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Figure 2: Symmetry of the distribution of zeros with respect to the real axis.
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Figure 3: Symmetry of the distribution of zeros with respect to point (% O)A
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with the parameter (y), the performance of which has been analytically studied by
the required increases of the appropriate integral representations paying particular
attention to the monotonicity. This study is based on the propositions 14-15 (see the
previous section).

e Section 5 is dedicated to the RH demonstration. We state and prove a uniqueness
lemma for the intersections of the F curves that correspond to the same value of the
y parameter. It thus becomes possible to state and prove a theorem showing that the
intersections corresponding to the f non-trivial zeros are true only for zo = 1/2.

e The conclusion section 6 invokes a well-known theorem for the zeros of holomorphic
functions in a connected field. In the present case this means that H is countably infi-
nite. It is therefore shown that the condition of the I (z, y) complex values arguments
determines the predicted countability.

1 The Riemann zeta function ( (s)

1.1 Dirichlet series

As is well known, the Riemann zeta function is defined by:

+00

(8= 2, s=x+1iy (2)

=
The Dirichlet series (2) is convergent for Res > 1, and uniformly convergent in any finite
region in which Res > 1 +4, § > 0. It therefore definis an holomorphic function ¢ (s) for
Res > 1 [1].

1.2 The functional equation and the non-trivial zeros

Riemann found the analytic extension (or holomorphic extension) of the sum of the Dirichlet
series (2) over all C except the point z = 1, which turns out to be a simple pole with residue
1.

The analytical extension is represented by the following functional equation [1]:

g 708 = 1=
74 (3) ¢ =TT (2 ) c1-5) ®)
2 2

where I' (s) is the Eulerian gamma function. The non-trivial zeros of ¢ (s) fall in the critical

strip [1]-[2] of the complex plane defined by
A={s€C|0<Res<1, —o0<Ims< +oo} (4)
More precisely, there are no zeros for Re s = 0, Re s = 1 so we should refer to the open strip:
{s€eC|0<Res<1l, —oo<Ims<+oo} (5)

In the following, we will denote the geometric place (5) by A.
The Eulerian gamma function has no zeros [3], so

s50€ A ((50)=0+=((1—5)=0 (6)
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1.3 Symmetries
1.3.1 Complex conjugation

Let f(s) be a complex function defined in a field 77 C C. Denoting with s* the complex
conjugate of s = z + iy i.e. s* = — iy, we plan to study the behavior of f (s) with respect
to the complex conjugation s — s*. To do this, we separate the real and imaginary parts of

Fis)
f(s) =u(z,y) +iv(z,y)

The following special cases are of interest:

1. u(z,y) =u(z,—y), v(z,y) = v(x,—y), ie. uand v are even functions with respect
to the variable y. It follows

F") =, —y) +iv (@, —y) = uley) +iv(e,y) = F(s") = £ (s)
so f (s) is invariant under the transformation s — s*.

2. u(z,y) =u(z,—y), v(z,y) = —v(z,—y), i.e. uis an even function while v is odd
with respect to the variable y. It follows

)= () =F(s)

f(s") =ul,—y)+i
Example 1 Let’s consider the function f(s) = e* =" (cosy +isiny), for which
u(z,y) = e*cosy, v(z,

)"

For the function ¢ (s) the following property holds:

y) =e"siny

So we are in case 2: e*”

Proposition 2 (Property of complex conjugation)
() =C(s)", VseC\{1} @)

Proof. It is sufficient to prove the (7) for Res > 1, using the representation through the
Dirichlet series (2) since the property is conserved in the holomorphic extension. In this way
the statement is easily proved by determining in (2) ¢ (s*) and ((s)". m

From this it follows that Re( (z + iy) is an even function with respect to the variable y,
while Im ¢ (z + 4y) is an odd function. is an odd function. This is evident in the graph of
fig. 1.

The proposition 2 implies that the non-trivial zeros are symmetric about the real axis
(fig. 2). In fact, if s, is a non-trivial zero, it must still occur

C(s5) = ¢ (50)° ®)

But ¢ (so) = 0= ((s0)" = 0 = ((s}) = 0. Stated another way, the nontrivial zeros are
distributed for complex conjugate pairs.
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Abstract

‘We discuss the Riemann Hypothesis by studying the behavior of a meromorphic
function having the same non trivial zeros as the Riemann zeta function.

The Riemann Hypothesis

Marecello Colozzo

Detailed Summary

o In § 1 we introduce the Riemann zeta function ((s), as follows in [1] and [2], in order
to therefore define the open critical strip 0 < Res < 1. In the subsection 1.3 we
establish the properties of the zeros distribution symmetry of ¢ (s) with respect to the
critical line Res = 1/2.

o In § 2 we refer back to the integral representation of ¢ (s) in the half-plane Res > 0. By
changing the variable we get the Fourier transform that depends on the free parameter

Res x, denoted by f (x,y) = f (x +iy). For theorem 8 this function (holomorphic
on the critical line, statement (4) has the same non trivial zeros of ¢ (s).

e In § 3 by means of the proposition 9 the Riemann hypothesis (RH) is stated. For the
foregoing, the function f('r + iy) verifies RH as well. Then a “study of a function” for
the antitransform is performed tracing back some of the Fourier transforms properties
as referred to in the sources [3]-[6]-[7].

e Section 4 is divided as follows. In 4.1 we use decomposition to find the Fourier inte-
gral f (z,y) subdividing the integration interval (—oo, +00) = (=00, 0) U (0, +00) and
denoting the relative integrals by I (z,y)). As a result the f zeros research brings
back to the research of the solutions for I_ (z,y) = —I (z,y). As the functions vary
from R? to C, it means that we set up a system of equations where the first one refers
to the moduli of the abovementioned functions and the second one includes the argu-
ments (phases). In the subsection 4.3 the propositions on the behavior of the following
moduli are stated and demonstrated

Fe (,y) = L« (2, y)]

to prove their analyticity according to the well-known theorems on the real and imag-
inary parts of a holomorphic function [J].

The same section shows the non-existence of the Fy (z,y) zeros on the critical strip.

e Asit is not possible to solve the system of equations introduced in the previous section,
a study of the surfaces is required

Sy =Fi(z,y) 1)

given that the set H of the non-trivial zeros of f(s) (and therefore of (s)) is a
non-empty subset of the intersection points of the surfaces (1). These latter ones are
studied by intersecting the coordinate planes xy, xz,yz with the parallel planes. The
crucial role belongs to the intersections of the plane zz with the parallel planes which
therefore are projected to this plane giving rise to two Fi families of plane curves






