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      The last decade has seen the emergence of radionanotargeting as a practice changing therapeutic approach in the clinic, particularly in the field of oncology. This has extended from regulatory approvals for radiolabeled peptide therapy in somatostatin-expressing tumors [1], to impressive results with radiolabeled peptides and antibodies against prostate-specific membrane antigen (PSMA) in prostate cancer patients [2], and exciting results for a broad array of radiolabeled engineered protein and peptide-based therapeutics and nanoparticles extending from preclinical studies into human trials [3-5]. The breadth of clinical activity across countries and in different clinical areas clearly demonstrates the momentum for the field.




      The ability of molecular imaging with radiotracers to identify targets suitable for therapy in individual patients was established decades ago with 131I as an exemplar of precision oncology, and which now extends to an impressive array of cellular, microenvironment and immune targets which can be used for therapeutic approaches [3, 4]. The principles of therapeutic drug development utilizing an initial imaging based approach, which eliminates the potential for error of biopsy results for assessment of genomic or protein expression profiles in tumors, has been built on painstaking validation and pioneering work over many years [5-7]. The development of novel targeting and radiochemistry approaches, protein design, preclinical validation, and extension into carefully conducted human trials, has provided the basis for the current approach to treating patients utilizing targeting molecules and an image-guided, or "theranostics" approach.




      In addition to the developments in targeting techniques, imaging and therapeutic radionuclide approaches, the technology developed in this field has also led to new ways to improve drug development. Through sophisticated radioimaging studies, new drugs can be assessed for biodistribution, pharmacokinetics and pharmacodynamics, which can dramatically impact patient and dose selection, and clinical development programs [6, 7]. This approach is being increasingly used by pharmaceutical companies and biotech as they develop new therapeutics.




      "The Evolution of Radionanotargeting towards Clinical Precision Oncology" provides an overview of key advances in the field of radionanotargeting, and the directions in which this area of medicine will have an impact on patient care. Our colleague, Prof Kalevi Kairemo, has been a pioneer in this field through his research and clinical translation of novel radiolabeled therapeutics. This has required his pursuing a ground-breaking multidisciplinary approach to science, development of significant expertise across the fields of chemistry, biology, engineering, physics and clinical medicine, and the ability to assemble teams for a common scientific purpose. We have enjoyed the collaboration, scientific endeavour, and friendship of Kalevi for almost 30 years, beginning with our time spent working together at Memorial Sloan-Kettering Cancer Centre, and we can attest to his insight, determination, and commitment to the field and patient care throughout this time (Fig. 1). This Festschrift book provides a wonderful outline of the field and his achievements over many years.
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Fig. (1))


      International Symposium on Radiopharmaceutical Therapy (WARMTH), Helsinki City Hall, November 2018: Homer Macapinlac, Steven Larson, Kalevi Kairemo, Andrew Scott.
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    This is a remarkable book honoring Professor Kalevi Kairemo’s work, and it is fitting that the table of contents for the book were finalized by the World Theragnostics Day on 31.3.2021, which is precisely 80 years after the first radioiodine treatment was performed by Saul Hertz on 31.3.1941. The idea for the topic/title of this book came from discussions about the partially unrecognized role of radioisotopes in the development of targeted drug development. In fact, the radionuclide approach is nearly always included in the first tools used in research when in vitro findings are transferred to the in vivo level. Usually, new cellular elements are needed for applications to determine their location in vivo in preclinical animal models and, ultimately, in humans. In these applications, radioactive isotopes have had a major role. Protein targeting was the first step towards more specific targeting, starting from the concept of receptors in the cell membrane with specific binding and functional capacity. The use of antibody-augmented targeting increased further, and evolution continued towards increasingly small cell structures. Nanotargeting has been derived even against DNA and RNA and thus shows extreme specificity. Gene therapy and antisense radionucleotide therapies are examples of the highest specificity possible against cell structures. Radionuclides and their molecular constructs have the potential to be developed into therapies involving in vivo imaging of targets followed by the application of active agents with higher radioactive doses. Radioactivity makes visualization possible and may augment therapeutic effects. Thus, radionanotargeting has a large application base and is developing towards theragnostics. All this research is based on multiomics, which involves multiple elements: genomics, transcriptomics, proteomics, metabolomics, microbiomics, epigenomics, exposome, imaging, and precision medicine. Multiomics is an approach that is also featured on the cover of this book.




    This book contains a unique collection of articles that will deepen the understanding of targeting with radioactive isotopes. Radioactivity with low trace doses can enable one to visualize targets, providing the possibility of simulating events before using higher doses with stronger effects. This is a perfect situation for cancer therapy. Radiotargeting has evolved from targeting proteins through other cellular macromolecules, e.g., DNA, towards specific gene targeting with antisense techniques. Hopefully, we will see gene silencing therapeutics in clinical oncology in the near future. This development has already been fascinating, and radiotargeting has had a major role in it.




    This book starts with a foreword to this research field by Andrew M. Scott, Homer A. Macapinlac and Steven M. Larson. Radionanotargeting and theragnostics are subjects for the next segment in the form of four chapters. Imaging is dealt with in three chapters before the therapy segment, which includes sections for thyroid cancer, head and neck cancer, genitourinary cancers and neuroendocrine neoplasms. The segment on theragnostics is covered in four chapters. In addition, nanoparticles and precision oncology have their own segments. The supporting sciences segment consists of four sections: metabolic imaging, cardiovascular radionuclide imaging, combined and bone therapies. Radiobiology is covered




    in one chapter before three chapters dedicated to a patient experience segment. The final segment consists of Professor Kairemo’s own memoir “Seven decades in health care” and memoirs from colleagues.” Finally, there is a personal introduction to Kalevi Kairemo with a photographic cavalcade of his participation in WARMTH. I am sure that this complex issue will be covered comprehensively and will open up new avenues for future innovations.
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      Abstract




      Antibody-drug conjugates (ADCs) are novel drugs that deliver a potent cytotoxic payload to the tumor site, by exploiting the specificity of a monoclonal antibody (mAb) to tumor antigens expressed on cancer cells. ADCs allow the delivery of drugs to tumor cells or microenvironment while minimizing toxicity to normal tissue. More than 80 ADCs worldwide are currently under clinical development, of which nine have already received FDA approval. Molecular imaging can play a vital role in evaluating the biodistribution and pharmacokinetics of ADCs for optimal patient selection and early clinical trial development. This chapter provides an overview of ADC structure and design, outlines approved ADCs, discusses the role of molecular imaging in drug development, and highlights clinical and pre-clinical experience with radiolabelled ADCs [1].
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      INTRODUCTION




      Antibody-drug conjugates (ADCs) are targeted agents that deliver toxic payloads at the tumor site by linking a monoclonal antibody with specificity for a tumor antigen to a cytotoxic drug or toxin via a linker. This mechanism improves the efficacy of drug treatment whilst reducing systemic exposure and toxicity [1].




      There are currently more than 80 ADCs worldwide under clinical development, with nine having received regulatory approval by FDA for use in the USA and eight approved by the European Medicines Agency (EMA) [1-4].




      Successful development of an ADC requires an intricate understanding of ADC in-vivo properties, drug delivery parameters, target expression, and the mechanism of therapeutic action that can be validated in pre-clinical models and extended into clinical trials. Molecular imaging has successfully been utilized in ADC development to study the biodistribution and pharmacodynamics of ADCs, detect heterogeneity between lesions, determine tumor target expression, predict response to the ADC, inform patient selection and assist in decisions in drug development in early phase clinical trials [1, 5].
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Fig. (1))


      Structure of antibody-drug conjugate [adapted from 1].

    




    

      ANTIBODY-DRUG CONJUGATES AS A CANCER THERAPEUTIC




      

        Design and Structure




        ADCs comprise a tumor antigen-specific monoclonal antibody (mAb) or related engineered construct conjugated via a stable chemical linker to a potent cytotoxin. Guided by the specificity and high affinity of antibodies for antigens on tumor cells, these three components can deliver normally intolerable drugs or payloads directly and specifically to cancer cells [1] (Fig. 1).


      




      

        Mechanism of Action




        Once the ADC is bound to its target antigen, the ADC-antigen complex is internalized into the cell via pinocytosis clathrin- or caveolae-mediated endocytosis [1, 6]. Internalisation of the ADC results in trafficking through an early endosome, formed by inward budding of the cell membrane, which matures into a late endosome prior to fusing with lysosomes. The cleavage mechanisms usually occur in early or late endosomes for ADCs with cleavable linkers. In contrast, a more complex proteolytic cleavage is required by cathepsin B and plasmin in the lysosomes for ADCs with non-cleavable linkers. Once inside the lysosome, the ADC is degraded, and free drug payload is released into the cell cytoplasm, leading to cell death [1, 7]. The mechanism of cell death is dependent on the type of cytotoxic payload, for example, by microtubule disruption or DNA targeting. ADCs are typically administered intravenously due to poor oral availability [1, 6].


      




      

        Clinical Development and Design




        

          Target Antigen Selection




          Appropriate selection of a target antigen is a critical step for the success of an antibody-drug conjugate. An appropriate target antigen should have the following features: 1) antigen abundance on the tumor cell or microenvironment target surface to be available for binding by circulating ADC, 2) preferential expression on tumor cells with a minimal expression on healthy tissue to minimize off-target toxicity, 3) minimal secretion in the circulation to avoid sequestration in the blood compartment of the ADC, thus limiting available ADC for tumor targeting, 4) ability to internalize efficiently upon ADC binding, and 5) appropriate intracellular trafficking and degradation to allow the cytotoxic payload to be released [1, 8-12]. More than 50 known antigens have been used as targets in ADCs in both pre-clinical and clinical development [1] (Table 1).




          

            Table 1 ADC target agents in development and current practice (adapted from 1).




            

              

                

                  	Targets



                  	Indication

                


              



              

                

                  	CD25, CD33, CD123 (IL-3Rα), FLT3



                  	Acute myeloid leukemia

                




                

                  	CD38, CD46 (MCP), CD56, CD74, CD138, CD269 (BCMA), endothelin B receptor



                  	Multiple myeloma

                




                

                  	Axl, alpha v beta6, CD25, CD56, CD71 (transferrin R), CD228 (P79, SEMF), CD326, CRIPTO, EGFR, ErbB3 (HER3), FAP, Globo H, GD2, IGF-1R, integrin β-6, mesothelin, PTK7 (CCK4), ROR2, SLC34A2 (Napi2b), SLC39A6 (LIV1A ZIP6)



                  	Lung cancer

                




                

                  	CD25, CD30, CD197 (CCR7)



                  	Hodgkin’s lymphoma

                




                

                  	CD19, CD20, CD22, CD25, CD30, CD37, CD70, CD71 (transferrin R), CD72, CD79, CD180, CD205 (Ly75), ROR1



                  	Non-Hodgkin’s lymphoma

                




                

                  	CD71 (transferrin R), CD197 (CCR7), EGFR, SLC39A6 (LIV1A ZIP6)



                  	Head and neck cancer

                




                

                  	EGFR, EphA3, EphA2, CD25



                  	Gliomas grade III and IV

                




                

                  	CD25, CD197 (CCR7), CD228 (P79, SEMF), FLOR1 (FRα), Globo H, GRP20, GCC, SLC39A6 (LIV1A ZIP6)



                  	Gastric cancer

                




                

                  	CD74, CD174, CD166, CD227 (MUC-1), CD32 (Epcam), CEACAM5, CRIPTO, FAP, ED-B, ErbB3 (HER3)



                  	Colorectal cancer

                




                

                  	CD25, CD205 (Ly75)



                  	Bladder cancer

                




                

                  	CD25, CD174, CD197 (CCR7), CD205 (Ly75), CD228 (P79, SEMF), c-MET, CRIPTO, ErbB2 (HER2), ErbB3 (HER3), FLOR1 (FRα), Globo H, GPNMB, IGF-1R, integrin β-6, PTK7 (CCK4), nectin-4 (PVRL4), ROR2, SLC39A6 (LIV1A ZIP6)



                  	Breast cancer

                




                

                  	CD276 (B7-H3), c-MET



                  	Liver cancer

                




                

                  	CD276 (B7-H3), GD2, GPNMB, ED-B, PMEL 17, endothelin B receptor



                  	Melanoma

                




                

                  	Mesothelin, CD228 (P79, SEMF)



                  	Mesothelioma

                




                

                  	CA125 (MUC16), CD142 (TF), CD205 (Ly75), FLOR1 (FRα), GloboH, mesothelin, PTK7 (CCK4)



                  	Ovarian cancer

                




                

                  	CD25, CD71 (transferrin R), CD74, CD227 (MUC1), CD228 (P79, SEMF), GRP20, GCC, IGF-1R, integrin β-6, nectin-4 (PVRL4), SLC34A2 (Napi2b), SLC44A4, alpha v beta6, mesothelin



                  	Pancreatic cancer

                




                

                  	CD46 (MCP), PSMA, STEAP-1, SLC44A4, TENB2



                  	Prostate cancer

                




                

                  	AGS-16, EGFR, c-MET, CAIX, CD70, FLOR1 (FRα)



                  	Renal cell cancer

                


              

            




          


        


      




      

        Antibody Selection




        Appropriate antibody or recombinant construct selection is paramount, as the antibody utilised in an ADC can have a significant impact on efficacy, therapeutic index, pharmacokinetic and pharmacodynamic profiles [1]. The ideal monoclonal antibody for ADC should be target-specific with high binding affinity, low immunogenicity, minimal normal tissue cross-reactivity, efficient internalization, and suitable pharmacokinetics [1, 13, 14].




        Early ADCs used murine antibodies, which had reduced efficacy and increased toxicity due to high immunogenicity [1, 15, 16]. The next-generation ADCs use chimeric, humanized, or fully human antibodies to overcome this problem. Of the five main classes of antibodies in humans (IgA, IgD, IgE, IgG, and IgM), the IgG1 subtype is used most frequently. The IgG antibody has two heavy chains, two light chains, two antigen-binding fragments (Fabs), and a constant fragment (Fc). The Fabs mediate antigen recognition, and the Fc mediates binding of the antibody with effector cells of the immune system [1] (Fig. 1). The IgG antibody has the most favorable characteristics for therapeutics regarding serum stability and strong binding affinity for the Fc receptor. The benefit of using a fully humanized antibody is to prevent the development of an immune response against these antigens [1, 17].


      




      

        Drug Payload




        Early ADCs had relatively low efficacy due to the use of readily available conventional cytotoxics (e.g. doxorubicin, methotrexate), with issues of relatively low potency, lack of selectivity, and poor accumulation in target cells. Desirable characteristics for ADC payloads include high potency, plasma stability, small molecular weight, low immunogenicity, and a long-half-life, with chemistry that does not disrupt the internalization properties of the parental mAb [1]. Subsequently, more potent payloads have been utilized, most commonly targeting either DNA or tubulins, with IC50 values in the subnanomolar range [1, 18]. DNA targeting payloads include calicheamicins, duocarmycins, pyrrolobenzodiazepines (PBDs), SN-38 and DXd, which cause DNA damage resulting in cell death. The anti-tubulin agents include auristatins and maytansinoids, which disrupt microtubules and induce cell cycle arrest in the G2/M phase [1, 19].




        Linkers play a crucial role in the pharmacokinetic and pharmacodynamic properties of ADC, as they link the antibody to the cytotoxic payload, and therefore consideration must be paid to various factors such as mode and site of conjugation and linker chemistry. Linkers must be readily cleaved when internalised for payload release, however, the ADC must maintain stability in the blood circulation in order to reach the cancer cell intact [1]. They are broadly classified as cleavable or non-cleavable linkers, with cleavable linkers being further subdivided into acid, protease, or glutathione sensitive depending on the physiological conditions in the cell for linker cleavage. Non-cleavable linkers have greater stability in the bloodstream, longer half-lives, and reduced off-target toxicity due to the formation of non-reducible bonds with the amino acid residues of the mAb [1, 20]. Although there have been 7 ADCs approved in the last three years (Table 2), there are more than 80 ADCs in development worldwide [1, 21, 22].


      




      

        Antibody-Drug Conjugation




        Conventional drug conjugation usually occurs on the mAb backbone via either alkylation or acylation of lysine sidechains or reduction of disulfide bonds that can liberate cysteine residues to be attached to linkers. The drug to antibody ratio (DAR) may vary between 0-8, with higher DAR producing more potent ADCs, but at the risk of destabilisation, aggregation increased off-target toxicity, and enhanced drug clearance from systemic circulation. Site-specific conjugation (SCC) is garnering interest, with the ability to produce more homogenous ADCs through the insertion of unnatural amino acids in the antibody sequence, engineered cysteine residues, or enzymatic conjugation through glycotransferases and transglutaminases [1].




        

          Table 2 Antibody-drug conjugates approved for clinical use (adapted from 1).




          

            

              

                	ADC



                	Target Antigen



                	Payload



                	Approved Indication(s)



                	Year of FDA Approval



                	Year of EMA Approval

              


            



            

              

                	Inotuzumab ozogamicin (Besponsa)



                	CD22



                	Calicheamicin derivative



                	B cell precursor, ALL



                	2017



                	2017

              




              

                	Gemtuzumab ozogamicin (Mylotarg)



                	CD33



                	Calicheamicin derivative



                	CD33-positive AML



                	2000 (withdrawn 2010); reapproved 2017



                	2018

              




              

                	Trastuzumab emtansine (T-DM1, Kadcyla)



                	ErbB2



                	DM1



                	ErbB2-positive metastatic breast cancer



                	2013



                	2013

              




              

                	Brentuximab vedotin (SGN-35, Adcetris)



                	CD30



                	MMAE



                	Hodgkin’s lymphoma, ALCL, PTCL, mycosis fungoides



                	2011



                	2012

              




              

                	Polatuzumab vedotin (Polivy)



                	CD79



                	MMAE



                	DLBCL



                	2019



                	2020

              




              

                	Enfortumab bedotin (ASG-22ME, Padcev)



                	Nectin-4



                	MMAE



                	Advanced urothelial cancer



                	2019



                	2020

              




              

                	Belantamab mafodotin (GSK2857916, Blenrep)



                	BCMA



                	MMAF



                	Relapsed/refractory multiple myeloma



                	2020



                	2020

              




              

                	Trastuzumab deruxtecan (DS-8201a, Enhertu)



                	ErbB2



                	DXd (DK-8951 derivative)



                	Metastatic ErbB2-positive breast cancer



                	2019



                	2021

              




              

                	Sacituzumab govitecan (IMMU-132, Trodelvy)



                	TROP2



                	SN-38



                	Triple-negative breast cancer



                	2020



                	Not approved

              


            

          




        


      


    




    

      ROLE OF MOLECULAR IMAGING IN ADC DEVELOPMENT




      SPECT- and PET-based approaches have demonstrated the role of molecular imaging in ADC development. Molecular imaging allows the development of imaging probes that can identify normal tissue distribution and pharmacokinetics in real-time, including identification of target expression and confirmation of in vivo target delivery. This information is vital to understanding the in vivo behavior of ADCs to ensure optimal ADC dose, allow valid assessment of the therapeutic effects of ADCs, and inform patient selection for clinical trials [1].




      

        Pre-clinical Studies of Molecular Imaging of ADCs




        The development of molecular imaging probes for ADCs for cancer therapy involves radiochemistry development of suitable radiolabeled ADCs which retain target binding affinity and specificity and demonstrate suitable in-vivo stability and imaging properties [23-25]. The radioisotopes that have been utilized range from SPECT isotopes (e.g111In, 123I) to PET isotopes (e.g.124I, 89Zr), and are selected based on suitable half-life for the in-vivo biodistribution of the candidate ADC. The techniques for radiolabeling, and chelate selection have been extensively reviewed [23-25], and have similar approaches to that utilized for non-drug conjugated antibodies and engineered proteins, but with the additional requirement of confirmation of drug/payload retention of activity following radiolabeling.




        A broad range of targets and models have been explored and reported for molecular imaging of ADC biodistribution and tumor uptake in-vivo. These include ADCs against CD30 in lymphoma and lung cancer [26, 27], TENB2 and STEAP1 in prostate cancer [28], mesothelin in pancreatic and ovarian cancer [29], LGR5 in colorectal cancer [30], Ley in solid tumors [31], ErbB family targets in a range of cancer types [6, 32] and TAG-72 [33]. These have provided the platform for extending molecular imaging of targets and construct biodistribution into clinical trials and assisting with the development of ADC-based approaches in patients with hematologic malignancies and advanced or metastatic solid tumors.


      




      

        Molecular Imaging in Clinical Development of ADCs




        The phase 1 dose-escalation study of CMD-193 was a pioneering study that provided the first demonstration of a radiolabeled ADC (111In-CMD-193) informing the development of ADCs in solid tumor patients. CMD-193 is composed of G193 (a humanized anti-Lewisy monoclonal antibody-based on Hu3S193) conjugated to cytotoxic calicheamicin via an acid-labile AcBut linker. Patients in this study received a single infusion of 111In-CMD-193, followed by unlabeled CMD-193 infusions every three weeks for the duration of the study. Biodistribution analysis, performed by whole-body gamma camera scans for the week following 111In-CMD-193 infusion, revealed a rapid clearance of 111In-CMD-193 from blood followed by a marked increase in hepatic uptake, without significant tumor uptake [1, 31] (Fig. 2). The clinical development of CMD-193 was discontinued based on this study, however, this clinical trial highlighted the role of molecular imaging in understanding pharmacodynamics and biodistribution in early phase clinical drug development [1].




        
[image: ]


Fig. (2))


        Representative biodistribution pattern of 111In-CMD-193. Anterior whole-body gamma camera images in patient 106 (1.0mg/m2 dose cohort) following infusion are showing for day 1 (A), day 3 (B), and day 8 (C). Following infusion of 111In-CMD-193, there was initial blood pooling, followed by markedly increased hepatic uptake by day 2 that persisted to day 8. No tumor uptake was apparent in the whole-body gamma camera images (arrow) or SPECT (D). Corresponding CT scan shows the large hepatic metastasis (E) and evident in (F), coregistered SPECT/CT scan. Reprinted from the phase I biodistribution and pharmacokinetic study of Lewis Y-targeting immunoconjugate CMD-193 in patients with advanced epithelial cancers [31].

      




      

        ErbB2/HER2




        The ZEPHIR study was the first study to measure ErbB2 expression and predict response to trastuzumab emtansine (T-DM1) using the molecular imaging probe 89Zr-Trastuzumab. Patients with ErbB2-positive advanced breast cancer underwent ErbB2-PET (89Zr-trastuzumab PET/CT) and FDG-PET/CT followed by one cycle of T-DM1, a further FDG-PET/CT (after cycle 1), then standard CT scans after cycle 3 of therapy for response assessment. Combining ErbB2-PET/CT and FDG-PET/CT accurately predicted morphological response in these patients (negative and positive predictive value of 100%) and distinguished patients with a median time to treatment failure (TTF) of only 2.8 months (n=12, 95% CI 1.4-7.6) from those with a TTF of 15 months (n=25, 95% CI 9.7-not calculable). This study highlighted the role of molecular imaging as an additional diagnostic tool for ADC therapy in selecting patients who may or may not benefit from treatment [6].


      




      

        EGFR




        The EGFR gene is a validated target in oncology, with monoclonal antibodies against EGFR approved and used to treat head and neck, colon, and lung cancer patients. ABT-806 is a humanized recombinant IgG1 antibody that is specific for a unique, conformationally exposed epitope of EGFR, which is available for binding only under conditions where there is dysregulated EGFR activation due to EGFR amplification, presence of specific mutations such as EGFRVIII, or presence of autocrine loops [32]. Indium-111 radiolabeled ABT-806 (ABT-806i) is a novel radiopharmaceutical that was developed for real-time scintigraphic imaging of biodistribution of ABT-806. A phase 1 first-in-human trial of ABT-806i explored the ability to image the conformational epitope of EGFR bound by ABT-806, the impact of ABT-806 therapy on ABT-806i uptake, and the relationship of ABT-806i uptake to tumor EGFR by IHC [34]. Eligible patients had advanced tumors likely to express EGFR and measurable disease by RECIST 1.1. The first cohort of 6 patients was administered bolus ABT-806i (to determine baseline drug distribution) followed by SPECT and whole-body planar scans. The second cohort of 12 patients was imaged similarly, followed by three doses of unlabeled ABT-806, then another dose of ABT-806i (in week 6) to determine the effects of unlabeled antibody on receptor occupancy. For both cohorts, those with the stable or responding disease were enrolled into an extension study where unlabeled ABT-806 was administered every 2 weeks until progressive disease, withdrawal of consent or intolerable toxicity [33].




        In this study, ABT-806i uptake was observed in tumors of all patients, and was best seen after day 3 with increasing intensity up to day 8. Importantly, specific uptake in many tumor types was evident, and high selective uptake in glioblastoma (GBM) was identified (Fig. 3). The data from this study led to the exploration of ADC forms of ABT-806 in multiple tumor types, including Phase II/III trials of ABT-414 in GBM patients [35-37]. Real-time imaging of EGFR conformational expression in tumors provided important additional information regarding antigen expression compared to standard approaches using archival tissue. The advent of next-generation ADCs based on ABT-806 has been directly facilitated by the use of molecular imaging to confirm target expression and suitable cancer types for clinical development.
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Fig. (3))


        ABT-806i biodistribution and SPECT/CT images of a patient with squamous cell carcinoma of the head and neck.(A) Whole-body planar image of 111In-ABT-806i biodistribution at day 8 in patient 8. The arrow shows localization in the tumor area in the right neck. (B) Week 1 SPECT image of 111In-ABT-806i uptake in right parapharyngeal lesion and right cervical node (arrows), which appear smaller than week 1 images. (D) CT at baseline showing tumor in the right parapharyngeal region and right cervical node (arrows), which also showed 111In-ABT-806i uptake. (E) CT at week 16 restaging, showing reduction in size of right parapharyngeal lesion and right cervical node (arrows), assessed as RECIST partial response. Reproduced with permission from the Journal of Nuclear Medicine [34].

      




      

        TAG-72




        Multimeric antibody fragments (i.e., diabodies, triabodies, minibodies) are characterized by increased in-vivo tissue penetration, high avidity, and faster blood clearance and are an alternative to intact antibodies. A first-in-human clinical trial of a monospecific, bivalent diabody (PEG-AVP0458) specific for tumor-associated glycoprotein 72 (TAG-72) recruited a total of 6 patients with TAG-72 positive prostate or ovarian cancer to assess the safety of a single dose of 124I-labeled PEG-AVP0458, as well as the biodistribution, tumor uptake, pharmacokinetics, and immunogenicity [33]. 124I was utilized due to the slow internalization rate of TAG-72, and prior studies of antibodies to TAG-72 (CC49) where radioiodine was used for radiolabeling and excellent biodistribution imaging was obtained [38]. 124I-labeled PEG-AVP0458 achieved rapid, high uptake in tumor without significant normal tissue or kidney retention, and no adverse effects related to the study drug were observed. Both biodistribution and dosimetry analysis confirmed no specific normal tissue uptake, no saturable normal tissue compartment, and high tumor uptake in liver metastases and tumor-involved lymph nodes. This human validation of a pegylated dimer providing excellent targeting of TAG-72 has been followed by experimental model data with an ADC based on PEG-AVP0458 that supports the development of a PEG-AVP0458 (or PEG-avibody construct) as a payload delivery platform and for theranostic use in cancer patients [39].


      


    




    

      CONCLUSION AND FUTURE DIRECTIONS




      Advances in molecular imaging have led to the ability to facilitate a quantitative assessment of ADC target expression and drug delivery to tumor, with great potential to contribute to early clinical development. The ongoing use of molecular imaging to guide clinical decision-making requires standardization of protocols and optimisation of approaches to provide more accurate and reproducible data, in order to demonstrate that initiating or ceasing treatment based on molecular imaging results in improved patient outcomes [1]. Molecular imaging will continue to play a key role in the pre-clinical and clinical development of ADCs in the future.
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      Abstract




      A lot of effort has been devoted to convert phage display-derived peptides to more stable peptidomimetics and only a few such peptides have been examined in preclinical trials. The applications of short peptides include radio-isotope labelling for imaging purposes and targeting a virus or nanoparticle to specific tissue or cell.


    




    

      Keywords: Cancer, Integrins, Peptides, Proteinases, Tumor Invasion.


    




    


    * Corresponding author Erkki Koivunen: MIBS, Viikinkaari 9, University of Helsinki, Finland;


    E-mail: erkki.koivunen@helsinki.fi


    


  




  

    I met Kalevi Kairemo for the first time in 1999 when he had invited me to give a talk of the phage display-derived peptides that can possibly be used as radiolabels to image tumors [1]. Due to traffic congestion, I was late for the seminar, but Kalevi, Sirkka-Liisa Karonen and others who worked at that time in Helsinki University Hospital, patiently waited. I learned that besides standard iodination, peptides can be radiolabeled e.g. with Iodine-123 (123I), Technetium-99m (99mTc), Fluorine-18 (18F), Gallium-68 (68Ga), Copper-64 (64Cu), Indium-111 (111In), Lutetium-177 (177Lu), Yttrium-90 (90Y), or Bismuth-213 (213Bi) [2]. In the following years, we ended up studying several small molecular weight peptides in mouse tumor models in vivo or patient samples in vitro, and even a company was established to pursue these goals.




    One of the first peptides to be radiolabeled was CTTHWGFTLC, which was obtained by biopanning with matrix metalloproteinase-9 [3]. The peptide is quite specific, although low-affinity inhibitor of the proteolytic activity of matrix metalloproteinase-9 and -2, also known as gelatinases, which play a role in tumor cell migration and degradation of extracellular matrix [4]. Iodinated CTTHWGFTLC homed in tumors in the mouse much in the same way as the phage encoding it does [5]. Phage display also yielded peptides, which prevented the formation of the dimer of matrix metalloproteinase-9, suggesting a specific




    function for the dimer in cell-surface localization and mediating pericellular proteolysis [6-8]. However, further preclinical applications with these peptides turned out to be difficult, probably because gelatinases are expressed by both host and tumor cells, and there are protein substrates, some of which suppress tumor growth while others promote it. The accumulated knowledge of matrix metalloproteinase function and inhibitor pharmacology may now allow the development of chemicals better suited for use either as radiolabels or therapeutics [9].




    Matrix metalloproteinases may also be utilized to activate a prodrug or imaging agent, which in vivo will likely occur mostly on a restricted cell surface area rather than in the extracellular space filled with natural inhibitors. Integrins make a class of cell-surface proteins capable of binding a variety of extracellular proteins, even proteinases, but whether this focuses on a proteolytic zone for the purpose of cell movement has been little studied [8]. Using the phage display derived peptides, we found evidence that a set of integrins can bind matrix metalloproteinase-9, making it possible to form a triple molecular complex, called “invadosome”, between the integrin, proteinase, and a substrate [8, 10]. Usually, phage display-derived peptides are linear chains consisting of L-amino acids, the peptide bonds of which are easily degraded by proteinases, but whenever two disulfide bonds occur, the peptide is expected to be structurally constrained and more stable, as was found with one of the leukocyte beta2 integrin-binding peptides CLLGCFCGC [11]. Earlier, we had found a similarly double-cyclic peptide ACDCRGDCFCG by biopanning with the alpha(V)beta(5) integrin (the peptide initially called “ACDC” but renamed to “RGD-C4” to avoid confusion…) [12]. Several types of RGD-motif-containing peptides have been used for radio imaging of tumors [13]. Still, hardly any studies have been carried out to image the immune cells expressing beta2 integrins or leukemia cells overexpressing the hypoxia-associated beta2 integrins, apparently due to lack of suitable reagents.




    While phage display libraries have been increasingly used in cell culture and in vivo pannings in the mouse and even in human subjects [14], peptides have been discovered that can mediate internalization of bacteriophage particles to cells, e.g via binding to neuropilin-1 [15-17]. Interestingly, the peptides may shed light on how pathogenic human viruses gain entry to cells, as there may not be many different routes for internalizing large-sized virus particles. Possible cell entry routes include clathrin-mediated, caveola-dependent, and clathrin- and caveola-independent endocytosis, and in particular micropinocytosis, which may all be possibly examined by phage display libraries [18]. For many viruses, including HIV, herpes simplex virus-2, Epstein-Barr virus (EBV), and the foot and mouth disease virus (FMDV), the cell recognition is first mediated by an RGD-dependent integrin before the endocytosis, and even the SARS-COV-2 spike protein contains an RGD sequence although it is unclear whether it is functional [19]. The primary cell surface receptor of SARS-COV-2 in most cells is ACE2 protein, but neuropilin-1 can be involved in the next steps of the endocytic pathway [20, 21]. Overall, phage-displayed peptides continue to be valuable research tools when searching for biologically relevant sequences, but the peptide diversity displayed in libraries greatly exceeds that presented in natural proteins, and there is no simple way to convert phage display peptides to more stable peptidomimetics.
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      Abstract




      The state-of-the-art of carbon-11 and fluorine-18 radiochemistry for positron emission tomography (PET) is presented. From the latest developments in labelling methodology, a picture of future challenges is drawn. The exploration of novel reactivity to allow 11C-labelling, alongside a particular focus in making such reaction compatible for clinical production, is presented to be key in 11C-tracer discovery. 18F is envisioned to be at the heart of further development in PET. Broadening imaging strategies towards pre-targeting approaches, together with the use of modified antibodies or peptides, constantly challenges the field of radiofluorination for new and efficient labelling methods applicable to complex molecules. Translation of biorthogonal reactions into radiolabelling methods appears as a valuable option to address these issues and is expected to be a significant advance in upcoming 18F-tracer developments.
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      INTRODUCTION




      Positron emission tomography (PET) is an imaging technique that provides physio-pathological information non-invasively. Because of its high sensitivity, PET became an essential tool for patient diagnosis for various pathologies, with widespread applications in oncology, brain disease and the evaluation of cardiac function, amongst others [1]. PET is also employed to follow-up and evaluate treatment efficacy and plays an important role in drug development. To fulfill its functional imaging purpose, PET relies on the use of radiotracers containing β+




      emitting radionuclides, allowing for detection of the gamma photons produced upon positron/electron annihilation. Clinically used radionuclides include the β+ emitters 11C, 13N, 18F and 68Ga. Radiometals, such as 64Cu and 89Zr, are also employed, despite their mixed radioactive decay, which only partially occurs by the productive β+ emission. The physical properties of each radionuclide [2] and its available production and labelling methods (Table 1) determine the opportunities and limitations of their clinical applications. The extremely short half-life (t1/2 = 10 min) of 13N restricts labelling procedures to enzymatic methods that yield 13N-labelled amino acids [3]. 13N is mostly used in its simplest form, as [13N]NH3, for the imaging of myocardial perfusion to diagnose coronal artery disease. The radiometal 68Ga has an advantageous half-life of 67.8 min but suffers from high energy β+ decay, which results in long-range penetrating positrons (Rmean = 3.5 mm and up to Rmax = 9.0 mm), ultimately resulting in lower spatial resolution of the acquired images. In addition, labelling with 68Ga or other radiometals requires the presence of a chelator in the structure of the tracer, thus presenting a strong limitation for tracer design. 11C and 18F present advantageous physical properties due to their half-life, allowing for synthetic modifications and low positron energy ranges that ensure a good spatial resolution for PET. Considering these factors, it is not surprising to notice the prevalent use of 11C and 18F in clinical practice [4]. However, labelling procedures for 11C- and 18F-radiotracers need improvements regarding reaction time and robustness. These methods are often complex and require highly specialized operators and infrastructure (specific lab equipment, cyclotron, etc.).




      

        Table 1 Physical properties of the main PET-radionuclides.




        

          

            

              	Radionuclide



              	Half-life t1/2



              	Emean (MeV)



              	Rmean (mm)



              	Prevalent Labelling Method

            


          



          

            

              	11C



              	20.4 min



              	0.386



              	1.2



              	SN2, carbonylation

            




            

              	13N



              	10.0 min



              	0.492



              	1.8



              	Enzymatic

            




            

              	18F



              	109.8 min



              	0.250



              	0.6



              	SN2, SNAr, “click” chemistry

            




            

              	68Ga (89% β+)



              	67.8 min



              	0.836



              	3.5



              	Chelation

            




            

              	64Cu (18% β+)



              	12.7 h



              	0.278



              	0.7



              	Chelation

            




            

              	89Zr (23% β+)



              	78.4 h



              	0.396



              	1.3



              	Chelation

            


          

        




      




      The choice of the molecular structure of the radiotracer is crucial in PET, and it should fulfill several criteria, which include the easy and reproducible production of the PET-tracer, high specificity and affinity, high molar activity of the tracer (particularly in case of low target expression), lipophilicity that ensures the efficient reaching of the target, and low rate of metabolism,. The structures likely to become PET-tracers are too often restricted by the limited number of labelling methods available for a given radionuclide and the characteristics of the radionuclide, in particular half-life, regarding the scope of applicable transformations. To overcome these limitations, the development of novel methodologies is necessary to enable more (late-stage) transformations, ultimately broadening the scope of accessible PET-tracers. Such methodology would ideally be fast, enable the introduction of radionuclides in metabolically stable positions, and be robust, with a special focus on including automated syntheses, thereby providing new opportunities in PET-tracer synthesis (extended scope, diverse targets, multimodal imaging, etc.) to expect an impact on future developments in PET-imaging [5].


    




    

      11C - EXPANDING THE TOOLBOX




      Carbon is an element present in almost every biologically active molecule, rendering 11C is a valuable radionuclide. On the one hand, the half-life of 11C (t1/2 = 20.4 min) offers great opportunities when it comes to drug development and the possibility of performing repeated studies during one single day. Moreover, as a result of the short half-life, the use of 11C results in a lower radiation dose for the patient compared with other radionuclides used in nuclear medicine [6]. On the other hand, the development of synthetic procedures leading from 11C-production to tracers for PET-imaging, that would be compatible with such a short half-life represents an important challenge. 11C is produced in a cyclotron, by the 14N(p,α)11C nuclear reaction. Addition to the N2-target gas of small amounts (typically 5 to 10%) of H2 or O2, results in the production of [11C]CH4 or [11C]CO2, respectively; these simple molecules constitute the two key precursors of 11C-chemistry. In practice, in-target production of [11C]CO2 is higher yielding and therefore preferred, with the opportunity of reduction into [11C]CH4 post-production. Over the past decades, many other building blocks, derived from [11C]CH4 or [11C]CO2, have been synthesized and used in labelling procedures (Scheme 1).




      Considering the variety of electrophiles and nucleophiles that can serve as 11C building blocks, it is striking to notice the major dominance of labelling procedures by SN2 reactions, with either [11C]CH3I or [11C]CH3OTf as electrophile [7], for the synthesis of PET-tracers used in the clinic (Fig. 1). SN2 reactions, with [11C]CH3I or [11C]CH3OTf, allow for the formation of heteroatom-11CH3 functionalities, known to be prone to metabolic degradation, thereby enabling access to only a few privileged structures via such strategy. Carbonylation reactions using [11C]CO or [11C]CO2 are less commonly used but have also found applications in clinical tracer production [8-10]. Carbonylation reactions have a prominent role to play in 11C-labelling as they provide access to carbonyl functionalities, an abundant motif in biologically active molecules. A large part of methylation opportunities remains poorly addressed by current labelling methods, including (hetero-)aromatic and aliphatic methylations. Thus, it is desirable to drastically expand the labelling toolbox for 11C, giving access to the largest possible range of structures to be radiolabelled, in a fast and robust manner, bringing to the clinic the best possible PET-tracer for a specific target.
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Scheme 1)


      Main building blocks available to perform 11C-Chemistry.
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Fig. (1))


      Labelling method used for clinical production of 11C-PET tracers (data from the NIH, CNS radiotracer table, https://www.nimh.nih.gov/research/research-funded-by-nimh/therapeutics/cns-radiotracer-table.shtml, Feb 2021).



      Nearly 80% of drugs feature at least one aromatic ring in their molecular structure [11]; this sets the potential for methylation of (hetero-)aromatic moieties to become an important 11C-labelling method. Despite the apparent opportunities, so far, cross-coupling reactions lack clinical relevance. Pioneered by the work of Kumada, Heck and Negishi in the 1970’s, cross-coupling reactions reshaped approaches in synthesis by enabling C-C bond formation. With the recent developments in the field of cross-coupling reactions, it is now a key transformation in modern organic chemistry with widespread applications in medicinal chemistry [12, 13]. Hence, cross-coupling reactions using building blocks accessible for the radiochemist, such as methyl iodide or organometallics accessible from methyl iodide, appear as valuable transformations for labelling. While a variety of PET tracers labelled via Stille cross-coupling have been reported in the literature, only scarce examples of Sonogashira, Heck, or Suzuki couplings can be found [14, 15]. Recent studies explore the labelling possibilities, using more reactive organometallic reagents in Negishi [16] or organolithium [17] cross-couplings, as well as exploiting recent advances in photoredox chemistry [18]. Identifying and addressing the limitations that often prevented these reactions to successfully make a breakthrough into clinical practice is key for further developments. So far, the lack of “easy-to-use” and reliable protocols has been particularly restricting; hence moving towards flow systems or reactions allowing to pre-load reagents on cartridges seems promising. Another aspect to consider is that the use of Schlenk techniques or other methods that ensure a strictly anhydrous and controlled environment essential for handling highly sensitive reagents is not common practice in most hospitals. Hence, for all these methods to be used in clinical settings, the ability to perform radiolabelling under strictly inert conditions by using appropriate automated modules or develop fast coupling reactions under aqueous conditions would represent significant improvements. Likely, future combined efforts by organic chemists and radiochemists will establish cross-coupling procedures as another standard strategy to introduce 11C, broadening labelling opportunities as much as it refined synthetic approaches almost 50 years ago.


    




    

      18F - TOWARDS ENHANCED BIOORTHOGONALITY




      Combining a half-life favourable for synthesis (t1/2 = 109.8 min), emission of low energy positrons (Emean = 0.250 MeV ; Rmean = 0.6 mm) and being a small atom easy to incorporate, 18F became the radionuclide of choice for many PET-tracers. While the radiation dose for the patient is often higher compared to for 11C-tracers, it is largely compensated by the opportunities offered by its longer half-life. Indeed, the half-life of 18F allows to use tracers with slower pharmacokinetic distribution, and it also greatly enhances the practicality of tracer-production, with the opportunity of producing multiple doses at once that can be shipped to different hospitals or used later during the day. 18F is produced in large amounts (>100 GBq) from enriched [18O]H2O, in a cyclotron, using the nuclear reaction 18O(p,n)18F to afford aqueous [18F]fluoride. Alternatively, [18F]F2 can be produced, but it lacks safe and efficient labelling procedures to be widely used as a primary building block. Hence, the vast majority of radiolabelling methods start from aqueous [18F]fluoride. This represents a major difference compared with standard 19F-fluorinations that typically rely on anhydrous electrophilic fluorine sources. Nonetheless, chemists and radiochemists developed a myriad of labelling approaches, starting from the single 18F- source and enabling nucleophilic as well as electrophilic fluorinations [19]. These advances enabled the 18F-fluorination of (hetero-)aryl [20] and alkyl [21] structures, direct 19F-18F fluorine exchange [22], and introduction of a variety of 18F-fluorinated groups, such as –OCF3, -SCF3, and -CHF2 (Fig. 2a). Notably, these transformations do not only rely on a single type of reactivity, which would limit their application but generally encompass complementary methods. By using nucleophilic aromatic substitution, fluorination via iodonium or sulfonium salts, deoxyfluorination reactions, or metal catalysed fluorinations, 18F-fluorination of aryls is a good example of the diversity of labelling strategies currently available. Another illustration of the versatility of 18F-fluorination methods are the numerous labelling possibilities available on a single scaffold. In the example depicted in Fig. (2b), the celecoxib scaffold has been modified to introduce 18F in various positions, providing tracers that differed in metabolic stability, hydrophilicity, and target binding, overall enabling to find the optimal 18F-labelled celecoxib structure suitable for cyclooxygenase-2 (COX-2) imaging. Although improvements towards more automated, kit-type labelling, or high molar activity electrophilic fluorination would further expand the applicability of 18F-fluorination in clinical settings [23], the state-of-the-art in fluorination chemistry appears far more advanced than the one of 11C chemistry.
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Fig. (2))


      Illustration of the variety of 18F-fluorinations methods (a) Examples of 18F-labelled motifs accessible via direct fluorination (b) Celecoxib derivatives 18F-labelled at multiple labelling positions [24-31].



      Nonetheless, important challenges in the field remain. The relatively long half-life of 18F (t1/2 = 109.8 min) allows for the labelling of larger molecules, from small peptides to nanobodies, that are essential for the development of immunoPET and innovative pre-targeted strategies [32]. The presence of numerous functional groups within these larger molecules often requires a high level of functional group compatibility and orthogonality in the labelling procedure employed. The direct 18F-fluorination of complex molecules is not a trivial transformation, particularly as methodologies are needed that do not require protecting groups, perform under mild conditions and at low temperature to ensure the stability of the substrate [33]. To circumvent these limitations, indirect fluorination by chelation of Al[18F]F [34] or by using 18F-labelled prosthetic groups has been developed [35]. These two-steps labelling procedures are based on well-established bioorthogonal reactions (Scheme 2) such as multi-component reactions [36, 37], copper catalysed [38-41] and strain promoted [42, 43] azide-alkyne cycloadditions, tetrazine trans-cyclooctene cycloadditions [44-46], and photoinduced reactions [47]. The recent developments in the field of bioorthogonal labelling render these reactions more and more attractive to radiochemists, with impressively high reaction kinetics (up to ~ 106 M-1s-1) they can remain extremely fast even at the low concentration used in radiochemistry. Moreover, these transformations are often characterized by their selectivity and their robustness as they can often be performed in various solvents, in the presence of water, and at different pH, which are all key criteria when seeking a reliable and widely usable labelling methodology. Although these labelling strategies are still to be applied in clinical setting, they greatly contribute to the introduction of innovative imaging techniques with the potential of having a real impact in future PET developments.
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Scheme 2)


      Bioorthogonal reactions applied in PET-tracer synthesis.
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Fig. (3))


      Examples of cartridge-based and microfluidic setups for PET-tracer synthesis. (a) Negishi cross-coupling of [11C]CH3I on a pre-loaded cartridge [16] (b) Representation of a droplet reactor [53] (c) [18F]FDG synthesis in flow reactors [51].

    




    

      OUTLOOK




      Arguably, 11C and 18F have played a crucial role in the development of PET-imaging over the last decades, and because of their physical properties, the two radionuclides stand out for the future of PET. Thereby, progress in the field of PET-imaging is tightly linked to the advances in labelling with each of these radionuclides. In both cases, key challenges for future developments and implementation of novel radiolabelling protocols can be clearly identified:





      

        	Accelerating reactions: In order to expand the scope of methodologies available for labelling, the development of organic synthesis methods plays an important role. Indeed, by gathering more insights into reaction mechanisms and reaction kinetics, as well as building on recent advances in catalysis and emerging fields such as photoredox chemistry [48], novel and fast transformations are developed with potential relevance for radiolabelling. Strong collaboration with radiochemists is then necessary to fully realize this potential. Procedures that are considered fast (e.g. from minutes to a couple of hours), should be more systematically optimized to meet the requirements of radiolabelling procedures and reach reaction times from seconds to few minutes.




        	Easy-to-use protocols: Labelling procedures need to be simple, robust, and reliable. Ideally, one-pot procedures are preferred, where the radioactive building blocks can be added as the final reagent, to limit the exposure for the radiochemist. Kit-type approaches, for example, enabling radiosynthesis to be fully performed inside cartridges, pre-loaded with all necessary reagents, offer such simplicity and should be prioritized in development [16, 49]. Similarly, synthetic procedures based on the principle of flow chemistry [41, 50-52] or reactions performed in droplets [53, 54] showed potential for reaction acceleration as well as improved molar activities, making them very attractive for PET-tracer synthesis [55] (Fig. 3). Finally, demonstrating the feasibility of a labelling protocol on a commercially available synthesis module is an essential step in method development.




        	Biocompatibility: To achieve late-stage labelling of challenging, multifunctional substrates, including unprotected peptides or antibodies, it is essential to look for labelling strategies with high functional group tolerance and bioorthogonality. Suitable biorthogonal reactions should enable the labelling of a wide range of substrates under mild reaction conditions and without the need of toxic reagents or metals. The generalization of these biorthogonal protocols to PET-tracer synthesis are considered particularly important in the development of multimodal imaging probes or immunoPET imaging.


      




      By combining efforts in fundamental organic chemistry, seeking for ultrafast reactions, and investigating their translation into easy-to-use radiochemical procedures, including fully automated syntheses, and a focus on biorthogonal reactions, we should be able to accompany innovative imaging strategies in the clinical development and expand the scope of accessible structures for PET-imaging.
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