.connection-idie-timeout

4 server;etty.max-http-form-post-size

4 serverjetty threads.acceptors

4 serverjetty threads.dle-timeout

4 serverjetty threads.max

4 server;etty threads.max-queue-capacity

OEBPS/images/Figure-1.13.jpg
7] Problems @ Javadoc [Declaration E) Console X & Progress S R % M|

Spring_Boot Basic Maven - SpringBootBasicMavenApplication [Spring Boot App] C:\Users\LENOVO\Downloads\sts-4.17.1.RELEA
= TR
[ARRRY
(EREOHR
| 1117

81 Problems @ Javadoc [@) Declaration E Console X g Progress S Rxm
Spri Maven - SpringBootBasicMavenApplication [Spring Boot App] C:\Users\L ENOVO\Downloads\sts-417.1.RELEA

wwesreresThis s my new Banner *rTrereer

OEBPS/images/cover.jpg
NVA

with Spring Boot and
Spring Cloud

Develop modern, resilient, scalable
and highly available apps using
microservices with Java,
Spring Boot 3.0 and
Spring Cloud

~~
~
N

4

Tejaswini Jog Mandar Jog
—

OEBPS/images/Figure-1.14.jpg
New >

=
e

| HEn .
e s>

| Show in Local Terminal >

B Copy CtileC

B Copy Qualified Name

[Paste Clev

| % Delete Delete [T] 1Java Application Alt+Shift+X, J
Build Path % @ 2Java Application In Container

| &% e p—

2 P

[] i m2 6Maven clean

4 Export.. m2 7 Maven generate-sources

o e o e

e e

I i Unecioted P =4 Spring Boot App Alt+ShiftsX, B

. Assign Working Sets. @ Spring Devtools Client

D

45 Debug As >
i ;

Restore from Local History...

Maven >
Tearm >
Compare With >
Configure >

& spring >

| Properties Alt+Enter

OEBPS/images/Figure-1.15.jpg
New Spring Starter Project

==
L

. T c—
[Bl e

ol —

- =

-

~ Em=

-

[JAdd project to working sets

Warking sets

) R ol [

OEBPS/images/Figure-1.2.jpg
{8 Eclipse Marketplace o X
Eclipse Marketplace
Select solutions to instal. Press Install Now to proceed with installtion.
Press the "more info” link o lear more about a slution.
Search | Recent | Populr | Favorites Intalled| Giving loT on Edge |
Find: [25Tl | [Al Markets || All Categories v 6o
and last reease... mor - : "
by WMuare, EPL
J2EE spring Spring IDE Cloud jee
K325 | Installs: 564K (4,506 last month) Install
Spring Tools 4 (aka Spring Tool Suite 4) 4.17.1.RELEASE
Spring Tools 4 i the next generation of Spring Boot tooling for your
favorite coding enrivonment, Largely rebuilt from scratch, provides
world-class support... more
by WMuare, EPL
spring Spring IDE Cloud Spring Tool Suite STS
H311| [nstalls: 245M 27,170 last month) Install

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Authors

		Technical Reviewers

		Acknowledgement

		Preface

		Get a Free eBook

		Errata

		Table of Contents

		1. The Foundation

		Structure

		Framework: The savior

		Type of application

		Licensing of framework

		Design pattern

		Persistency

		Deployment process

		Scalability

		Learning curve

		Documented

		Community

		Introducing Spring framework

		Spring Boot: The solution

		Quick start

		Using CLI for creating Spring Boot project

		Installing CLI

		Using Spring Initializr

		Using IDE

		Integrating the STS plugin in the Eclipse

		Using STS

		Using Intellij

		Introducing Bootstrapping

		Exploring Runners

		Executing the application

		Working with properties

		Short visit to deploying to the server

		Conclusion

		2. Decipher The Unintelligible

		Structure

		Basics of Application Development

		Need of a service

		Developing a simple REST service

		REST controller layer

		Updates for handling URL formats in Spring Boot 3.0

		Handling different media types

		Communicating with database

		Exception handling in the REST

		Using try-catch

		Using @ExceptionHandler

		Using @ControllerAdvice

		Writing self-descriptive messages

		Updates in logging

		Conclusion

		3. Scale it Down

		Structure

		Getting acquainted with microservices

		Motivation to choose microservices

		Reduced code base complexity

		Development time

		Ease in deployment

		Availability

		Scaling

		Reusability

		Flexibility to use the right tool

		Quick development

		Infrastructural cost

		Continuous delivery

		Features of microservices

		Decoupling/flexibility

		Responsibility

		Independently deployable components

		Decentralized

		Resilient

		Migrating from monolithic to microservices

		Decomposing application

		Decompose based on business capabilities per team

		Decompose based on subdomain

		Decomposing the services by Single Responsibility Principle

		Limitations of microservices

		Complexity

		Network traffic

		Monitoring

		Conclusion

		4. Reflective Composition

		Structure

		Approaching centralized configuration management

		Performing centralized configuration

		Exploring Cloud Config Server

		Selection of backends

		Vault Backend

		JDBC backend

		CredHub backend

		AWS Secrets Manager Backend

		AWS S3 Backend

		AWS Parameter Store Backend

		Composite environment repositories

		File System Backend

		Git Backend

		Locating the properties in GIT

		Configuring the client service to communicate with Config Server

		Internal process of locating the properties

		Using profiles

		Highly available Config Server

		Limitations in using a centralized configuration system

		Conclusion

		5. Liaison Among Services

		Structure

		Revisiting microservice decomposition

		Shared database

		Database per service

		Saga

		API composition

		Command Query Responsibility Segregation (CQRS)

		Strategizing inter-service communication

		Synchronous communication

		Asynchronous communication

		Using RestTemplate for inter-service communication

		Drawbacks of RestTemplate

		Shifting from RestTemplate to Feign Client

		The working of Feign client

		Asynchronous call-back

		Publishing and subscribing based on the broker

		Polling-based communication

		Using a message broker to exchange message

		Destination binders

		Message

		Bindings

		Exchange

		Queue

		Publisher

		Subscriber

		Sending/consuming messages using functional programming

		Sending the message outside of Spring Cloud Stream context

		The deprecations

		Matching the demands

		Conclusion

		6. Location Transparency

		Structure

		Revisiting matching demand

		Scalability

		Vertical scaling

		Horizontal scaling

		A quick trip to deployment

		Using RestTemplate as a load-balanced Client

		Locating the service

		Understanding ways of service discovery

		The client-side discovery

		The server-side discovery pattern

		Exploring Service discovery

		Ways of providing service registry

		Zookeeper

		Etcd

		Consul

		The discovery server

		Approaching location transparency using the Eureka discovery server

		Revisiting RestTemplate as load balanced client

		Feign client as load-balanced client

		REST endpoints exposed by Eureka

		Developing highly available Eureka

		Health checkups

		Altering the load balancer algorithm

		Load balancing based on zone

		Weighted load balancing

		Health check-based load balancing

		Request-based sticky session load balancing

		Conclusion

		7. Gateway API Services

		Structure

		Exploring API server

		Need of API Gateway

		Security

		Logging

		Rate limiting

		Load balancing

		Request routing from a single point of entry

		Backends for frontends

		Route

		Predicate

		Filter

		Setting up gateway API for request routing

		Deep dive into the routing

		The After Route Predicate Factory

		The Before Route Predicate Factory

		The Between Route Predicate Factory

		The Cookie Route Predicate Factory

		The Header Route Predicate Factory

		The Host Route Predicate Factory

		The Method Route Predicate Factory

		The Query Route Predicate Factory

		The RemoteAddr Route Predicate Factory

		The Weight Route Predicate Factory

		The X-Forwarded Remote Addr Route Predicate Factory

		Point by point GatewayFilter factories

		AddRequestHeader GatewayFilter Factory

		AddRequestHeadersIfNotPresent GatewayFilter Factory

		AddRequestParameter GatewayFilter Factory

		AddResponseHeader GatewayFilter Factory

		DedupeResponseHeader GatewayFilter factory

		LocalResponseCache GatewayFilter Factory

		MapRequestHeader GatewayFilter Factory

		ModifyRequestBody GatewayFilter Factory

		ModifyResponsetBody GatewayFilter Factory

		PrefixPath GatewayFilter Factory

		PreserveHostHeader GatewayFilter Factory

		RedirectTo GatewayFilter Factory

		RemoveRequestHeader GatewayFilter Factory

		RemoveJsonAttributeResponseBody GatewayFilter factory

		RemoveRequestParameter GatewayFilter Factory

		RewritePath GatewayFilter Factory

		Introducing global filters

		Ordering GatewayFilter and GlobalFilter

		The ReactiveLoadBalancerClientFilter

		Conclusion

		8. Observability

		Structure

		Application monitoring

		Importance of application monitoring

		Alerts

		Pinpoints bottlenecks

		Improves stability

		Digging into Actuator

		Customizing predefined endpoint

		Adding custom endpoint

		Deep dive into observability

		Loggers

		Metrics

		Customizing metrics

		Exploring distributed tracing

		Importance of distributed tracing

		Micrometer in brief

		Big picture with Zipkin

		Conclusion

		9. Reliability

		Structure

		Understanding microservice reliability and its importance

		Reasons for service failures

		Overloaded traffic

		Unavailability of resources

		Deployment strategies

		Unavailability of services

		Approaches to handle failures

		Handling third-party services

		Hardware

		Setting up instances

		Exceptions and their handling

		Circuit breaker design pattern

		Types of circuit breaker

		Resilience4J as a savior

		Circuit breaker

		Failure rate and low call rate thresholds

		Circuit breaker with RestTemplate

		Circuit breaker with FeignClient

		Retry

		Rate limiting

		Bulkhead

		SemaphoreBulkhead

		ThreadPoolBulkhead

		TimeLimiter

		Applying multiple decorators for a single method

		Conclusion

		10. Keep it Safe

		Structure

		Exposing resources

		Revealing secret

		Revisiting microservice architecture

		Exploring ways of securing microservices

		Issues while using passwords to grant access

		Understanding token-based security and their available options

		Types of tokens

		JWT token

		Digging into OAuth2 token

		OAuth or JWT

		Keycloak

		Setting up Keycloak

		Tokens and Feign Client

		Sending the authorization header within method arguments

		Sending the authorization header using RequestInterceptor

		Using TokenRelay

		Conclusion

		11. Deployment

		Structure

		Revisiting microservices architecture

		Deployment patterns

		Using orchestrators

		Microservices as a serverless function

		Packaging services

		Packaging as JAR

		Packaging as WAR

		Packaging as Docker image

		Docker image

		Docker registry

		Docker Swarm

		Using Kubernetes to deploy services

		Ingress

		Demonstrating pod and service

		Conclusion

		Appendix 1

		Appendix 2

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. The Foundation

OEBPS/images/tick.jpg

