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      Abstract




      In order to understand not only “how”, but also “why”, calculus evolved into that major subdivision of mathematics that it presently occupies, the binary arithmetic of three special numbers is selected as the starting point. When these three, herewith designated by the adjective “foundational”, numbers are combined with the six familiar arithmetic operations of addition, subtraction, multiplication, division, raising to a power and extracting a root, the basis for a new, enlarged perspective of ‘what is mathematics?’ is created. Note that the selected term, foundational number, was chosen over others who have referred to this same set of three numbers in a meta-mathematical context. Notwithstanding that this same set of three numbers was designated in [1] as “boundary numbers”, such a name is herewith eschewed as the traditional concept of “boundary” has a very different denotation in mathematical physics. Rather than rigidly following the traditional approach, based on function theory, which has been taught in high schools and colleges ever since it was independently developed by Leibnitz and Newton a third of a millennium ago, this treatise focuses attention on the arithmetic taught in elementary school, but from a more advanced standpoint in much the same manner as Felix Klein’s Erlanger Program and its Elementary Mathematics From an Advanced Standpoint [2]. The single-most important difference in this formulation is that there is a new perspective which incorporates that long familiar, but not fully exploited, recognition that there does not exist a last number in the counting sequence. In other words, for any given number, call it “n“, there is another unique number n+1. Similarly, for n+1 there is an n+2; etc. Because of the above, instead of the traditional side-stepping of the question, both this author and the reader have been left to fixate on this set of foundational numbers –which respectively quantify the heuristic concepts of “none”, “some” and “all”, along with the respective names of “zero”, “one” and “infinity”. Note that the alignment of “some” in symbolic logic with “one” in mathematics arises because in logical systems the term “some” denotes “1 or more”, while in mathematical systems. (as will be shown in the formulation of a co-ordinate system in Chapter 2, Section 2) the arbitrary choice of a measuring reference is usually standardized, irrespective of what is being quantified, by focusing on some pre-selected entity being assigned a magnitude equal to 1. Furthermore, in the historical evolution of mathematical thought, these three numbers have produced paradigm shifts in understanding “what”, “how”, and “why” in mathematics. An example of this, which is one of the main compasses for this book, is a treatise written in 1941 by Richard Courant and Herbert Robbins which set out to answer the question: “What is mathematics?” Such a choice was made not only because this classical treatise [3] is still one of the standards of excellence today, which has remained in wide circulation for three-quarters of a century since its original publication, but also the observation that the intended audience of that book is the one that this author hopes to reach with his treatise. Unlike these two mentoring references, which cut a wide swath of the domain of mathematics, the monograph which follows is limited to that subdivision of mathematics subsumed by the term “calculus”, along with emphasizing its place in the larger picture of intellectual inquiry. The following remarks, extracted from the preface of [3], expresses precisely the audience to whom this monograph is directed: “For more than two thousand years some familiarity with mathematics has been regarded as an indispensible part of the intellectual equipment of every cultured person. . . . Teachers, students, and the educated public demand constructive reform . . . It is possible to proceed on a straight road from the very elements to vantage points from which the substance and driving forces of modern mathematics can be surveyed. . . . The present book is an attempt in this direction. . . . It requires a certain degree of intellectual maturity and a willingness to do some thinking on one’s own. This book is written for beginners and scholars, for students and teachers, for philosophers and engineers, for class rooms and libraries”.
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      1.1. INTRODUCTION




      To say that the understanding and teaching of calculus has not changed much in over three centuries may be overkill. Then, again, it may not be! Upon reviewing all of the calculus books on the shelf in any large university library, the astute observer will become aware just how staid the associated pedagogy actually is! Not only will they conclude that, the subject matter which was developed then still loudly resonates today, but also that the focus of the respective past and present authors has always been related to HOW, in contradistinction to WHY. Notwithstanding the inclusion of computer graphics, which assists in visualizing selected applications, there has been a scarcity of new ideas to assist comprehending the foundation upon which the underlying mathematics has been built. Had the subject matter been readily understood, this would not be a liability. To the contrary, most otherwise educated persons consider the very word “calculus” as being synonymous with “way beyond comprehension”.




      This treatise was formulated in order to demonstrate that, when properly presented, the fundamentals of calculus are the very same ideas that were presented in those earlier, more intuitive, and consequently deemed to be more elementary, studies. In the same manner as the recognition that the number “zero” was a useful concept when it was postulated eleven centuries ago, a similar useful number designated by the term “infinity” underlies a different, but in many ways comparable, extension of the number system. These two numbers (zero and infinity) when combined with the most primitive of all numbers, one, forms the above mentioned foundational set. Moreover, combining this three member set with the six fundamental operations of arithmetic extends the domain of arithmetic into a larger domain which is designated by the name “calculus”. The approach taken in this treatise rejects the premise that calculus is a whole new subdivision of mathematics which is predicated on an arcane set of previously developed algorithms and which is primarily mastered by memorization. To the contrary, the domain of calculus is viewed as a direct extension of the arithmetic learned in the earlier grades of grammar school and its extension into high school algebra.




      At this point, attention is further directed to an important distinction between the nouns “term” vs. “word”: namely, “term” is reserved for a precise denotation by professionals in a given field of study in contradistinction to “word”, which is in common usage by lay persons. Moreover, one associates “precision” with how exact has the measurement been made vs. how much confidence one should have in the underlying science that is being measured. This latter concept is designated as the “accuracy”.




      A further important comment, notwithstanding that many may consider it to be tangential, is the role played by “orismology” in the development of calculus, as well as both in the earlier evolution of concepts of arithmetic and the mathematical underpinnings of the physical sciences. This is especially true in theoretical chemistry, where the term “orismology” was first resurrected from being an arcane synonym of “terminology” to denote a study of the entire evolution of ideas inherent in a term [4]. This is in contradistinction to it being limited to the specific connotation of the present usage of the term – which is the usual connotation associated with “terminology”.




      Remember that a computer, unlike the human mind, has as its algorithmic base of computation a much more efficient (but simultaneously mind-numbing) numbering system that uses only the distinct numbers zero and one. This is in contradistinction to the familiar numbering system based on the biological accident that the human species has ten digits to count on. Traditionally, and most often colloquially, the term “algebra”, which often is accompanied by the adjective “elementary”, denotes the mathematical subject matter that follows arithmetic in the curriculum taught in most junior high schools. At higher levels of education (college and graduate school), on the other hand, with or without the adjective “modern”, a domain that includes more advanced topics, such as matrices, tensors, rings, fields, etc., is frequently implied. This is equivalent to asserting that the unthinking application of many of the rules established in traditional arithmetic/algebra courses need to be rejected. Such a proposition is especially true when the limits on these rules are unconsciously breached.




      

        1.2. RELATING PHILOSOPHICAL CONCEPTS TO ALGEBRAIC TERMS




        In the evolution of the perspective espoused in this treatise, both the denotation and the connotation of that mathematically definable term “number” are probed, along with three related concepts of importance:




        1. extension from the primitive idea of counting.




        2. the ideal of repetitive performance of an arithmetic operation.




        and 3. the ideal of “inverses”; i.e., the undoing of an arithmetic operation.




        In practice, addition is merely a means of counting from a different starting point than from the heuristic concept of none. Additionally, in retrospect, one observes that it was over a millennium ago, that the foundation of mathematics shifted from an emphasis on what is today relegated to the sub-domain of geometry to a new paradigm with the independent postulation of positional notation by the Hindu and the Arabic civilizations. With this shift, contemporary mathematicians replaced the then prevalent concept of a geometrical base having an additive numbering protocol, to one with an analytical base. This philosophical shift resulted in the elevation of that amorphous concept of “none” being regarded as a number, which was now denoted by the name “zero”. Moreover, the concept of an inverse operation was introduced by accentuating counting in the reversed direction; i.e., “subtraction”.




        In the original additive system of arithmetic exemplified by Roman numerals, the order chosen in which the individual letters that formed the respective numbers was completely immaterial. A scribe doing computations could just as well write the number 16 (XVI) in alphabetical (IVX), as well as decreasing order. It was only for purposes of keeping records, introduced much later by the Catholic Church, that a subtractive simplification was introduced and that an absolutely strict listing in decreasing order of the component letters was altered with the result that selected combinations, such as XIV, was now interpreted as 14. The consequences of this modification will be discussed in Chapter 3.




        This, in turn, was followed by the repetitive operations of addition and subtraction, which were respectively designated as “multiplication” and “division” (One notes that in the historical development of the procedure used for division the value of the divisor was subtracted as many times as one could until the remainder was now less than the divisor).




        A slightly modified protocol will be applied in that next extension, which is raising to a power and extracting a root respectively (This former operation is alternately referred to as “exponentiation”). The set of six elementary operations remains today as the foundation, not only for numbers, but also for many of the more sophisticated concepts in mathematics which comprise advanced domains of both understanding and of manipulation –– calculus being one of them.




        In the same manner as the recognition that zero was a useful number when it was begrudgingly accepted, likewise another type of number (YES! NUMBER) called “infinity” underlies a different type of extension of the number system. As well as the attention paid to the binary combinations of the three foundational numbers and the six fundamental operations of arithmetic, one observes that the so named “Fundamental Theorem of Calculus” not only is not-so-fundamental, more accurately it is insignificant – not even worth the appellation of a “corollary”, no less a “theorem”!




        The casual reader would not be amiss in concluding that the philosophy herein promoted countermands the traditional, historically espoused presentation of calculus – a view which seems to come directly from the Gilbert and Sullivan operetta H.M.S. Pinafore: “Never mind the Why and Wherefore!” To the contrary, the perspective of this treatise is that calculus should be no more difficult to understand than had been the mastering of the earlier studied subsets of mathematics; that one uses precisely the same cognitive abilities with respect to calculus that were required in the study of arithmetic and a high school level introduction to algebra and geometry.




        Meanwhile, just as one had to be comfortable with counting before they could progress to addition and then to subtraction. Also, in like manner, comfort in addition and subtraction is desired before progressing to multiplication and division. Furthermore, a firm grasp on the why and wherefore of arithmetic precedes competency in algebra. This, in turn, cascades from algebra to calculus. In such a progression, attention is directed to comfort with the theoretical premise that one could continue to count forever; i.e., that there is no last number in the counting scheme.




        At this point, one is reminded of the chronological development of mathematics with its begrudging acceptance of a term to denote “nothing”. It was precisely that introduction, and the subsequent acceptance, of zero as a uniquely definable number which caused the paradigm shift that facilitated mathematics entering the public psyche. In the previous prevailing systems, exemplified by Roman numerals, there was no symbol for “nothing”. The Zeitgeist of the times was that none was needed! To the contrary, numbers were “naturally” limited to the set of positive integers, which were thus regarded (and denoted) as “natural numbers”. With the establishment of zero as a number, arithmetic entered the domain of the masses, replacing its confinement as an esoteric pursuit of a mostly religious elite.




        Analogous to the postulation that zero is a bona fide number, a similarly useful number, assigned the name ‘infinity’, underlies the foundation for the development of a comparable extension of the number system. This treatise introduces a similar perspective concerning infinity, and focuses attention on an examination of the role that infinity plays in mathematics in general, and in calculus in particular. This is not withstanding that to some, the inclusion of infinity as a number is anathematic. To their way of thinking, it has unfavorable social or political associations. In direct opposition to such a perspective, this treatise accepts infinity as a number, while disavowing the traditional attribute of uniqueness for a given number and allowing that particular number to denote an entire domain. Such a viewpoint is contrary to all of the numbers one has previously encountered.




        Reiterating that the two numbers (zero and infinity) when supplemented by the most primitive of all numbers:




        1. described three member set, which will be combined with the six fundamental operations of arithmetic to extend the domain of arithmetic into that larger domain called “calculus”




        And




        2. is the basis for the three main operations of differentiation (Chapter 3), integration (Chapter 4) and the number e (Chapter 6).


      




      

        1.3. INDETERMINATE FORMS




        The entire new premise of this treatise (hopefully a new paradigm) as to “What Is Calculus?” begins by focusing attention on the set of fifty-four possible permutations of the binary combinations of the above delineated six fundamental operations of arithmetic. This is then followed by the recognition that such a protocol gives rise not only to the seven traditional “l’Hospital indeterminate forms” [5] that have been taught for centuries in most calculus books, but also to an expanded set of similarly-related indeterminate forms which may be distilled from the above mentioned set of 54 members .




        Before such a development is presented, a selected re-examination that should have been mastered in the preparatory pre-calculus courses of algebra, geometry and trigonometry is included as Chapter 2 of this treatise. (Some of which is presented at a more sophisticated level than that which is presented in the traditional secondary school curriculum). This is then followed by an examination of the concepts of limits and continuity in the first section in Chapter 3. In this presentation, priority has been given to demanding that the reader have a firm foundation of preparatory mathematics before being introduced to the fundamental subject matter of calculus in Chapter 3. Because the over-arching perspective of this treatise is the relation of arithmetic to what has historically been the domain of calculus, attention is focused on restraints that have been imposed on the “familiar” teaching of arithmetic. In particular, attention is directed to a so-called “Eleventh Commandment”:




        Thou shalt not divide by zero!




        This, admittedly irreverent, term, which had been satirically proposed by some unrenowned anti-clerical mathematician, spawned the even more infamous “Twelfth Commandment”. This occurred in 1906 in an, at first, anonymously published treatise, [6] entitled Hegel, Haeckel, Kossuth and the Twelfth Commandment that satirized one earlier and two on temporary “would be intellectuals”. The premise of that satire was that ever since Moses brought the Ten Commandments from Mount Sinai, society has sought an eleventh. Whether there is such a commandment is speculation; however, just in case there does exist such an eleventh commandment, here is a twelfth. It should be regarded equally as important as the original ten:




        Thou shalt not set thyself up as an expert in a field thou doeth not understand!




        This treatise was later acknowledged as authored by Professor O. D. Chowolson, Department of Physics, Kaiserlichen University, Saint Petersburg, Russia. The butt of this satire was the biologist Ernst Heinrich Haeckel and the philosopher Georg Wilhelm Friedrich Hegel. Haeckel had extrapolated his biological finding to predict a heat sink at the South Pole. Hegel, upon venturing into science avowed:




        “The fixed stars are a pimple on the firmament. There can be only 7 planets. But that doesn’t jibe with the facts! So much the worst for the facts”




        This Luddite approach to knowledge in general, and science in particular, caused Karl Marx to comment:




        “I found Hegel standing on his head and set him upright.”




        Chowolson disdained anyone venturing too far afield without the prescribed, authenticated knowledge background. He avowed a “genius” in one field might well be an “idiot” in another. Furthermore, that merely because an article had been published in a highly prestigious journal, it did not guarantee erudition. As an example, he cited one such article, which despite displaying an appalling lack of understanding of even the most elementary aspects of physics, had just recently been included in one of Europe’s leading science journals [7]. Without Chowolson’s treatise, the only claim to fame of H. Kossuth was popular confusion with another Kossuth. Lajos Kossuth: who was the Hungarian poet that led the 1848 revolution against the Hapsburg monarchy. Historians blame Lajos for the failure of that uprising, due to his arrogance. It is asserted that any decent general, with a modicum of military knowledge, would have won.




        The influence of that monograph on the European science audience for which it was originally intended (mathematics and science professors and doctoral students in the various universities, especially in Germany) and later when several of these students, who had become some of the leading scientists at Peenemunde, were imported to the United States after World War II (as well as many of their student who became the scientists in the American aerospace industry, including this author) should not be overlooked.




        The problem with Chowolson’s premise is its unstated assumption: that the previous “geniuses”, those who established the paradigms that are believed today, are infallible. One such notorious urban legend attributed to Charles H. Duell, Commissione of the U.S. Office of Patents in 1899 was that “everything that can be invented has been invented”. Nowadays, there are many websites about such “bad predictions” [8]. These include, among other things, the comment of Thomas Watson, president of IBM, that there would be a market for at most 5 computers in the entire world.




        In this present treatise, the accusation of non-conformity is readily, and knowingly, accepted. However, just as truth refutes liable, this author dismisses the premise that only recognized authorities have the prerogative of advancing new ideas; i.e., that all others stand accused of heresy and of violating the Twelfth Commandment. Moreover, the historical method of teaching calculus is challenged and replaced with a world-view predicated on what are called “indeterminate” forms. These are mathematical combinations that emanate when algebraic manipulations are performed “in the wrong place” or “at the wrong time”. It is the contention of this author that one should NEVER say “Thou shalt NOT .....” to anything in mathematics or science. To the contrary, the mathematical perspective formulated by Imre Lakatos [9] is championed by this author; namely, examine how violations can be evaded and probe the consequences that result when traditional protocol is violated. In pursuit of such action, meaning is given under the appropriate conditions to otherwise indeterminate forms: For example, although division by zero, when performed blindly, leads to ridiculous statements, with the appropriate restraints, such division leads to transfinite numbers and to calculus. Each of these different protocols adds substantially to both individual and communal understanding of logic, mathematics and science. It is not only important, but also worthwhile, to remember that there are no indelible lines that should NOT be crossed. To the contrary, often one needs to suffer “innovators” (translation = fools) graciously.




        Moreover, when these conditions are not met, mathematical chaos results. The worst fears, expressed by the computer slang term GIGO (Garbage In yields Garbage Out) are encountered. For example, nonsensical statements, such as: 2 = 1 appear to be proved. Were such an equation to be true, then all of mathematics would be useless!




        BUT – NO WORRY!




        There is no cause for concern. The reason why such a “proof” ever arose, and how it is dispelled, is clarified in Chapter 2, Section 3.




        Similarly, the role played by infinity in the developing of mathematical processes is herewith re-examined. The inverse operation of “anti-differentiation” is envisioned as adding meaning to “infinity multiplied by zero”. A third and fourth of these indeterminate forms (infinity minus infinity and one raised to the infinite power) underlie a system of “natural” logarithms. The base of this logarithm system is a fundamental constant designated by the letter (e).


      




      

        1.4. THIS AUTHOR’S BIAS




        Notwithstanding what many traditionalists will undoubtedly view as the admitted bias of this author, a high priority is placed on refuting over-simplified explanations that are fundamentally flawed! In order to advantageously use the principles being here espoused as “calculus”, that set of combinations which are known as “l” Hospital indeterminate forms” are developed from basic principles, and then expanded. In Chapter 3 the relationship of these forms to an even more fundamental mathematical foundation will be demonstrated.




        Reiterating an obsession with over-simplified explanations, the desirability of simplicity SHOULD NEVER BE at the expense of accuracy. Knowing that the reader will lack the depth of knowledge to be able to raise an objection is insufficient justification for “taking short-cuts”. To the contrary, an author knowing that his audience is unprepared for a “better” explanation must:




        a. supply the missing background whenever it is not too advanced OR




        b. acknowledge this limitation and advise what future study is desired.




        An important idea that permeates this book is that “Half right” answers are often much worse than wrong answers! This is notwithstanding that such answers can be found in many, often highly regarded, textbooks, as well as, unfortunately, other mathematics and science publications. Intellectual honesty demands that when better explanations are available they need to be acknowledged. A problem area should never be “swept under the rug”. This author disdains placing blinders on the advanced student and feels honor-bound to discuss:




        a. what is the source of the problem?




        and b. what are the limitations?




        As well as the “algebraic logic” which underlies calculus, this text stresses “geometric logic”. For example, consider the ‘slices’ vs. ‘shells’ method of determining volumes of revolution. An objection to the traditional “Charge of the Light Brigade” mentality:




        Their’s not to make reply.




        Their’s not to reason why.




        Their’s but to do, and to die.




        permeates this entire treatise. Instead of just dumping the traditional integration formulas onto the student, the discussion of this technique is framed as part of a two parameter system. Now, by differentiating the formula for the volume of a cylinder




        V = π r2h




        by each of its independent variables r and h, the resultant formulas referred to as the “method of ‘shells’ vs. ‘slices’ are obtained. In other words, this pedagogic “trick” simplifies the remembering and correct usage of the appropriate formulas, which is especially useful when applied to moving an axis of rotation.




        Of far more importance is the correction of a major mistreatment in that part of the traditional calculus sequence commonly referred to as “vector arithmetic”. As was demonstrated in an earlier publication by this author [10], the perception of ‘What is a Vector?’ is contrary to that which is taught in most calculus textbooks. In conformity with the philosophy that the advanced student should never have to unlearn mathematically wrong ideas, a vociferous objection to regarding the cross product as just another vector is registered. This would be the scenario for those continuing advanced studies in electrodynamics whenever the traditional description of a vector as “a quantity having magnitude and direction” is employed. Such a misconception in the late 1800s helped to reinforce belief in the ether. Instead, avoiding this physics inaccuracy by giving a more accurate definition for that quantity called a “vector” is accentuated.




        The traditional development of yet another sub-domain of calculus, that this author finds especially undesirable, involves the historical method of assigning names to a set of functions that, in many aspects, directly parallel similar functions in the trigonometry associated with a circle. Instead of developing a logically consistent set of definitions for such a set of functions in terms of their relation to a reference hyperbola, earlier mathematicians, in a manner analogous to what had historically been done for a circle, defined these “hyperbolic trigonometric functions” independent of any relation to a hyperbola. Instead, their definitions accentuated the relation to exponential functions. To the questioning student, such a protocol appears to be akin to drawing such functions (along with their associated names) out of a magician’s hat. Such a method of definition has survived only because further analysis does demonstrate that such a convoluted protocol is NOT mathematically wrong, EVEN IF ITS PRIORITIES ARE. In Chapter 6, the correlation to the exponential functions is presented as a derived relation, rather than being the basis for definition.




        Furthermore, although this treatise does examine all of the traditional properties one usually associates with a calculus textbook, the presentation is often unorthodox. For example, consider the algebra “rule” for multiplication by a negative number: Reverse the direction of the original inequality. To this author, this is NOT A RULE, but rather is simple logic: merely add an appropriate common term to both sides of an inequality (see Chapter 2). In other words, this result is an application of arithmetic, NOT some memorized rule. A similar comment applies to “the chain rule”, which is traditionally designated, as well as taught as a rule in calculus courses to be “mastered”. To the contrary, this is NOT some erudition discovered by an astute mathematician. Neither is it the combined genius promulgated by an august assembly of learned mathematicians. Instead, it is merely simple algebra; namely, multiplying by one in a convenient form. Likewise, in many instances, differentials supply an intuitively simpler technique than derivatives. For example, their use is a major asset when performing implicit differentiation. This is in contradistinction to the perspective espoused in traditional textbooks, wherein the focus is almost exclusively on derivatives. On the other hand [11], this presentation regards a derivative as a secondary concept that is the division of two differentials (i.e., 0 divided by 0), which must be done




        UNDER THE APPROPRIATE CONDITIONS. See Chapter 3. Similarly, an integral is EXISTENTIALLY the summation of an infinite number of differentials (i.e., ∞ multiplied by 0). Again this must be done UNDER THE APPROPRIATE




        CONDITIONS. See Chapter 4!




        A further comment of importance is that, when evaluating the rigorous development of ANY idea, the bias of the writer should ALWAYS be taken into consideration. This author makes the heuristic decision that many developments advanced by more theoretically disposed (also referred to as “pure” in contra- distinction to “applied”) mathematicians are too esoteric for the more pragmatic students of science or engineering, and consequently one takes a more mundane (some may say naïve) approach, when it is NOT mathematically wrong. For example, in Chapter 3, focus attention on that order of infinity associated with “countability”; viz. denoted as ℵ0 in the development of transfinite numbers by Georg Cantor. This subclass of infinity is unabashedly described as “larger than any number one can count to”. Likewise, in Chapter 7, in the discussion of sequences and series, that “order of infinity” associated with the continuum (Cantor’s ℵ 1, also often denoted by c), is introduced. These two more common types of infinity is further extendable to what is referred to as “higher orders of infinity”. In a similar manner, an “applied” definition of “function” is included in Section 2.1. [12].


      


    


  




  




  




  

    Re-Examination of Basic Algebra and Trigonometry




    


    


    




    

      Abstract




      As a prerequisite to appreciating that domain of mathematics referred to as “calculus”, this chapter re-examines important ideas supposedly (or maybe one should say “hopefully”), learned in previous studies. The author’s objective in including this chapter is to emphasize (and thus help to understand) WHY, in contradistinction to merely HOW, algebraic operations are performed. Notwithstanding that this set of topics had been developed in previous encounters with mathematics, they are now viewed from an advanced viewpoint. One begins by reiterating that over a millennium ago arithmetic was simplified by assigning a number (zero) to “nothing”; thereby causing a paradigm shift that brought mathematics into the mainstream. A similar new paradigm shift, focused on a number that represents the concept of “all” (in that philosophical trichotomy of none, some and all) is herewith proposed. This role will be filled by a new number, denoted as “infinity”, which includes the infinitely large, the infinitely small, and the infinitely dense. Having made such an introduction, the rest of this treatise, starting with Chapter 3, examines the relationship between the set of three “foundational” numbers (zero, one, and infinity) upon which, we assert, the development of calculus should be formulated, and the familiar arithmetic operations of compounding and undoing previous operations.
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      2.1. FUNCTIONS AND FUNCTIONAL EQUATIONS




      A “function” in mathematics is defined [12] as: “A mathematical expression describing the relation between variables”. For a given literal number, consider a related second literal number. The first of these literal numbers is denoted as “an independent variable”. The second is denoted as “a dependent variable”. For instance, select the equation y = 2x2 – 1. Next, choose any value for x. For that value of x, there is a unique corresponding value for y; namely: if x = 0, then y = −l




      if x = 2, then y = 7




      if x = − l 0, then y = 199, etc.




      In this example, y was written alone on the left side of the equal sign. Only terms not involving y were written on the right side. Such an equation is called “an explicit function of x”. The term “explicit” means that given a value for x, the value of y is explained. This is done by direct computation. It is not necessary to solve any equations to determine the value for y. Instead, one merely performs the operations in the order stated.




      This same equation could also have been written as: y − 2x2 = −1 y + 1 = 2x2




      2x2 − y − 1 = 0, etc. In each of these last three equations, the value for y was implied by the equation and the given value of x; therefore y is denoted as an “implicit” function of x. Alternately, all four of these equations could be viewed as though y was the independent variable. Now x, the dependent variable, has the format of an implicit function of y; namely:




      [image: ]




      Although such a scenario is viable, it is not traditional. Instead the established custom is to restrict functions to being single-valued. When dependent variables can have more than one value they are called “relations”. Relations are usually sub-divided into distinct functions, rather than staying lumped together. In this example one function has a positive sign; the other a negative sign. A further limitation that is often made is to restrict independent variables to being real numbers. Had the example chosen been x = 2y3 − 1, it is important to remember that for polynomial equations having real coefficients, there are as many roots as the highest exponent of the dependent variable and that at least one of these is real. The other two roots may be either real or imaginary. What may seem to be “simple” extensions, such as into the domain of complex numbers, may be anything but what our intuition expects. It is important to be aware that the adjective “simple” and the adverb “simply” are probably two of the least simple words that any student of mathematics will ever encounter. The knowledge that they have accumulated in the past will determine what is, and what is not, simple. For example a “simple figure” in geometry requires many attributes not anticipated by the beginning, or even many of the more advanced, students. A small set of such terms include “simply-closed”, “simply-connected”, “orientable”, “non-redundant”, etc. Some of these will be encountered in later chapters. Additional “simple” examples of functions include:




      (1) The area of a square: A = s2. The side length s is the independent variable. The area A is the dependent variable. A is an explicit function of s. By taking the square root of both sides, s is an implicit function of A. Additionally, because of the science, rather than the mathematics, s is single-valued: Only in rare circumstances are negative lengths considered important. For nearly all examples, these solutions are extraneous.




      (2) For any circle, the circumference, C, divided by the diameter, D, is a constant. This quotient, >[image: ] is an irrational number written as the Greek letter π. The numerical value of pi is approximately 3.14159. C is an implicit function of D, and D is an implicit function of C. In order to write this equation as an explicit function of D one needs merely to multiply both sides of the equation by D; namely C = πD. Also one may formulate an explicit function of C by dividing the previous form of this equation by π; namely D =[image: ].




      (3) The relation of temperature in degrees Fahrenheit, F, to that in degrees Celsius, C, is:




      (a) C = 5(F−32)/9 C is an explicit function of F




      (b) F = 9C/5 + 32 F is an explicit function of C




      (c) 5F − 9C = 160 either variable is an implicit function of the other.




      (4) The total surface area of a cylinder S = 2πr(r+h). r denotes the radius and h the height. S is an explicit function of these two variables (r and h). They, in turn, are independent of each other. In order to find a numerical value for S, one needs values for both r and h. Similarly, one may express r as an explicit function of S and h. One now solves the quadratic equation in r:




      2πr2 +2πrh − S = 0; namely, r = [image: ]. Note that the negative square root is extraneous.




      (5) If x = l, then y = 2; if x = 2, then y = 3; if x = 3, then y = 5. This is a special type of function in which only three values of the independent variable are considered. For all other values of x, the function is undefined. There is no way to extend the “domain of definition” to any other number, such as x = 4 or x = 0, etc. Such functions are part of a large class of functions called “discrete variable functions”. One encounters both discrete and continuous functions in various branches of mathematics. For example, discrete variables are common in probability theory. One cannot roll a 3.5, with a single die. This is despite that this number (3.5) is the “average” value of many rolls. For most algebra uses, the independent variables of functions can be any real value. These functions are called “continuous variable functions”. In Equation (5) above, another important term: “domain” has been introduced. This term denotes what numerical values the independent variable can have. Associated with domain, one often wishes to know what values the dependent variable can have. This is known as the “range”. For many problems, no limit exists for the independent variable. Conversely, for other such problems, some values are excluded. Similarly, the dependent variable range may be either limited or unlimited. This depends on what is the stated functional relationship. Examples of functions in which one wants to know the domain and range include: (1) x2 − y = 0 Solving for y: y = x2. Note that all real values of x yield a unique value for y. Thus the domain is all x. On the other hand, y can assume only non-negative values. Thus the range is y ≥ 0. There are many ways to denote the domain and range. This author prefers to use either: −∞ < x < +∞ and 0 ≤ y < +∞ or else D: (−∞, ∞); R: [0, ∞). (2) x − y2 = 0 Solving for y, one obtains y = ± [image: ]. By the discussion above this is not a traditional function. Instead it is regarded as two functions. One could extend these two definitions, however, there is negligible advantage. We, as well as most calculus textbooks, limit attention to single-valued functions. (3) x2 + y2 = −1 Note in the real domain, there are no values for either x or y for which this equation is satisfied. Consequently, both the domain and the range are the empty set. An empty set has zero members and is designated by the Greek letter, φ (phi). Before progressing further, a convenient set of symbols to use when writing functions is introduced: Choose a letter, any letter, but often f. Follow this with a left parenthesis, the independent variable and then the right parenthesis. A functional equation is thus written as: y = f(x). REMEMBER! The right side of this equation is a special symbol. It bears no relation to multiplication. Namely, it DOES NOT MEAN that some variable f is to be multiplied by x. Other letters, both upper and lower case in any alphabet (such as α or ℵ) may be used. This is true for the (dependent) function and the (independent) quantity inside the parentheses. This latter quantity is called the “argument of the function”. ℵ(α) means function ℵ is evaluated in terms of α. Frequently, the argument of a function is a constant; i.e., one may have ℵ(3). However, the function itself must be a variable. One would consider a combination such as 3(α) as a multiplication, NOT as a function. (Actually, this is a sloppy, albeit not incorrect, representation of a multiplication, as the parentheses are redundant). Returning the focus to the above function, now written as f(x) = 2x2 − 1. For x = 11, f(11) is evaluated as: 2*112 − 1 = 241. Similarly, the argument of the function can be a literal expression, such as t + u. Thus: f(x) = f(t+u) = 2(t+u)2 − 1 = 2t2 + 4tu + 2u2 − 1. This is verified by letting t = 10 and u = 1; namely 200 + 40 + 2 − 1 = 241. Moreover, the argument of a function can be another function. A “function of another function” is referred to as a “composition of functions”. For example, let z = g(y), where g(y) = 3y + 2. If y is the above f(x), since y = 241, z = 3 * 241 + 2 = 725. Alternately, one could first solve for z as a function of x: z = 3(2x2 − 1) + 2 = 6x2 − 1, and then evaluate z(11) = 725. Some special symbols, that are important in calculus. are introduced at this point: (1) Instead of using t and u in the above paragraph, let the two independent variables be called x and Δx. This choice of symbol was made to indicate that Δx bears some relationship to x. REMEMBER, however, that Δx is independent of x. The relationship chosen for Δ is the difference between two successive values of x. Alternately, this last sentence translates into: Δx = x2 – x1. In Section 3.3, the procedure being developed will incorporates successively smaller differences between x1 and x2. As this difference approaches zero, the basis for an idea called “limits” is formulated. Limits, in turn, are a major component for extending algebra into calculus. Meanwhile, the combined delta/variable symbol is regarded as an inseparable single variable. At this point, there is no additional connotation associated with it. (2) When variables are related, this can be incorporated into the name assigned. Correlation is facilitated by using a single name followed by a subscript. This replaces the protocol of defining a sequence of names (a, b, c, ...). In lieu of different single letters, choose one letter supplemented with different subscripts: a1 instead of a; a2 instead of b, etc. This will be extremely useful when adding or multiplying such a grouping. Such an operation is indicated by addending a special symbol to the subscripted variable: The sum is denoted by the capital Greek letter sigma: (Σ). The product is denoted by the capital Greek letter pi.: (Π). EXAMPLE: The sum of the first 7 terms of a sequence; i.e., (m1 + m2 + m3 + . . . + m7): may be written as: [image: ]. Similarly, the product of a sequence of n such terms may be written as: [image: ]. Such aggregations will be encountered in many mathematical applications. For example, summations will be shown to be important when developing anti-derivatives in Section 3.1.




      Some important comments on symbols and terminology that are used in the study of mathematics include: (1) The set of symbols which represent the enumerated process of addition (∑) and of multiplication (∏), may be continued to that of enumerated exponentiation; however, this is tangential to the study of calculus and is thus not examined further in this treatise. (2) The terms “polynomial” and “multinomial” differ in that the former is usually limited to algebraic expressions of the form Σaixi, where i is a non-negative integer, while the latter term “includes a much larger set of functions including: radicals, negative integer exponents, trigonometric and logarithmic functions, etc. Also, both individual terms, and sums/products of individual terms, are examples of multinomials. (3) The symbol representing a function, namely f(x), contains a set of built-in parentheses. Consequently, there is no need to create a “distributive law”, where the apparent “distributive” aspect is one that correctly equates two sequences of arithmetic operations. The placement of parentheses indicates the order in which the respective operations are to be performed. For example: a(b+c) = ab + ac and a(b+c) = ab * ac. On the left side of each equation, add first. Moreover, at this level of study, f(x) is an undividable unit. No meaning has been assigned to the symbol f alone. In later more advanced studies, an algebra of such “operators” may be developed. To the contrary, for this treatise, one never considers f without a corresponding (x). (4) Juxtaposition of a constant or a set of variables with a function, such as 3f(x) or x2f(x) indicates the multiplication of the function f(x) by the stated constant or variable. One SHOULD NOT commute these two quantities and write f(x)3 as a multiplication.; however, with parentheses [f(x)*3] is acceptable. Similarly, one may use separators (parentheses and brackets) liberally. Example: [f(x)]2 = raising to a power. Admittedly, in many instances, it is NOT INCORRECT to eliminate symbols of separation. However, caution! Observe that f(x)2DOES NOT EQUAL f(x2). Moreover, f(x)g(x) or f(x)*g(x) = multiplication of two functions. It has NO relation to f[g(x)]. This latter combination may also be written as (f*g)(x) or simply f*g. Observe that f(x)*g(x) is a multiplication of two functions. On the other hand, f*g is a composition of functions. Example 1: Given f(x) = x2 + 1, evaluate:




      [image: ]




      Doing each operation individually before adding yields:




      [image: ]




      To begin, one must first determine f(x2) and g(x):




      [image: ]




      Next, one determines that:




      [image: ]




      First, note this is of the form f(u,v), where u = x+y and v = x−y. In the given expression replace each x by x+y and each y by x−y:




      [image: ]




      Next one may expand the concepts of undoing and compounding arithmetic operations with respect to functions in general and to those special functions which undo the operation of another function. In particular, two functions [f(x) and g(x)] are regarded as inverses when f(g(x)) = g(f(x)) = x. An inverse of a given function is indicated by the superscript −1; namely g(x) = f -1(x); also, f(x) = g-1(x). It is important to remember that all exponents may be written as superscripts; HOWEVER, superscripts are often NOT exponents. A minus one superscript with a literal expression indicates the reciprocal of that expression: x-1 = [image: ]. Similarly [image: ]. However, generally, f(-1)(x) denotes an inverse, NOT a reciprocal. The mechanics to determine the inverse of a given function is: (1) Let y = f(x)




      (2) Interchange x and y; thereby yielding the new equation: x = f(y)




      (3) Solve Equation (2) producing y as a function of x. An important part of mathematics is developing formal rules of procedure. The term used to designate such a rule is an “algorithm”. Observe that not every function has an inverse. Most fifth and higher degree polynomials do not. If they do, one often cannot write the inverse in terms of simple radicals. A “simple” equation without an inverse is y = xx. No “closed form solution” x = g(y), can be written for this equation; however if y = 1, 4, 27, 256, 3125, etc. the numerical value for x can be determined exactly. For other values only an approximation (to whatever degree of accuracy desired) can be determined. There does not exist a convenient representation in terms of established constants (such as pi) or radicals (such as [image: ]).




      Example 4: Demonstrate the functions f(x) = 2x + 4 and g(x) = [image: ] − 2 are inverses. First find f (-1)(x) as follows: (1) y = 2x +4 (2) x = 2y + 4




      (3) [image: ] Then to demonstrate it is the inverse:




      [image: ]




      Note that finding an inverse has the same restraints as solving an algebraic equation: Multiplying or dividing by an unknown can create extraneous roots. Similar problems arise when raising an unknown to a power. In Example 5, only one of the roots, the positive one, is the inverse. The negative root yields f[f −1(x)] = −2 − x, rather than the desired answer of x. When one wished to emphasize multiple levels of grouping, it is traditional, but not necessary, to use different shape separators; namely first use (), then [ ], and thirdly { }. Another algebraic function frequently encountered in calculus is the absolute value function: This function, written as │f(x) │, means all numbers, positive and negative, are regarded as positive, e.g.│+7│= 7 and │−7│= 7. Additionally, for a literal number, │x│= + x when x > 0 and = −x when x < 0. This function is used to describe a neighborhood about a point. Additionally when extracting an even power root, this limits the focus to real variables. In particular, [image: ], rather than simply x. Other important functions of algebraic origin will be described in later sections. One further preliminary comment is this author’s emphasis why an algebraic “rule” works. Most students remember: multiplying by a negative number reverses the direction of an inequality; namely, given a < b it then follows that −a > −b. However, when asked the reason why, they are stymied. One usually gets the feeble answer “It is a rule!” which was memorized, or slightly better, they go through some rigmarole with points on a number line. To the contrary, a trivial proof is as follows: (1) Given: a < b




      (2) Add or subtract the same quantity to both sides of this inequality.




      Note the direction of this inequality is not affected. In particular, next subtract a + b from both sides of (1).





OEBPS/Images/9781681082035-C2-inline-17.jpg
&=%
e )





OEBPS/Images/cover.jpg





OEBPS/Images/9781681082035-C2-inline-5.jpg





OEBPS/Images/9781681082035-C2-inline-11.jpg
fx)+gx) = x+x+ -

() +e@) = M+

x

and thus the final quotientis: x8+2x7 +x5+ 2% — 23 +x2_2x +1
SRSty

:
Example 3: Given f(x.y) == evaluate fix+y. xy)
xXy—¥





OEBPS/Images/9781681082035-C2-inline-13.jpg
N





OEBPS/Images/9781681082035-C2-inline-9.jpg
[P = x4+ 1

ErCg = xt+6xi+3
5f(x) = 5x2+5
fox)) = 2 +1 = =t +1
—26(2x%) = —8xt—2
(1) = L% L
X x
-3f(1) e B 3
x x
and thus the final answeris:  —Sx*+ 1157+ 3 — B
Example 2: Given () =x +L_ and () ="~ XL‘

cvaluate: 119 +e]
fix?) +gx?)





OEBPS/Images/9781681082035-C2-inline-6.jpg





OEBPS/Images/9781681082035-C2-inline-16.jpg





OEBPS/Images/9781681082035-C2-inline-1.jpg





OEBPS/Images/9781681082035-C2-inline-12.jpg
_ X +2y+y’+x’ -y 2K +2%y_ x(x+y)

sy xy)= (29 +E+YE-3)
EE-Y-E-y & -y)-&-2xy+y) 2xy-2y  y@x-y)






OEBPS/Images/9781681082035-C2-inline-8.jpg
3] *+5x) ~202x )






OEBPS/Images/9781681082035-C2-inline-3.jpg
Cl el





OEBPS/Images/9781681082035-C2-inline-19.jpg





OEBPS/Images/9781681082035-C2-inline-7.jpg





OEBPS/Images/9781681082035-C2-inline-15.jpg





OEBPS/Images/9781681082035-C2-inline-2.jpg





OEBPS/Images/bentham_logo.jpg





OEBPS/Images/9781681082035-C2-inline-4.jpg





OEBPS/Images/9781681082035-C2-inline-18.jpg
Similarly, determine g*)(x) = 2x + 4 and

fe(x))=2* g(x) +4=2* EJJ PR PR
Example 5: Find the inverse of x2 + 25 + 3

(1) y=x*+2x+3

2 x=y’+2y+3

® =-1+ Jx-2 =)





OEBPS/Images/9781681082035-C2-inline-10.jpg
)=+ andgm=x- L






OEBPS/Images/9781681082035-C2-inline-14.jpg
[l = L

fix)





