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    There is no doubt that serendipity plays an important role in many scientific developments. One very clear example is the evolution of Ophthalmic Coherence Tomography (OCT) in Ophthalmology.


    In the early 1970s, Michel Duguay at the AT & T Bell Laboratories published “Light photographed in flight”, where he proposed that echoes of light could be used to examine biological tissue. In the mid-1970s, Erich Ippen, of Massachusetts Institute of Technology (MIT), further developed femtosecond optics. Both discoveries built the foundation of the concept called optical reflectivity, with the idea that light interference could be used to obtain a non-invasive “biopsy” of translucid tissues. In the late 1980s, corneal refractive surgery was at its summit. It required an accurate measurement of corneal thickness. James Fujimoto of MIT collaborated with Ophthalmologists Joel Schuman, David Huang and Carmen Puliafito to refine this measurement, using low-coherence interferometry with only partial success. Nevertheless, in a poorly focused image of the cornea, Huang noticed what appeared to be an optical section of the retina in the background. Instead of dismissing this poorly defined image as useless, Huang continued experimenting until he was able to obtain an optical transverse image of the retina. Thus, retinal and choroidal OCT was born. Today OCT constitutes the most important ancillary test and standard of care in Ophthalmic practice, not only in vitreoretinal pathology, but also in glaucoma and problems of the anterior segment.


    More recently, swept-source OCT, which can produce 500,000 scans per second and OCT angiography, employing motion contrast imaging, allow us to image retinal capillaries and the smallest neo-vessels in the retinal tissues. Also, enhanced penetration has allowed to provide detailed visualization of the choroid. New technologies are in constant development, such as visible light OCT (visOCT) and adaptive optics (AO-OCT) will allow further details and deeper penetration.


    In this particular section of the book, after a review of general principles and advances of OCT and OCTa use in vitreoretinal disorders, all the contributors and coauthors engage in describing to us the normal and pathological parameters of macular and choroidal perfusion patterns, followed by a description and findings in several vitreoretinal and choroidal pathological disorders.


    There is no doubt that all the new and described findings in this book will widen our knowledge and be of benefit to our ailing patients.


    
      Alexander Dalma M.D.

      Mexico City
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    Optical coherence tomography angiography is one of the most important recent innovations in ophthalmology. The book you have in your hands represents the collaborative efforts of a select team of subject matter experts. This book aims to be a practical, patient-centered guide complemented with a clinical approach and demonstrative clinical cases to assist ophthalmologists and ophthalmology trainees in the evaluation of newly developed perfusion concepts and the diagnosis and management of patients presenting with a wide spectrum of diseases of the retina and choroid, as well as the role of perfusion parameters in the pathogenesis of diverse diseases. As mentioned briefly before, this book describes the journey from basic ophthalmology principles to the most sophisticated current aspects and advances that have resulted in the development of superb technological innovations. We have gone from fundus fluorescein angiography imaging to the evaluation of the perfusional indices of retinochoroidal structures using noninvasive and noncontact imaging techniques that allow a high histopathological correlation of structural tissue characterization with microvascular evaluation on tissue perfusion.


    Written by leading international experts in the field, Optical Coherence Tomography Angiography for Choroidal and Vitreoretinal Disorders serves as a practical tool for daily work in a retina clinic, helping you through the first steps of perfusion investigation and clinical evaluation, correlation management and treatment decisions for these complex patients. Each chapter details distinct diseases of the retina or choroid, with a focus on signs and perfusion; optical coherent tomography is emphasized, and the chapters are illustrated with many multipaneled images, such that the book may be used as a reference for deciding on diagnostic and treatment options.


    This book dissects the basics of angiography by optical coherence tomography and explains the differences in the clinical utility of optical coherence tomography as well as its complementarity. This gives us a broad explanation of the nomenclature and normal perfusional findings in healthy populations.


    Several chapters explain macular perfusional findings in different vitreoretinal and choroidal pathologies, including vascular entities commonly seen in daily practice, such as diabetic retinopathy, hemorrhagic and ischemic infarctions of the retina due to vascular disorders, and choroidal pathological neovascularization; most importantly, perfusion parameters are evaluated by quantification and binarization of the different vascular plexuses at the retinal and choroidal level. Additionally, certain tractional entities are evaluated from the point of view of their microstructural findings and perfusional postoperative outcomes, associating them with the final vision.


    Some chapters deal with new antivascular endothelial growth factor molecules and new extended-release delivery devices and provide a comparative evaluation of the therapeutic effect on perfusion. In this way, multiple complex pathological disorders of the retina and choroid are more efficiently diagnosed, followed by natural and treated medical or surgical evolution according to the specific cause and consequently, as mentioned before, monitored in response to specific treatments.


    We hope that this book, from a multitude of experts, contributes pertinently to academia and achieves the objective of serving as a guide both in the diagnosis and clinical decision-making that those of us who are dedicated to the difficult but beautiful and challenging practice of clinical and surgical retina care perform on a daily basis.


    
      Miguel A. Quiroz-Reyes, MD

      Oftalmologia Integral ABC, Retina Department

      Medical and Surgical Assistance Institution (Nonprofit Organization)

      Affiliated with the Postgraduate Studies Division

      National Autonomous University of Mexico

      Mexico City, Mexico
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      Abstract


      Optical coherence tomography (OCT) has proven to be an effective diagnostic technique for evaluating ocular structures, particularly for studying retinal layers and other areas of the posterior segment of the eye. The incorporation of strategies and algorithms that allow the observation of the retinal microvasculature and the flow of red blood cells currently represents important advances in the diagnosis and treatment of inflammatory, neural, and vascular retinal diseases. The advantage is that OCT is a non-invasive method that does not require the use of contrast dyes. For this reason, OCT combined with angiography (OCTA) is one of the most important techniques for the study of vitreoretinal disorders. Its optical principle, which is based on the Doppler technique, allows us to understand how OCTA equipment acquires and processes images to facilitate visualization and interpretation through their two- and three-dimensional reconstructions. In addition, OCTA allows the identification of signal alterations that could appear as artifacts on each tomography or angiographic scan. This chapter aims to explore the characteristics and further applications of OCTA in addition to its relevance in ophthalmological clinical practice.
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      INTRODUCTION


      The study of ocular anatomy is a fundamental part of understanding the physiological and pathophysiological processes related to this organ. Using imaging methods that have evolved over more than three decades [1], it has been possible to observe ocular structures such as the retina and develop lines of research focused on evaluating blood flow in the retinal microvasculature.


      Although fluorescein angiography (FA) has demonstrated its usefulness in the study of the main ocular irrigation pathways (central retinal artery and vein and their derivations) [2, 3], it cannot provide an image of the deep vascular plexus (DVP), which plays an important role in the oxygenation and functioning of the cells of the retinal neural axis. After the introduction of optical coherence tomography (OCT) as a noninvasive and painless imaging technique that uses light to create cross-sectional and three-dimensional highly detailed images of the retina, it is possible to obtain good resolution views of the segmented retina [4], which can provide information that is not visible with other imaging techniques. However, it became evident that the study of this tissue in quasi-histological sections [5, 6] was insufficient to fully evaluate this tissue because it was not possible to visualize the blood flow of the superficial and deep plexuses.


      Given the existence of methods (such as Doppler techniques) that allow blood flow measurements of other structures, such as the skin [7-10], adaptation to the spectral domain and swept-source OCT models is necessary. However, to understand the operation of OCT with angiography (OCTA), it is necessary to explain the optical principles of conventional OCT to establish their relationship with and influence in this field.

    


    
      OCT: OPTICAL PRINCIPLE


      OCT is a high-resolution, non-invasive imaging technique that allows visualization of retinal layers in real time [11, 12]. The initial model called time-domain OCT (TD-OCT) uses light from the infrared spectral range, which is divided into two light beams: (1) the first is reflected in a reference mirror and (2) the second is directed toward the sample tissue (test beam), after which a measurement of the backscattered light is performed by low-coherence interferometry [3, 10, 13]. As the reference mirror changes, the depth of the analyzed section also changes because of the variation in the intensity of the backscattered light.


      This full depth profile is called an amplitude scan (A-scan); on the other hand, if the beam performs a lateral scan of the tissue, a cross-sectional image known as a B-scan is obtained (Fig. 1). The next generation of OCT (frequency domain or FD-OCT) no longer requires manual scanning of the length of the optical path [13] because it has spectral information from the interferometric signal to form the image.
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Fig. (1))

      Quasi-histological section of the retina. (a) The spectral domain optical coherence tomography (SD-OCT) image allows visualization of the layers that integrate the retina with the inner limiting membrane (ILM) to the choriocapillaris. Construction of the color image facilitates the identification of each layer. Automatic segmentation lines mark the perimeter between the retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL, purple line), and the perimeter between the inner plexiform layer (IPL) and inner nuclear layer (INL, yellow line). (b) and (c) Horizontal sections (B-scans) of two healthy retinas, namely the right eye and left eye, respectively. The OCT image automatically provides the scan direction (commonly at the left of each scan).

      The incorporation of the spectrometer into the new OCT models known as spectral domain OCT (SD-OCT) changed its optical principle because it used a diffraction element to separate the different wavelengths emitted toward the spectrometer, which were subsequently captured as a superposition of fringe patterns by a high-speed camera (Fig. 2) [13-15]. However, swept-source OCT (SS-OCT) replaces the diffraction element with a high-speed photodetector that allows the interferometric signal to be scanned, equivalent to the spectral interferogram of SD-OCT [16, 17].
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Fig. (2))

      Optical principle of SD-OCT. The light is directed toward the beam splitter, which splits them into two beams: (1) the first is reflected by a reference mirror, and (2) the second moves toward the sample (human retina). The backscattered light is reflected and combined before passing through the diffraction element, which separates the light into different wavelengths to be detected by a spectrometer.

      
        OCT Image Acquisition and Processing


        Through Fourier transformation, interference signal information can be converted into an intensity profile without manually moving the reference mirror during scanning [18-20]. All of these adaptations improved the acquisition speeds of SD-OCT and SS-OCT, which allowed the evaluation of pulsatile blood flow in the retina with a scan range of 29,000 to 100,000 A-scan/s. Currently, SD-OCT and SS-OCT models approved by the Food and Drug Administration (FDA) have a light source that ranges from 840 to 1050 nm with a scanning speed of 70,000 to 100,000 A-scan/s [21, 22].


        A relevant aspect to consider is the static retina, so consecutive scanning of this tissue allows its visualization [18]; however, OCT is particularly sensitive to the movement of the extraocular muscles in what is known as microsaccade movements, which align the eyes according to a fixation point or to another series of movements, such as those of circulating erythrocytes in the microvasculature. Obtaining consecutive cross-sectional images (B-scans) of the same area in the same position can favor visualization of red blood cell (RBC) flow within the retina once involuntary eye movement is compensated by the optical microangiography algorithm (OMAG) [23-26]. OMAG is a technique based on complex signals, where the intensity and phase values of the OCT signal are included in the calculation of the final flow intensity.


        This algorithm also stands out for its ability to identify the direction of the erythrocyte flow. Other algorithms, such as split spectrum amplitude relation (SSADA) [19, 27, 28, 29], which measures the decorrelation between two consecutive B-scans, use a technique based on signal intensity, which also leads to a reduction in the sensitivity to eye movement, although this reduction compromises the resolution of the axial image.


        OCT images can be used to identify a variety of retinal changes associated with diabetic retinopathy, including macular edema, disruption of the retinal layers, presence of hard exudates, reduced choroidal thickness, or neovascular complexes (NVC) [16, 21, 26, 27]; however, it cannot identify areas of macular non-perfusion or ischemia. Therefore, OCT is often used in conjunction with other imaging techniques, such as FA [3], to provide a complete picture of disease progression and to assess the response to treatment.

      


      
        Fundamental Characteristics of the OCTA


        As part of the evolution of OCT, OCT with angiography (OCTA) incorporates the optical principle with substantial changes. First, it is necessary to emphasize the absence of the need for fluorescent dye injection to obtain a blood flow image [18, 30-32] because OCTA can differentiate the movement of erythrocytes between each scan. It also highlights that, while conventional OCT performs B-scans in the sagittal plane [10], OCTA does so in the coronal plane to facilitate the analysis of horizontal vascular networks.


        In this sense, the sequence of repeated images obtained by OCTA is analyzed and compared with each other based on an algorithm, pixel by pixel (or voxel by voxel in the case of three-dimensional [3D] images) [33], to discriminate any changes in the emitted signal. Although it is possible for some moving particles, such as lipid flow, to be detected by the OCTA signal, the probability of this detection is low; instead, the signal identifies RBC flow and interprets it as signal changes between multiple B-scans, which can be seen on a motion contrast image.


        The last relevant comparison is that, although conventional OCT and OCTA can generate 3D images, only the latter makes it possible to visualize the retinal microvasculature [34, 35]. Some of the determining factors for obtaining images of adequate quality are the acquisition time (A-scan rate multiplied by the number of A-scans per B-scan), the time it takes to reposition the beam to the initial position without performing acquisition of data (fly back time) before the repetition of the B-scan [10], and the interscan time (ΔT) [36], which refers to the time elapsed between the repetition of the B-scans and ranges between 4 and 5 µs in current models of OCTA (Fig. 3). This ΔT has shown its relevance in the detection of movement in that a longer interscan time leads to an increase in movement sensitivity (particularly in slow blood flow), which means that the major probability of detecting changes in the signal is not attributable to erythrocyte flow, but rather to involuntary eye movements.
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Fig. (3))

        Identification of moving erythrocytes. Horizontal scans (B-scans) facilitate visualization of vascular plexuses; between each scan, it is possible to detect the light reflected by the circulating erythrocytes, whereby the direction of blood flow can be established.

        One way to minimize this possible risk is to use variable interscan times (VISTA technique) [37, 38], which favors differentiated visualization of blood flow velocity without compromising the sensitivity or saturation of the scan. However, an individual RBC can move a short distance during the standard interscan time, and even if the OCTA beam is sufficiently wide to intercept this movement, its sensitivity threshold may be limited. Therefore, OCTA is considered a binary representation of blood flow (presence/absence) rather than quantification [18, 21].

      

    


    
      ARTIFACTS


      Beyond the clear advantages offered by OCTA technology compared with conventional OCT, both instruments share a series of limitations related to image quality [39, 40]. In particular, current OCTA models are not exempt from the presence of artifacts, which are usually alterations in the signal derived from errors in the image acquisition methodology, the presence of voluntary and involuntary eye movements (Fig. 4), and/or the pathological conditions of the refractive media or ocular structures [41, 42].


      To facilitate the understanding of each of these elements that can interfere with obtaining a good quality image, we can refer to some of the most common examples in clinical practice: (1) incorrect head position in which the forehead and chin do not align with the corresponding mounts on the equipment, thus forcing the patient to reposition; (2) abrupt movements of the equipment knob that make it difficult to focus on the retina; (3) eccentric fixation; and/or (4) the presence of elements, such as opacities in the cornea or lens, poor tear quality, or condensation in the vitreous humor, all of which can reduce the transparency of the refractive media [43-45]. The implementation of the well-known “eye-tracking” systems [46, 47], commonly incorporated into the most recent OCT and OCTA models, is useful for measuring and correcting errors produced by eye movements, such as blinking or saccadic movements, particularly in cases that require a longer scanning time than standard scanning times.


      On the other hand, the same image reconstruction system can generate shadows that simulate blood vessels under conditions of hypo-reflection and hyper-reflection; however, these shadows are projection artifacts that can make it difficult to observe erythrocyte flow or the “real” microvasculature. These shadows could also lead to inaccurate interpretations of the anatomical and physiological states of the capillary plexuses [48, 49].


      Faced with this condition, effective methods have been developed to reduce or remove projection artifacts by incorporating algorithms that consider subtraction of the retinal flow signal from the flow signal detected in the external avascular retinal space to obtain the real retinal flow signal. Another method that allows the elimination of the projected signals from the cross-sectional images is the projection resolution algorithm, which can differentiate between the intensity of real and false signals (artifacts) and leads to an improvement in the image to identify the capillaries hidden behind larger vessels [41, 42].
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Fig. (4))

      Signal alteration due to movement. The angiogram was obtained from a volunteer with no retinal disease. Although the intensity of the acquisition signal can be considered acceptable, the flickering that occurred at the time of scanning caused two interruptions in the signal that generated a discontinuous construction of the image. Within the red boxes, a loss of capillary continuity could be identified and should be analyzed in the context of the presence of this artifact, and not as an alteration in the microvasculature.
    


    
      2-D AND 3-D VISUALIZATION OF OCTA DATA


      As mentioned above, the data obtained from each scan allow the representation of different findings from the images. These images can be 2D or 3D [50], depending on the approach chosen for viewing. It is necessary to remember that when studying the retina, it can be divided into layers, including the choroid; therefore, the information obtained by OCTA can be processed as a segmented structure to facilitate the differentiation of each layer.


      The images can then be viewed through maximum intensity projection, for which the brightest 3D image cubic unit (voxel) is selected to be projected onto a useful viewing plane for observing small vessel flow [10, 33], although this technique is sensitive to noise due to the presence of outliers. However, when using the mean intensity projection, it is possible to present a frontal 2D image (en face) [10] that does not compromise the visibility of the smaller capillaries owing to noise (Fig. 5).


      Additionally, this visualization alternative offers a color-coded representation of the retinal layers and capillary plexuses while segmenting the retina at different depths, making it possible to evaluate the choriocapillaris. Its main disadvantage is the high variability that exists when trying to identify the retinal layers in pathological conditions, because this strategy is based on normal retinal anatomy [51]. To reduce the possibility of error, OCTA B-scans allow color-identified flow to be superimposed on a transverse grayscale OCT image [10]. Thus, a more reliable comparison of the retinal structure and the integrity of its layers can be established.


      Even with strategies that seek to limit the disadvantages of en face images, the consequent flattening of the 2D projection persists; therefore, the volume rendering method allows visualization of information from three axes of rotation to generate a modality that does not depend on segmentation and translates into clearer images that avoid the apparent fusion of the microvasculature derived from the superimposition of the vessels in the en face images [52].
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Fig. (5))

      En face images. (a) Color reconstruction of the central retina. (b) Grayscale reconstruction of the central retina. (c) Vitreoretinal interface map. (d) Map of the superficial vascular plexus. (e) Map of the deep vascular plexus. (f) Map of the avascular zone of the central retina. (g) Choriocapillaris layer. (h) Choroidal layer.
    


    
      OCTA: QUANTITATIVE DATA


      The quantitative characteristics that OCTA illustrates and the evaluation of several parameters can be highlighted: (1) vascular density (VD), defined as the proportion of blood vessels where erythrocyte flow is perceived within the measured area [53]; (2) blood vessel caliber (BVC), which represents the existing vascular density per unit area; (3) vascular tortuosity (VT), defined as the integral of the squared curvature of the vessel trajectory normalized by the total length of the trajectory [54]; (4) the vascular perimeter (VP), which represents the surface occupied by the retinal capillaries [55]; (5) the foveal avascular zone (FAZ), which is the central region devoid of blood vessels; (6) the area of the FAZ (FAZA), determined as the extension of the FAZ; and (7) the circularity of FAZ (FAZC), which allows delineating its contours (Fig. 6) [56]. These values can be represented in µm, mm, mm3, or mm-1, but they depend on the configuration reported by the manufacturer.
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Fig. (6))

      Angiography of a healthy volunteer. Tomographic evaluation with Angioplex™ technology allows evaluation of blood flow without the need for a contrast dye; in addition to the microvasculature, it is possible to identify the foveal avascular zone, its area, and the circularity of both the right eye (a) and the left eye (b). The lower part of each angiogram shows the grayscale 2D tomographic image, with the segmentation lines that delimit the vasculature between the internal limiting membrane and inner plexiform layer (ILM and IPL, respectively).
    


    
      OCTA EQUIPMENT: FEATURES AND APPLICATIONS


      Different OCTA models with SD-OCT technology, such as the Optovue AngioVue™ (OptoVue Inc., Fremont, CA, USA), Heidelberg Spectralis OCTA™ (Heidelberg, Germany), Zeiss AngioPlex™ (Zeiss Meditec Inc., Dublin, CA, USA), and Canon OCT-HS100™ (Canon, Japan) [57, 58], are currently available in the market. Of these, only the Zeiss equipment uses the OMAG algorithm, whereas the AngioVue™ model uses the SSADA.


      In addition, these models allow segmentation of the retina and reach a scanning depth of up to 60 µm below the retinal pigment epithelium (RPE), except for Spectralis OCTA™, which requires operator-mediated manual segmentation. Some models that use SS-OCT technology are the Topcon SS-OCTA™ (Topcon Corp., Japan), which performs up to 100,000 A-scans/s, and the Zeiss PLEX Elite 9000™ (Zeiss Meditec Inc., Dublin, CA, USA), which maintains the use of the OMAG algorithm and reaches a scanning depth of up to 49 µm below the RPE [21]. It is one of the most recent pieces of equipment that incorporates a volume representation display system [59], which is not available in all cases.


      Most of this equipment allows an operator to obtain 3 × 3 mm and 6 × 6 mm cube scans, but the intensity of the acquired signal varies in each case [60]. Currently, different available OCTA technologies are widely used for the diagnosis of ophthalmological diseases; specifically, they have contributed to the study of highly prevalent retinal diseases, such as diabetic retinopathy, diabetic macular edema (Fig. 7), and/or macular degeneration [61, 62]. The recognition of inflammatory diseases such as uveitis, chorioretinopathy, and neovascularization has also expanded. The understanding of other diseases, such as retinitis pigmentosa, retinal dystrophies, and/or those related to the optic nerve, such as glaucoma or optic neuropathies (Fig. 8) [63, 64], has expanded because of the findings obtained using OCTA.


      
        Variability and Reproducibility Between OCTA Equipment


        Some differences between the measurements made by the OCTA models are related to the total scan area. As already mentioned, OCTA scans allow the reconstruction of a 3 × 3 mm and 6 × 6 mm map that segments the retina into several sections: (1) four quadrants (superior, inferior, nasal, and temporal) plus a central field of 1 mm [65] and (2) nine subfields as described by the Early Treatment Diabetic Retinopathy Study (ETDRS) [66]; in this regard, the variability between the measurements of these macular cubes, whose differences are significant when comparing the VD, PD, or FAZ between both scan sizes (p < 0.01) has already been described [67].


        In particular, Lim et al. showed that the coefficients of variation were significantly lower on the 3 × 3 mm maps, possibly due to factors such as a shorter scanning time and better resolution of the images, which limits the presence of artifacts and promotes a more thorough analysis of the measurements obtained by the OCTA equipment [65]. Although this study only evaluated the reproducibility and variability of the Zeiss Cirrus HD-OCT 5000™ equipment (Zeiss Meditec Inc., Dublin, CA, USA), other studies have also agreed on the variabilities present between the measurements of different scan sizes from the same Zeiss equipment [68] and from the Optovue™ or Heidelberg™ models [69, 70], which also indicates a limitation when comparing angiograms or tomography of different models or brands of OCTA, since the VD, PD, FAZ, FAZA, and FAZC means could differ considerably because generally, these scan sizes show important differences regarding the intraclass correlation coefficients (ICCs) and coefficients of variation [65, 71]. These differences can lead to inaccurate diagnoses of capillary plexus conditions; therefore, the measurements obtained from different pieces of equipment are not directly comparable [68].


        
[image: ]


Fig. (7))

        Angiography of the healthy retina versus diabetic macular edema. (a) The image allows identifying a foveal avascular zone (FAZ) with a wide area (within normal parameters) without apparent leakage of vessels in addition to identifying the foveal depression. (b) An angiogram of a subject with diabetic macular edema shows some vessels with possible leakage (red arrows) and a reduced FAZ area; the thickening is manifested in the horizontal section of the tomography by the absence of the foveal depression.
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Fig. (8))

        Tomographic image of the optic nerve. (a) The horizontal section allows the delineation of an enlarged optic nerve excavation in a subject with glaucoma. (b) The evaluation with the vertical scan shows a less pronounced excavation, which by itself would not allow analyzing the condition of this structure. Automatic segmentation lines represent the ILM and the RPE.

        Other map sizes, such as 8 × 8 mm or 12 × 12 mm, are used for the exploration of larger caliber vessels [72], although it is necessary to specify that these scan sizes are usually single-shot images of the retinal surface on which the central retinal artery and vein and their derivations are located, so these maps are commonly used in the diagnosis of occlusions.

      


      
        Other OCT Technologies and Novel Developments Related to OCTA Devices


        OCT is a rapidly evolving technology that offers new insights into the diagnosis and management of eye disease. Some of these new technologies offer significant advantages over traditional OCT, such as higher resolution, faster scanning speed, and the ability to image in 3D. For example, Handheld OCT is a portable and adjustable device that offers high-speed imaging using a 200 kHz swept-source OCT [73-75] engine that can be used to assess retinal images in patients undergoing surgery in the operating room or people with hyperkinesis [74]. Another OCT that uses light wavelengths between 555 and 800 nm (visible light OCT (Vis-OCT)) can achieve better images than conventional OCT [75, 76], and also provides more parameters related to oxygen saturation or total retinal oxygen delivery, owing to the enhanced contrast of blood [77, 78]. In the case of Intraoperative OCT (I-OCT), the quality of the image is similar to that of other devices [79], but offers a reproducible method of acquisition that influences decision-making during surgery by up to 68% [80].


        On the other hand, Adaptive Optics (AO) is a technology that corrects optical aberrations in the eye caused by the shape of the cornea, lens, and pupil [81] by using deformable mirrors or other optical elements to compensate for these aberrations, which improve the quality of images and provides a 3D representation of the retinal microvasculature to study microaneurysms, vessel tortuosity, and capillary dropout [82]. Therefore, AO-OCT is a type of OCT that uses AO to improve the resolution and contrast of retinal images for diagnosing diseases at an early stage, such as DR [83].


        Nonetheless, there have also been recent advances in the field of angiography in OCT. Newer OCTA devices offer a higher resolution than previous equipment, which can help visualize blood vessels in greater detail [78]. In addition, they can scan the retina faster than previous devices [84, 85], helping to reduce the time it takes to obtain an OCTA scan, which can be especially beneficial for patients who have difficulty sitting still. Moreover, novel OCTA can image a wider field that allows the visualization of a larger area of the retina [86, 87], and a deeper scan [84] to visualize blood vessels in areas that were previously inaccessible, such as the choroid, for diagnosing and monitoring eye diseases, such as choroidal neovascularization (CNV) [88].


        Other technical advantages are automatic image capture, which can save time and improve accuracy [85]; image registration, which allows for the alignment of images from different scans to track changes over time [89]; and data analysis tools, which can be used to identify patterns and trends in OCTA data to assist doctors in making more informed treatment decisions.


        In addition to these technical advances, some researchers have studied the advantages of retinal evaluation using OCTA. Recently, a study published in 2023 found that artificial intelligence-based segmentation OCTA scans were more sensitive and precise than conventional angiography in detecting the presence or absence of features such as branches, peripheral arcades, dark halos, shapes, loops, and anastomoses related to CNV in patients with AMD [90]. Another study in 2022 reported that OCTA could be used to monitor the progression of diabetic retinopathy and predict the risk of vision loss [91]. For example, Vaz-Pereira et al. (2021) and Boned-Murillo et al. (2021) described the latest developments in the study of retinal nonperfusion areas (NPAs) using OCTA and discussed the higher detection rate of neovascularization obtained with widefield-OCT or widefield-OCTA (WF-OCT/WF-OCTA) [88, 92]. These studies suggest that OCTA is a valuable tool for diagnosing and monitoring eye disease.


        As other technological resources increase, angiographic techniques improve; in this sense, the incorporation of Artificial Intelligence (AI) has enabled access to more widespread utilization of OCTA devices for the diagnosis and treatment of eye diseases [93]. Its advantages include enhancing the accuracy and efficiency of OCTA devices owing to new AI algorithms and methods for image segmentation and image registration [94], which makes it possible to identify and measure blood vessels more accurately and to align OCTA images from different scans to keep track of any microvascular changes over time. AI has already developed new tools for data analysis [95] to identify patterns and trends in OCTA data that may be missed by human observers. These algorithms have the potential to make


        OCTA scans more standardized, reproducible, accessible, and affordable [94-96], as they do not require manual segmentation by a trained technician.


        The combination of AI, OCTA, and all its available variants could revolutionize the way that we study retinal tissue and its pathophysiological changes, as well as other eye diseases that may benefit from early diagnosis and treatment.

      

    


    
      CONCLUDING REMARKS


      In short, the information obtained from this equipment is valued worldwide. Although OCTA technology does not replace other diagnostic techniques, such as fluorescein angiography, it has demonstrated a good cost-benefit ratio as a diagnostic imaging instrument when incorporated into healthcare systems. This technology allows for the prevention and monitoring of diseases that potentially cause a decrease in or loss of vision without the use of an invasive method. Its applications also extend to the field of research in which the expectation of the development of new and better algorithms for OCTA devices is high. In the future, these advances would be ideal for improving the ophthalmological care of patients with eye diseases.

    

  


  
    
      DISCLAIMER


      All the scientific comments issued in this chapter are solely the responsibility of the authors and not of the institutions with which they are affiliated.

    


    
      LIST OF ABBREVIATIONS


      
        
          	

          	
        


        
          	BVC

          	Blood Vessels Caliber
        


        
          	DVP

          	Deep Vascular Plexus
        


        
          	FA

          	Fluoresceine angiography
        


        
          	FAZ

          	Foveal Avascular Zone
        


        
          	FAZA

          	Foveal Avascular Zone Area
        


        
          	FAZC

          	Foveal Avascular Zone Circularity
        


        
          	GCL

          	Ganglion Cell Layer
        


        
          	ILM

          	Internal Limiting Membrane
        


        
          	INL

          	Inner Nuclear Layer
        


        
          	IPL

          	Inner Plexiform Layer
        


        
          	IS/OS

          	Internal Segment/Outer Segment
        


        
          	OCT

          	Optical Coherence Tomography
        


        
          	OCTA

          	Optical Coherence Tomography Angiography
        


        
          	OMAG

          	Optical Microangiography Algorithm
        


        
          	ONL

          	Outer Nuclear Layer
        


        
          	OPL

          	Outer Plexiform Layer
        


        
          	RBC

          	Red Blood Cells
        


        
          	RNFL

          	Retinal Nerve Fiber Layer
        


        
          	RPE

          	Retinal Pigment Epithelium
        


        
          	SD-OCT

          	Spectral-domain Optical Coherence Tomography
        


        
          	SSADA

          	Split Spectrum Amplitude Decorrelation
        


        
          	SS-OCT

          	Swept-source Optical Coherence Tomography
        


        
          	SVP

          	Superficial Vascular Plexus
        


        
          	TD-OCT

          	Time-domain Optical Coherence Tomography
        


        
          	VD

          	Vascular Density
        


        
          	VP

          	Vascular Perimeter
        


        
          	VT

          	Vascular Tortuosity
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