
[image: image]

ULTIMATE
TYPESCRIPT HANDBOOK

Build, scale and maintain Modern Web
Applications with TypeScript

by

DAN WELLMAN

[image:]

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information.

First published: July 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-93-88590-78-5

www.orangeava.com

Dedicated to

My beloved wife Tammy

And my children - Bethany, Matthew, James, and Jessica

About the Author

Dan Wellman is an author and a proficient web developer from the United Kingdom, with over 15 years of experience in the front-end realm. He has written extensively on JavaScript both online and offline and has created numerous videos for prominent organizations in the digital education sector, such as Envato and PluralSight. He is currently working as a senior developer for a global financial services company.

Technical Reviewers

	
Deeksha Kusuma has a remarkable blend of expertise and practical experience, managing multiple teams and researching technical work. Deeksha has established herself as a trusted figure in leading teams and marking technical work. Her meticulous attention to detail, analytical prowess, and dedication to advancing knowledge make her an invaluable asset to any author seeking to refine their work. Her commitment to raising the bar in technical writing sets a standard that inspires both seasoned and aspiring authors alike.
Along with technical research in her spare time, she loves travelling, cooking, spending time with her 11-year-old and having a steaming hot cup of coffee. Yes, she is an ardent lover of coffee. She is determined to travel to every country in the world!

	
Chris is a Senior Software Engineer and qualified teacher of Mathematics who lives on the South coast of the UK with his wife, two sons, a cat and a dog. While he has experience with a variety of technologies across the stack, in recent years he has focused his attention specialising in the frontend. He’s been an avid user of TypeScript since it was introduced to him via Angular, which he has been using since it was in beta.
He is particularly passionate about unit testing and often takes time to mentor junior engineers in how to approach testing with best practices that can yield a robust suite of tests.

In his spare time, Chris enjoys walking the dog, sipping South American Malbec and playing World of Warcraft. He loves to read, preferring anything either with dragons in it, or modern horror inspired by the works of H.P. Lovecraft.

Acknowledgements

First and foremost, I would like to express my gratitude to the editorial team at Orange AVA for their continued assistance and guidance throughout the process of writing this book. Without their support, this book would not have been possible.

I would also like to extend my special thanks to the technical reviewers, Chris Ford and Deeksha Prakash, and my esteemed colleague, Oleg Bevz, for their thorough review of the initial drafts of this book. It would not be the same without their insight and technical mastery in TypeScript. I am indebted to each of them.

Lastly, while too numerous to name individually, I want to thank the giants on whose shoulders I stand, the countless authors of the many TypeScript and front-end development blogs and tutorials I’ve read, and the inestimable number of articles and videos from which I have learned, throughout my development career. Thank you to the community I am proud to be a part of.

Preface

Welcome to Ultimate Typescript Handbook. Over the course of this book, I hope to share with you my passion and excitement for using TypeScript to produce maintainable and functional web applications.

Don’t worry if you don’t yet have this burning desire to use TypeScript, although I would expect some degree of curiosity at least given that you have chosen this book. I too was initially skeptical about the benefits that TypeScript would bring, the cost of switching development, and whether it would even last or fade into obscurity following an initial but waning popularity like CoffeeScript did in years gone by.

After discovering the safety that TypeScript brings to any JavaScript project and the ease with which it can be adopted, my fears were soon alleviated, and I started on the path that I continue to follow to this day. Once I made the switch, I never looked back, and I am confident that you too will feel the same. After writing TypeScript for just a short amount of time, you’ll shudder at the thought an old piece of code you need to work on which is written in JavaScript and not TypeScript.

Over the course of this book, I will take you on a guided tour of all TypeScript’s major aspects. You may be starting this journey with absolutely no prior experience with TypeScript, or you may have some level of knowledge already; it doesn’t matter. Having some knowledge and experience of working with JavaScript would be beneficial, as this will allow a deeper appreciation of the benefits that TypeScript brings.

Regardless of where you start, by the end of the book, you will have mastered the fundamentals of the language and be ready and confident to begin using it on a day-to-day basis. If you’re an existing JavaScript developer on the fence about whether to make the jump to TypeScript, then this is the book for you.

Chapter 1 will provide a gentle introduction to the world of TypeScript and provide some information on the type system it uses, some advantages and disadvantages to using the language, and how it works to prevent bugs and help you to write better applications.

Chapter 2 will show you how to set up a development environment so that you can begin using TypeScript. You’ll see how to download and install it, how to create a new TypeScript project, and how to configure TypeScript using its main configuration file to best cater to the requirements of your project.

Chapter 3 will start to look at some of the most fundamental aspects of developing with TypeScript including primitive types, union types, and literal types. Among other things, you’ll learn about type aliases, which are the bread-and-butter of TypeScript development, and the special any, unknown, and never types.

Chapter 4 will focus on using the TypeScript compiler and show how TypeScript is compiled, what the compiled files look like, and some of the CLI flags that we can pass to the compiler to control its behavior. You’ll see how to use 3rd party libraries with TypeScript, and how to generate declaration files.

Chapter 5 is a deep dive into enums, interfaces, and namespaces in TypeScript, which focuses on how to work with these very common entities. The knowledge you’ll gain here will include merging and extending interfaces and namespaces, and how to use the varied types of enums available in TypeScript.

Chapter 6 shows how to work with some of the different data structures that you’ll use most often – objects, arrays, and tuples. You’ll learn about read-only arrays, optional and rest elements in tuples, and index signatures and property modifiers in objects. You’ll also be introduced to the topic of generics in the context of objects, and see one of TypeScript’s utility types in action.

Chapter 7 is dedicated to the all-important function in TypeScript and will cover a range of topics including basic function type annotations, optional and rest parameters, generator functions, and generic functions. You’ll also see how to make function overloads, how to work with this parameters, and how type inference works with functions.

Chapter 8 will focus entirely on classes in TypeScript, covering topics including class declarations and expressions, constructors and access modifiers, and generic classes. You’ll see how to add getters and setters, how to deal with inheritance, and look at a classic design pattern implemented with TypeScript.

Chapter 9 will look at how we can use narrowing and type guards to safely work with values that may be one of several different types, as well as show how to use the in and satisfies operators.

Chapter 10 will show you how to work with and manipulate types. You’ll learn how to use conditional types, indexed access types, and mapped types, as well as look at TypeScript’s wide variety of built-in utility types.

Chapter 11 is all about modules in TypeScript and will show you how to create modular code which imports and exports code as needed by your application. You’ll see some of the TypeScript configuration options related to modules, how modules are resolved by the compiler, and how existing modules can be augmented.

Chapter 12 will focus solely on creating declaration files in TypeScript, which may be necessary for working with older JavaScript libraries that do not already have existing declarations. You’ll see how to create declarations for global libraries and modular libraries, how to add living documentation with JSDoc, and how to publish your declarations so that other developers can use them too.

Chapter 13 is a final practical chapter which will see you build your first complete TypeScript application using the Angular framework, to help cement the knowledge you’ve gained throughout the book into a firm foundation for building upon in future.

Downloading the code
bundles and colored images

Please follow the link to download the
Code Bundles of the book:

https://github.com/OrangeAVA/Ultimate-Typescript-Handbook

The code bundles and images of the book are also hosted on
https://rebrand.ly/5caab9

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

Are you interested in Authoring with us?

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction to TypeScript and its Benefits

Introduction

In this first chapter of the book, we will focus on the reasons why one should consider using TypeScript, the benefits it can offer to developers, and how it can reduce the number of bugs in an application. We will also delve into the type system used by TypeScript, its various aspects, and how designing applications while considering the different types in use in our program can lead to a better application. Let’s get started!

Structure

In this chapter, we will cover the following subjects:

	Introduction to TypeScript

	TypeScript’s type system

	Advantages of using TypeScript

	The ways in which TypeScript prevents bugs

	Steps to begin using TypeScript

	Type-driven development

Introduction to TypeScript

TypeScript is one of the most popular programming languages on the planet, as well as one of the fastest-growing languages. It was originally released by Microsoft in 2012, and although it took some time to build momentum, by 2017 it had exploded in popularity. It spawned a whole ecosystem of tooling and frameworks, and some say it was instrumental in causing the full-stack revolution currently in full swing.

A short history of TypeScript

TypeScript was created by Microsoft as an internal project at some point in 2010, and was in development until its public release in 2012, when it was at version 0.8. Development has continued at a rapid pace since its public release, and the version 5 milestone was reached shortly before this book was published.

TypeScript was initially created in response to the demands of both internal developers and external clients who wished for a front-end language that was safer to use than existing JavaScript, and just as easy to implement and start using-TypeScript was Microsoft’s response to these demands.

By the post-millennial era of web development, JavaScript had already earned itself a reputation as a buggy and difficult language to work with. Back-end developers were happy to stay away from it, allowing the rise of front-end development as a distinct career choice in its own right. But TypeScript offered the promise of a safer, more familiar, and less buggy language to work with on the front-end, which enticed back-end developers to again take an interest in the front-end, allowing the concept of full-stack development to blossom.

As of 2022, TypeScript enjoys the position of fourth most popular programming language in use according to Stack Overflow, behind only Java, Python, and the king of programming languages itself of course - JavaScript and looks set to continue its meteoric rise in the coming years.

TypeScript is a superset of JavaScript; it contains everything that JavaScript contains, and then a little more on top. TypeScript isn’t just a static type system. It isn’t just a library, a framework, or a set of utilities. It is a programming language in its own right. Everything that can be done in JavaScript can also be done in TypeScript.

Main components of TypeScript

TypeScript consists of three main parts; first, there is the syntax and if you already know JavaScript to a relatively good level, you already know most of TypeScript, because as I just mentioned, TypeScript contains all of JavaScript. On top of this, TypeScript adds some new syntax to express types and some new keywords. We’ll cover all of this in more detail as we progress through the book.

The second component is the compiler. TypeScript itself isn’t supported by any browser; it can’t be run natively on the internet. Instead, it is one of a number of different languages that are compiled into JavaScript so that it can be run by any regular browser. The TypeScript compiler is known as TSC and is included when TypeScript is installed. It is run from the command line and can be configured to be run as a build step in a CI/CD pipeline. We’ll learn more about the compiler and how to use it later in the book.

The final aspect is that of editor integration. TypeScript was created by Microsoft and is fully integrated with the popular Microsoft suite of IDEs Visual Studio by default, without any additional configuration. It can also be installed in many of today’s most popular development tools and editors. This component of TypeScript turbo-charges local development, giving you type information and code completion right there as you’re developing.

In case you’re wondering exactly how capable TypeScript is, and exactly what kinds of application can be created using TypeScript, take a moment to appreciate that Visual Studio Code itself is written in TypeScript. Visual Studio Code is one of today’s most popular and capable IDEs and is used daily by millions of developers globally. In light of this, I believe that there is no application too big or too complex to create using TypeScript.

TypeScript’s type system

There are many different kinds of type systems that are used to enforce the types of values, and the operations that may be performed on them, used by different programming languages. One common category of the type system is called a nominal type system, where it is the name of a value, or the place in which it is used, which determines its type.

Conversely, TypeScript uses what’s known as a structural type system to enforce types – it is the structure of a value that determines the value’s type. This kind of type system is colloquially known as duck typing–if it looks like a duck, walks like a duck, and quacks like a duck, it’s a duck!

TypeScript is able to infer the types of some values based on how we use them. For example, if we assign a string to a variable without explicitly stating that the variable has the type string, TypeScript will go ahead and assign the type string to that value and warn us if we later try to store a number in that variable or try to perform an operation on the value that doesn’t make sense for strings.

TypeScript can also infer the types of values based on the construct they are used in. When using an array with a for loop for example, TypeScript knows that the type of the first parameter passed to the callback function will be the same type as the original value in the array on which the loop is used because that’s how for loops work in JavaScript and TypeScript fully understands how JavaScript works.

TypeScript’s type system is also a static type system, which means that the types are checked statically during compile time by TypeScript’s compiler. This is opposed to a dynamic type system, which checks types at runtime. This would not be possible for TypeScript given that TypeScript is never run directly, it is the resulting JavaScript that the compiler emits which is ultimately run.

JavaScript itself uses a dynamic type system and infers types during program execution depending on the type of value that is in use. This is why JavaScript performs its infamous type coercion; in JavaScript, if one variable contains an integer, and another variable contains a string, if you try to add these two variables together, JavaScript will coerce the numeric value silently to a string and concatenate the two values instead of adding them, which often leads to unexpected results.

This kind of silent bug is exactly the motivation for using a safer type-system, where bugs and incorrect usage of the language can be caught and addressed during compilation, before making it into production and potentially crippling your application.

Advantages of using TypeScript

Using TypeScript as the development language of choice in place of JavaScript comes with a number of benefits, hence the popularity of the language. Let’s take a moment to look at some of these advantages.

Catching bugs

One of the main advantages of TypeScript is its ability to catch bugs before they reach production, which ultimately saves time and money. The actual number of bugs that can be prevented by TypeScript is the subject of some debate, but I’ve seen estimates that range from 10% all the way up to 38%.

Of course, these figures only capture what is known as public bugs; bugs that have been committed to source control and, in some cases, actually deployed to a production environment.

This kind of bug represents only the tip of the iceberg in that most of the bugs that TypeScript will catch will never be committed to source control or publicly deployed because the developer will have been alerted to them by TypeScript and will have fixed them before they ever make it into source control. This kind of bug is sometimes called a private bug because it remains private to the individual developer that caused it.

Even the lower estimate of 10% of public bugs, when combined with the incalculable number of private bugs, alone makes a compelling case for the adoption of TypeScript over raw JavaScript. Fixing bugs in development as opposed to production is both quicker and cheaper by a considerable margin. But TypeScript offers more than just early bug discovery and resolution.

TypeScript considerably enhances the development experience by bringing advanced features like code completion or Intellisense, and a living, inline form of documentation that guides the developer as they are literally writing their code. With TypeScript, as soon as you type the name of an object, it pops up a menu that shows all the properties and methods that are available from that object:

[image:]

Figure 1.1: Code-completion menu for an array literal in Visual Studio Code

Readability

So, TypeScript makes writing functional and correct code easier, but I find that it also makes reading code easier as well, and reading code written by other developers, or even by ourselves many weeks or months earlier, is a significant part of any developer’s workload.

Some developers I’ve spoken to in the past insist that developers spend more time reading code than they do writing it, especially for more senior developers, or those involved with the maintenance of a more mature piece of software. This is especially true when considering the often-mandatory code review, or pull request, stage of professional or open-source software development.

It is important that developers reviewing code before it is checked-in can get a good idea of how the code works and what it is supposed to do in as quick a time as possible, and the additional information and intent that can be expressed with TypeScript goes a long way in making code self-documented and vastly more readable.

Refactoring

Refactoring code, or taking old code and improving it, while retaining broadly the same functionality as before, perhaps with some additional, new functionality, is another task that is made easier with TypeScript.

A comprehensive suite of unit tests will also help in this regard, but the additional safety that TypeScript brings can help to increase developer confidence when changing the existing code, and the two paradigms of test-first and TypeScript development complement each other perfectly

TypeScript takes the mystery out of unfamiliar code and signposts the types of values that a given piece of code is using and provides things like function parameter and return types. This makes it a lot easier to not only use the code as a consumer, but to infer what the code is doing and how it is supposed to function.

This allows us to update the code with less chance of fundamentally breaking it, and of using it in the way it was intended by the original developer.

Future language features

TypeScript has traditionally had faster release cycles than JavaScript itself, and so has tended to implement new features in TypeScript before they appear in JavaScript, so using TypeScript gives us a heads-up on new features coming into our development toolbox and allows us to start working with future features sooner. This may seem like a small benefit, but you show me a developer that doesn’t like working with shiny new features of their language of choice!

A classic example is classes, which could be used in TypeScript for a long time before they were fully supported in JavaScript, making TypeScript the obvious choice for heavily object-oriented projects.

Disadvantages of TypeScript

TypeScript isn’t all sunshine and rainbows, it does have some drawbacks of its own, however small and overstated those may be. Let’s take a moment to explore these too, for balance.

One of the biggest criticisms of TypeScript is that it leads to more code being written for a given piece of functionality when compared to JavaScript, and this is no doubt true. But the additional code that is written with TypeScript I feel is minimal, and the benefits that this small amount of code brings far outweigh the cost of some additional keystrokes.

Of course, this scales with the size of the project, so applications with hundreds of thousands of lines of code are going to contain far more additional TypeScript than smaller projects containing merely hundreds or thousands of lines. But larger applications will likely be developed by many, many developers, so the additional load for an individual developer tends to even out.

Another disadvantage is that it introduces an additional compilation step that JavaScript itself does not have. This can increase build times and add additional complexity to any build pipeline, although these issues are generally easily managed.

The TypeScript compiler itself is pretty fast, so compilation times are minimal for everything but the largest of projects, and most professionally produced web applications are almost certainly using a build pipeline already to produce the artefacts needed to deploy the application, so TypeScript will likely be a small addition to an existing process, rather than an entirely new process in its own right, and many modern frameworks already come with built-in TypeScript out of the box.

Lastly, TypeScript requires additional learning to master, on top of any knowledge one might already have of JavaScript, and new skills to work with the tooling are also required. This new knowledge takes time to acquire, but this really is no different from learning any new programming language, and the fact that it builds on top of an already known language (for developers that already know JavaScript) helps to flatten the learning curve.

The ways in which TypeScript prevents bugs

TypeScript adds a static type system to JavaScript, enforcing a much higher level of security that the values we are working with or operating on are of the correct, or expected, types. Calling a string method on a number, such a trivial but all too easy to make mistake, will crash your application, stopping a user from doing whatever it is they were trying to do.

TypeScript makes this kind of error almost impossible because it forces you to check that the value you are working with really is a string before allowing you to call string methods on it. You can avoid this whole class of errors caused by trying to access properties or methods that don’t exist on the current value, and due to the tight integration between the editor and the code, the editor will warn you if you make this mistake, long before your code ever reaches production.

For example, consider the case where you have a value which you expect to be a number, but for some reason is a string. The editor will warn you as soon as you try to work with the value as if it were a number:

[image:]

Figure 1.2: Method does not exist on type error in Visual Studio Code

Another place where bugs may be found before they can cause carnage is in the compiler when compiling TypeScript into JavaScript, which is a necessary step that must be completed before your code will run in a browser. Consider a small utility function that counts the number of properties an object has:

function countProps(obj) {

return Object.keys(obj).length;

}

If we try to compile code that contains a call to this function without passing the required object as a parameter, the compiler will spot the error and warn us, and we can even instruct the compiler not to generate any output if the input contains errors such as this:

[image:]

Figure 1.3: TypeScript compiler error in a Windows terminal application

Steps to begin using TypeScript

TypeScript is entirely optional, and we can opt into it as slowly as we want. Migrating an existing JavaScript project to TypeScript is extremely easy. Consider a small JavaScript file that handles creating Person objects:

[image:]

Figure 1.4: A small example of a JavaScript file

To convert this file to valid TypeScript, simply change the file extension from .js to .ts:

[image:]

Figure 1.5: JavaScript converted to a TypeScript file with no additional changes

Now that we have a TypeScript file, we can begin to add types to it at the speed which is comfortable for us; for example, rather than allowing any named properties and values in the attrs object passed to the Person constructor, we can specify an interface which details exactly which properties can be used and what their value types should be, for example:

interface PersonAttrs {

name: string;

age: number;

}

class Person {

constructor(attrs: PersonAttrs) {

for (let prop in attrs) {

this[prop] = attrs[prop];

}

}

}

Don’t worry too much about the exact syntax used in the above code snippet. We’ll cover what all of it means later in the book. The point is that we can begin to add type information as slowly as we want to, a single type at a time if necessary, and perhaps days, weeks or at any point after converting the original JavaScript file to TypeScript. We can add each new piece of type information by itself if we want to, and slowly migrate the original code to fully-fledged TypeScript.

NOTE: Not all JavaScript can be converted to TypeScript without making any additional changes–sometimes small issues will need to be fixed, but these are often as simple as declaring the type of particular value.

Using TypeScript in a brand-new project is even easier as we can build in support from the very beginning by designing a build process that includes the TypeScript compilation step, and we can even initialize a new TypeScript configuration file with sensible defaults using the TypeScript compiler itself.

Type-driven development

There have been numerous popular development paradigms that are intended to make the software development process more straightforward, such as test-driven development, where the unit tests are written before the actual functional code and can guide the development of the application so that all use cases are accounted for up-front.

Type-driven development is a paradigm where the types are created first; we can design our application by considering the types that will be needed to represent the different elements of our system and the attributes that those elements will have.

We can also design the signatures of the methods or functions that will be used to operate on the values in our system, what the types of the parameters will be, and what type of data the functions or methods will return.

For example, instead of writing a full function declaration initially, we can instead use TypeScript’s declare keyword and just specify the function signature, without the full implementation. For example, imagine we are creating a small helper function that can create HTML elements:

declare function createHtmlElement(tagName: string): HTMLElement;

The declare keyword tells the TypeScript compiler that at runtime, there will be a function called createHtmlElement, which will accept a single string parameter, and return an object of the type HtmlElement. Consider this the contract of the function, a clear specification of the type of input it receives, and the type of value it should return.

The function in the previous code snippet has no implementation, and the declare keyword basically disallows the actual function declaration to exist at this point. For this to be a true TypeScript declaration, it would need to be in a special TypeScript declaration file, with the extension d.ts instead of just .ts. We’ll look at the different ways to create these files later in the book.

In order to define the actual implementation of the function, we can remove the declare keyword and add the function declaration after the return type. Working in this way forces us to think about our code, the inputs and outputs that it will be working with, and how it should behave up-front before we even write a single line of production code.

Starting with a declaration like this, even if it is later removed, is useful because the editor will guide us as we are writing the code. In this case, until the createHtmlElement function actually returns an object of the type HtmlElement, the editor will warn us that the function is not behaving in the way that it should–it’s breaking the contract:

[image:]

Figure 1.6: Function must return a value error in Visual Studio Code

The idea behind type-driven development is similar to that of test-driven development, where the tests are written before the actual code, which again forces the developer to fully consider the code before actually writing it.

Type-driven development and test-driven development are not mutually exclusive, they can and should be used together for maximum benefit to the design of your code.

Conclusion

This chapter has served as a gentle introduction to the world of TypeScript and hopefully has motivated you to read on and continue your journey into the language and its uses. We looked at where TypeScript came from and how it can help you to write more scalable, maintainable, and safer-to-refactor applications.

In the next chapter, let’s move on and set up a development environment ready to start writing TypeScript.

References

	https://css-tricks.com/the-relevance-of-typescript-in-2022/

	https://blog.acolyer.org/2017/09/19/to-type-or-not-to-type-quantifying-detectable-bugs-in-javascript/

	https://www.securityjourney.com/post/typescript-doesnt-suck-you-just-dont-care-about-security

CHAPTER 2

Setting up a Development Environment

Introduction

In this chapter, we will learn how to get started with developing in TypeScript and take that first step into building commercial-grade, maintainable and bug-minimal web applications. To do that, we’ll need to learn how to set up a development environment suited to writing TypeScript, and that’s what we’ll be learning here.

In order to use TypeScript, we will need to install a few things including TypeScript itself, and a compatible IDE (Integrated Development Environment) which understands TypeScript and can provide us with the great tooling which makes working with TypeScript both productive and pleasurable.

We’ll also learn a little about the things we’ll be installing, how to install TypeScript both globally to our system, and locally within a project, and how to generate a brand-new TypeScript project using the TypeScript compiler, as well as learn how TypeScript can be configured once it has been installed.

Structure

In this chapter, we will cover the following topics:

	Installing dependencies

	Installing TypeScript globally

	Creating a new TypeScript project

	Installing TypeScript locally in a project

	
Configuring TypeScript using tsconfig.json

	Enabling TypeScript checking in JavaScript files

Installing dependencies

There are a couple of different things that as a bare minimum should be installed if we wish to write TypeScript. The first is the popular JavaScript runtime Node.js, which we will use to install and compile TypeScript itself.

The second thing that we need to install is an IDE that we can use to develop TypeScript applications, and which is able to understand and make use of the language to provide the development tooling for which TypeScript is so renowned.

Windows users may also benefit from installing a 3rd party terminal application in order to enhance the development experience. The default terminal application on Windows is called Command Prompt and supports only very basic commands. Fortunately, there are many more powerful alternatives available, including Bash (installed by default with Git), or PowerShell (included with Windows by default).

Here, I have used a third party wrapper for the command line on Windows called Cmder (available at https://cmder.app/); it is this application you will see in all subsequent figures showing a terminal application for the remainder of this book.

Version numbers

The world of software development is constantly evolving, with new tools, frameworks, and versions of existing tools and frameworks appearing on a near-constant basis. While exciting, this does mean that recommendations for which version of any particular piece of software to use quickly go out of date.

Any version numbers of any software, tools, or frameworks recommended or discussed in this book should be taken as correct at the time of writing, but subject to change as time passes.

Installing Node.js On Windows

Node.js has many different installation options and different versions that you may install, a detailed explanation of which is beyond the scope of this book. It is generally recommended to be using Node.js version 12 or above for modern TypeScript development.

The current LTS (Long Term Support) version of Node.js is version 16, so my recommendation would be to simply install the current LTS version of Node.js, which should be compatible with the latest version of TypeScript.

You can find full information on installation, and download the recommended package for your operating system, on the Node.js website by visiting the URL https://node.js/org. Once downloaded, run the executable installer, to install it (Refer Figure 2.1):

[image:]

Figure 2.1: The Windows Node.js installer

Once Node.js is installed, you will be able to use it from the command-line or terminal application (hereafter referred to simply as terminal) of your computer. To test that Node has been installed correctly, you can try running the following command in your terminal:

node --version

The output of this command, if Node.js has been installed correctly, should be a version string, such as v16.16.0.

The Node.js installation also installs Node’s package manager NPM, which we can use to install TypeScript, and many other JavaScript and TypeScript-related packages from the online NPM repository.

Installing Node.js on Mac

The best way to install Node.js on a Mac is to use Homebrew, which will handle downloading, unpackaging and installing the application. It is recommended to update Homebrew before installing Node.js, so the first step is to run the following command in the Terminal:

brew update

Then you can install the latest stable version of Node.js with this command:

brew install node

Once the installation has completed, it can be tested using the --version flag in the same way as on Windows.

In case Homebrew is not installed, you can visit https://mac.install.guide/homebrew/3.html to find out how to install it.

Installing a code editor

Both Visual Studio and Visual Studio Code come with full TypeScript support installed and enabled by default. Throughout this book, we will be using Visual Studio Code, because it’s a free, cross-platform application with full TypeScript support included by default.

To install Visual Studio Code, visit https://code.visualstudio.com/ and download the applicable standard version for your operating system. Follow the installation instructions and, once complete, you should have the latest version installed and ready for use.

As well as TypeScript itself, Visual Studio Code has a rich ecosystem of TypeScript-related extensions that can be installed for free to further enhance your development experience.

Visual Studio comes with a “recent” stable version of TypeScript pre-installed, which the application uses to provide code-highlighting and other development tooling. We cannot use this version ourselves directly, we will still need to install it on our system to compile our TypeScript.

From this point forward, whenever I mention the editor, I will be referring specifically to Visual Studio Code. Any time I refer to an editor that is not Visual Studio Code, I will reference that editor by name.

Installing TypeScript globally

TypeScript may be installed as an NPM module globally on our system. This is advised because it will allow us to use the TypeScript compiler in our terminal application from any directory on our system, which is useful for generating new TypeScript projects. We’ll see how to do this in just a moment.

First, we will need to install TypeScript, we can do that via NPM using the following command in our terminal application:

npm install -g typescript

This will install the current release version of TypeScript. The presence of the -g flag is what causes TypeScript to be installed globally. Once the package has been installed, you can test that it has been installed correctly by running the following command in your terminal:

tsc --v

The TypeScript compiler is called tsc, and this command will output a version string such as Version 4.7.4 if TypeScript has been installed correctly. We’ll be looking at the compiler in much more detail later in the book. If for some reason the version number is not displayed, you may need to restart your terminal or computer.

Creating a new TypeScript project

Now that TypeScript is installed globally, we can use the compiler to create a brand-new TypeScript project. First, we should create a new directory for our project, let’s call it ts-examples. Once this is created, we should change our terminal application to this new folder, then we can run the following command:

tsc --init

Invoking the compiler with the --init flag will generate a new tsconfig.json file in the directory within which the command is run. Once the project has been generated, the compiler will output a list of the configuration options that it has enabled to the terminal window (Refer Figure 2.2).

[image:]

Figure 2.2: Output from the compiler when using --init

For the remainder of this book, this folder will be our TypeScript project directory and is where all of our TypeScript files and any related assets will be stored.

The tsconfig.json file

The tsconfig.json file is the main configuration file for TypeScript which controls how the compiler behaves when it compiles our TypeScript files into JavaScript, and to a limited degree, how our IDE provides tooling while we are developing. A directory that contains a tsconfig.json file is considered the root of a TypeScript project.

If you open up this new file in your text editor or IDE, you will see a selection of some of the more common configuration options that TypeScript supports.

By default, most of these options are commented out, but they also contain documenting comments that describe the effect that setting the configuration options will have, which makes this file a valuable built-in resource for learning a little bit about how to use TypeScript effectively. It also makes it easy to quickly enable common options by removing the comment at the start of the relevant line.

The options that are not commented out are the ones that are enabled, and these should match the list of options that were output to the terminal window after running the --init command with the compiler.

The configuration options that we set will usually be very project-specific and will vary even depending on whether we are compiling for development or production environments, as well as the exact nature of the application we are building. For now, we can go with the defaults enabled by the compiler.

Installing TypeScript locally to a project

Now that we have created a TypeScript project, we can install a local copy of TypeScript into the project itself. You may wonder why this is necessary given that we have already installed TypeScript globally on our system.

Generally, when we are building an application, we need to control the versions of any dependencies we use, even if those dependencies are used only for development purposes like TypeScript is.

While TypeScript tries to avoid making breaking changes, it is unavoidable that these may occur from time to time, so it is important that developers are using the same version of TypeScript denoted by the project whilst developing. Installing the package directly in the project gives us full control over exactly which version of TypeScript is used for the project, regardless of which version developers may have installed locally.

One way to think of it is that the global version is for us individually to use on our own system, but the local version belongs to the project itself and is for a larger number of developers to all use.

To install the latest release version of TypeScript into a project, we can use the following command in our terminal application, making sure the terminal is focused on the directory in which TypeScript is to be installed:

npm install typescript

Without the -g flag, the TypeScript package will be installed locally in the current directory. This will result in a new directory called node_modules being created in the current directory; this directory is where all of the NPM packages we install locally to this project will reside.

A package.json file and package-lock.json file will also be created as by-products of running the installation command. These two files are used to specify all of the NPM packages that the project requires in order to function in both development and production.

These two files are unrelated to TypeScript and can safely be ignored in the context of this book from this point on.

Another difference between installing TypeScript globally versus locally is that we will only install the global version once. Now that it’s installed, we can run tsc commands from any directory on our system, but barring the occasional update, we can largely forget about this version. Conversely, we will be installing the local version much more often, depending on how frequently we create new TypeScript projects.

Configuring TypeScript with tsconfig.json

The tsconfig.json file is where we can set any of TypeScript’s different configuration options. By default, inside this generated file they are broadly separated into groups of different categories of related options, which control how different aspects of TypeScript work. These categories are:

	Project-level options

	Language and environmental options

	Options related to modules

	Options related to JavaScript and code editor support

	Options to control what is emitted by the compiler

	Constraints on interoperability

	Type-checking options

	Completeness and output formatting options

	Backwards-compatibility options

	Options controlling how types are acquired

	Options related to watch mode

The generated tsconfig.json file does not contain the complete set of supported configuration options. For a complete list of all the configuration options that TypeScript supports, see the documentation at https://www.typescriptlang.org/tsconfig. It also does not contain all of the above groups of options.

All in all, there are a huge number of different configuration options that we can specify, and the exact configuration we use is likely to vary considerably between projects, depending on the specific nature of each project.

The frameworks we use for building applications will also have a bearing on the configuration that we use. React developers, for example, are likely to make more use of the JSX-related configuration options than Angular developers. Frameworks that use TypeScript are also likely to include a preconfigured tsconfig.json file that sets any options required by the framework.

Additionally, some of the configuration options are there to help transition older JavaScript projects to TypeScript, and as such, would not be required in brand-new projects created today.

There are however some common options that we will find we frequently configure in our projects. We’ll take a quick look at some of these more common configurations in just a moment, but before we do that, let’s just look at the configuration options that are enabled by default when we create a brand new TypeScript project using the compiler as we have done here.

Default enabled configuration options

The following options are configured by default when generating a new TypeScript project without passing any options on the command line.

target

This option specifies the ECMAScript version of JavaScript that is emitted when the project is compiled. By default, this option is set to es2016. This version is safe to use with modern browsers, but it may be necessary for you to lower the target version if legacy browser support is required.

This option also impacts the JavaScript that is emitted; setting this option to a value lower than es2015/es6 for example, will result in things like arrow functions being converted to regular functions, and other syntactical changes to make sure the code can run in the target environment.

The minimum version of JavaScript that we can target with TypeScript is ES3, and the highest version is es2023. This latter value will certainly change in the future as ECMAScript continues to evolve.

There is one more value that we can specify for this option, and that is esnext. This value just tells the compiler to target whatever is the upcoming ECMAScript release, but the actual value that this option will match depends upon which version of TypeScript you have installed, which makes this option unpredictable and so you should avoid it where possible.

module

This configuration option allows us to specify the module format that is used when our project is compiled to JavaScript. By default, the value of this option is commonjs, which is the module format supported by Node.js.

Other values that we can specify for this configuration option include:

	none

	amd

	umd

	system

	es2015/es2020/es2022/es2023/esnext

	node16/nodenext

The umd option refers to Universal Module Definition, named as such because it works in both browsers and Node.js. It makes use of IIFEs (Immediately Invoked Function Expressions) and was often produced as a fallback by the popular resource-bundler Webpack.

The amd option refers to Asynchronous Module Definition, which was implemented in browsers by the once very popular Require.js library. This format is no longer used as commonly as it once was but may still be required for very old framework-less JavaScript projects.

The system option refers to System.js, a module loader that fully supported ES Modules before native support became widespread, and which is still commonly used.

The es* options refer to different versions of the official ES Modules specification. For example, the es2015 option gives basic ES Module support, while the es2020 option adds support for dynamic modules, and es2022 includes top-level use of the await operator.

Traditionally Node.js supported only CommonJS, but beginning with Node.js version 16, ES Module support was added, which we can target with the node16 option.

esModuleInterop

By default, this option is given the value true and is enabled to fix issues caused by early versions of TypeScript making what turned out to be false assumptions about how ES modules would work.

This option may need to be disabled (by setting it to false, commenting it out, or removing it from the tsconfig.json altogether) if your project uses libraries that define their API using inherited properties.

forceConsistentCasingInFileNames

This option is also given the default value of true. ES Modules rely on being able to locate modules using file names and paths to physical files on the file system. Some operating systems are case-sensitive, and others case-insensitive, so it is important that all developers on the project use the correct casing. This option will cause an error if a module file path is specified using the wrong casing.

strict

Strict mode is also set to true by default to enable thorough type-checking in our editor and when compiling TypeScript. It is a short-hand property that enables numerous individual strict checks for various options.

This configuration gives us the most strict type-checking, without the burden of a complex and repetitious configuration that needs to be enabled each time we begin a new TypeScript project.

It can be useful to disable or remove this option and instead enable each of the strictness options that it encompasses individually. This makes it easier to fine-tune our strictness configuration based on the needs of the current project, or to focus on fixing one category of strictness issues at a time when converting JavaScript to TypeScript.

The most commonly-used individual options that fall under the strict umbrella are as follows:

	strictBindCallApply

	strictFunctionTypes

	strictNullChecks

	strictPropertyInitialization

	useUnknownInCatchVariables

	noImplicitAny

	noImplicitThis

Let’s take a quick look at each of these in turn as they are all enabled by default (under the umbrella option strict) when initializing a new TypeScript project from the terminal.

The strictBindCallApply option enforces that when any of bind, call or apply are used, they are invoked with the correct argument types for the underlying function they are called on.

The strictFunctionTypes option ensures that when a function is invoked, the parameters passed to it exactly match the type that the function expects. Without this, TypeScript is somewhat lenient in this area.

The strictNullChecks option strictly enforces null and undefined as distinct types. If this option is disabled, TypeScript is much more lenient with values that might possibly be null or undefined.

The strictPropertyInitialization option ensures that any properties of a class that are defined are initialized with values in the class’s constructor.

The useUnknownInCatchVariables option, automatically sets the type of parameters passed to the catch clause in a try/catch statement as unknown, which leads to more expressive error handling as the type of the parameter must be manually checked before it is used.

In situations where a type is not provided for a value, and the type for a value cannot be inferred from the value’s usage, TypeScript will implicitly set the type to any. This effectively disables type checking for that value so may allow the value to be used in such a way that will cause errors at runtime. The noImplicitAny option causes an error to be shown whenever TypeScript would implicitly treat a value as any, allowing us to provide the correct type information for the value.

The noImplicitThis option is similar to noImplicitAny, but only shows an error when the value of this is implicitly any.

NOTE: For a complete list of all strictness-related configuration options, see the documentation at https://www.typescriptlang.org/tsconfig#strict.

skipLibCheck

This option is set to true by default and is used to avoid type-checking declaration files (files with the file extension .d.ts) in the application. This is a performance-related issue that speeds up compilation time as it reduces the number of files that are checked by the compiler.

Commonly used configuration options

As I mentioned earlier, exactly which configuration options you enable is likely to vary between projects, there are however numerous additional options that we will use often. We will look at a selection of these common options below. Note that none of the following options are configured or enabled by default. Some of them, but not all, are included in the generated tsconfig.json file but are commented out.

files

It is common to tell TypeScript the main files of your application using a glob pattern (see the include section below), which is a way to match files using a special path such as app/**/*.ts - this path would match any file with a .ts extension inside any sub-directory inside a directory called app.

Nevertheless, there may still be a small selection of files that are important to your application, but which do not reside in the same directory structure as the main files that you want to compile. In this scenario, we can use the files option, which takes an array of specific file paths that should be included in the compilation process.

Smaller applications may not need to use glob patterns at all and can rely solely on specific file references passed to the files configuration option. Larger applications may rely only on file globs, or some combination of both specific files and files matched by a glob.

include

Leading on from the files option above is the include configuration, the option which allows us to specify the glob patterns that TypeScript should use to find all of the necessary files for our application during compilation.

This configuration option also takes an array, so multiple glob patterns can be provided, if necessary, to match groups of files held in different locations. As specified above, our application configuration may contain either include, files, or both depending on its complexity and size.

exclude

While the include option allows us to specifically mention files that should always be included in the compilation of TypeScript to JavaScript, the exclude option allows us to specify any files that should never be compiled.

baseUrl

The baseUrl option is used to specify the root directory that non-absolute file paths are resolved relative to. It is usually configured to ./ which matches the same directory in which the tsconfig.json file itself is within.

rootDir

The rootDir option allows us to specify the root directory for the files in the compiled output. By default, TypeScript will automatically match the directory structure of the input files in the emitted JavaScript, but depending on the complexity of the input structure, or on other configurations you may have set, this inferred output structure may not be exactly what you require.

The rootDir option allows us to specifically dictate what the top-level directory of the files inside the root of the compiled output should be.

paths

The paths configuration allows us to remap imports inside TypeScript files to locations relative to the baseUrl. This allows us to create short alias paths for importing third party libraries from deep within the node_modules directory, for example, to make importing these libraries less verbose inside the TypeScript files in which they are used.

This means that instead of having to type something like node_modules/some-library/app/dist/some-lib in every file that we want to import some-lib into, we could create a simpler import by adding a configuration like this:

'path': {

‘some-lib’: [‘node_modules/some-library/app/dist/some-lib’],

}

In this case, we would then be able to import the file from the full path specified inside the array, using the short path specified by the property name.

The paths option takes an object, where each key in the object is an alias, and each value is the corresponding path for that alias. We can provide as many of these as we wish, and each value takes an array in order to map multiple locations to a single alias if necessary. It also supports the use of wild cards within alias names, for example, the following configuration

‘some-lib/*’: [‘app/some-lib/*’],

Means any import for a path in a folder under some-lib should be sourced from app/some-lib.

outDir

By default, the compiler emits JavaScript files to the same directory that the original TypeScript file was contained in. This may be acceptable for smaller applications, or those with a simplified directory structure, but for larger applications, or those containing a more complex internal file structure, it may be necessary to specify an alternative directory into which all emitted JavaScript files should be output.

We use the outDir configuration option to specify where the compiled files should be emitted. This option is often used in conjunction with the rootDir option described above.

resolveJsonModule

By default, TypeScript does not allow JSON files to be loaded and imported into TypeScript files as if they were TypeScript. This is a very useful feature because we can use simple JSON files to hold local data used for developing the application without the need for a local database.

It’s also very useful for storing mock data that can be used for unit testing to make tests more isolated, and so resolveJsonModule is a very commonly used configuration option.

To enable it, we just need to uncomment it in the tsconfig.json file as it is one of the ones that is included in the generated file but commented out.

While this is far from a comprehensive list of all the available configurations, this list contains a sensible foundation on which you can build your knowledge of TypeScript configuration. Other configuration options not covered here will be discussed in this book as and when they become relevant.

Top-level configuration options

Many of the configuration options that we’ve looked at are compiler options, and therefore reside within the compilerOptions object in the tsconfig.json file. There are some configuration options however that are known as top-level options which are used outside of the compilerOptions object. The compilerOptions option itself is a top-level option, as are the include, exclude and files options that we looked at earlier in this section.

Take care when adding configuration options that do not appear in the file generated by the compiler that you are adding them inside or outside of the compilerOptions object as appropriate.

Updating the project configuration

As we progress through this book, we will use certain features of TypeScript that will rely on a certain configuration. Some configuration options will be discussed as they become relevant, but there are also some additional configuration changes that we want to make now.

We should make the following configuration changes to the tsconfig.json file; uncomment or add them as applicable:

“module”: “es2022”,

“outDir”: “./dist”,

We set the module option to es2022 to enable the latest support for ES Modules. We can also configure an outDir to avoid warnings about not being able to overwrite the plain JavaScript file that we are just about to create in the following section. We will also need to exclude the Chapter 1 directory from our compilation as the example project will not compile correctly if it is included due to the files it contains. We should add a new top-level option called exclude to the tsconfig.json file and specify chapter 1 as an ignored directory:

“exclude”: [“chapter 1”]

This option should be added outside of the compilerOptions section of the file because it is a top-level configuration option.

Enabling TypeScript checking in JavaScript

OEBPS/images/Figure-2.1.jpg

OEBPS/images/Figure-2.2.jpg

OEBPS/images/Figure-1.1.jpg

OEBPS/images/Figure-1.2.jpg

OEBPS/images/Figure-1.3.jpg

OEBPS/images/Figure-1.4.jpg

OEBPS/images/Figure-1.5.jpg

OEBPS/images/Figure-1.6.jpg

OEBPS/images/cover.jpg

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		Technical Reviewers

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Introduction to TypeScript and its Benefits

		Introduction

		Structure

		Introduction to TypeScript

		A short history of TypeScript

		Main components of TypeScript

		TypeScript’s type system

		Advantages of using TypeScript

		Catching bugs

		Readability

		Refactoring

		Future language features

		Disadvantages of TypeScript

		The ways in which TypeScript prevents bugs

		Steps to begin using TypeScript

		Type-driven development

		Conclusion

		References

		2. Setting up a Development Environment

		Introduction

		Structure

		Installing dependencies

		Version numbers

		Installing Node.js On Windows

		Installing Node.js on Mac

		Installing a code editor

		Installing TypeScript globally

		Creating a new TypeScript project

		The tsconfig.json file

		Installing TypeScript locally to a project

		Configuring TypeScript with tsconfig.json

		Default enabled configuration options

		target

		module

		esModuleInterop

		forceConsistentCasingInFileNames

		strict

		skipLibCheck

		Commonly used configuration options

		files

		include

		exclude

		baseUrl

		rootDir

		paths

		outDir

		resolveJsonModule

		Top-level configuration options

		Updating the project configuration

		Enabling TypeScript checking in JavaScript

		Default behavior

		Enabling type checking

		Adding JSDoc annotations

		Example project structure and use

		Conclusion

		References

		3. Basic Type Annotations

		Introduction

		Structure

		Primitive types

		BigInt

		Boolean

		Number

		Null

		String

		Symbol

		Undefined

		The any type

		The unknown type

		The never type

		The as operator

		Down-casting

		Compound casting

		Older type-casting syntax

		Union types

		Literal types

		Literal union types

		Type aliases

		Type assertion

		Non-null assertion operator

		Conclusion

		References

		4. Using the TypeScript Compiler

		Introduction

		Structure

		Compiling our TypeScript files

		Inspecting compiled files

		CLI flags

		--version

		--listFilesOnly

		--showConfig

		--help

		Using watch mode

		watchFile

		watchDirectory

		fallbackPolling

		synchronousWatchDirectory

		excludeDirectories

		excludeFiles

		assumeChangesOnlyAffectDirectDependencies

		Environment variables

		Building projects

		Build-specific flags

		Integrating with other build tools

		Integrating with webpack

		TypeScript webpack configuration

		Using third-party libraries

		Generating .d.ts files

		Generating d.ts files from .js files

		Conclusion

		References

		5. Enums, Interfaces, and Namespaces

		Introduction

		Structure

		Interfaces

		Interface merging

		Extending interfaces

		Namespaces

		Namespace merging

		Enums

		Numeric enums

		Reverse mapping

		Exhaustiveness and the never type

		String enums

		Heterogeneous enums

		Computed and constant enums

		Literal enums

		Inlining enums

		Using the keyof operator

		Conclusion

		References

		6. Objects, Arrays, and Tuples in TypeScript

		Introduction

		Structure

		Arrays

		Array type inference

		Read-only arrays

		Tuples

		Optional elements in tuples

		Rest elements in tuples

		Read-only tuples

		Object types

		Property modifiers

		Index signatures

		Intersections

		Generic object types

		Readonly utility type

		Conclusion

		References

		7. Functions in TypeScript

		Introduction

		Structure

		Parameter Type and Return Type Annotations

		Type Inference for Functions

		Arrow Functions

		Type Inference for Arrow Functions

		Optional Parameters

		Rest Parameters

		Rest Arguments

		Destructured Parameters

		Void return type

		Function Type Expressions

		Call signatures

		Function Type Interfaces

		This Parameter

		Function overloads

		Overloading Arrow Functions

		Generator functions

		Generic functions

		Generic Function Constraints

		Conclusion

		References

		8. Classes in TypeScript

		Introduction

		Structure

		Class Declarations

		Class Expressions

		Constructors

		Constructor Overloading

		Parameter Properties

		Access Modifiers

		Private Members in JavaScript

		Getters and Setters

		This Parameter

		Index Signatures

		Implementing an Interface

		Static Class Members

		Static Blocks

		Inheritance

		Abstract Classes

		Abstract Properties

		Abstract Methods

		Generic Classes

		Decorators

		TypeScript Design Patterns

		Conclusion

		References

		9. Control Flow Analysis

		Introduction

		Structure

		Narrowing

		Widening

		Type Guards

		Truthiness Type Guards

		Narrowing with Typeof

		Handling null Values

		Narrowing with Instanceof

		Narrowing with the in Operator

		Narrowing with Type Predicates

		Discriminated Unions

		Assertion Functions

		Using as const

		Conclusion

		References

		10. Manipulating Types

		Introduction

		Structure

		Generics

		Generic Interfaces

		Generic Types

		Generic Classes

		Generic Functions

		Conditional Types

		Indexed Access Types

		Mapped Types

		Adding and Removing Property Modifiers

		Remapping Property Keys

		Template Literal Types

		Capitalize

		Uncapitalize

		Uppercase

		Utility Types

		Awaited

		ConstructorParameters

		Exclude

		Extract

		InstanceType

		NonNullable

		Omit

		OmitThisParameter

		Partial

		Parameters

		Pick

		Readonly

		Record

		Required

		ReturnType

		ThisParameterType

		ThisType

		Conclusion

		References

		11. TypeScript Modules

		Introduction

		Structure

		Modules in TypeScript

		Importing and exporting modules

		Type-only imports and exports

		Compiled modules

		Module-related configuration options

		Module

		Module resolution

		Base URL

		Paths

		Rootdirs

		Type roots

		Module suffixes

		Resolve JSON module

		Module resolution

		Compiler directives

		Reference path

		Reference types

		Reference lib

		No default lib

		AMD module

		AMD dependency

		Barrel files

		Nested barrels

		Augmenting modules

		Conclusion

		References

		12. Creating Declaration Files

		Introduction

		Structure

		Creating declaration files

		Declaring global libraries

		Enhancing Intellisense with JSDoc

		Declaring global functions and variables

		Augmenting built-ins

		Declaring modular libraries

		Declaring default exports

		Declaring classes

		Declaring CommonJS modules

		Declaring UMD modules

		Publishing declarations

		Publishing with the library

		Publishing to Definitely Typed

		Testing types

		Conclusion

		References

		13. Building a Conference App with Angular and TypeScript

		Introduction

		Structure

		Getting started

		Running build tasks

		Unit tests

		Linting

		Serving the application

		Creating the application shell

		Creating a data model

		Adding views

		Home view

		Adding routing

		Building the add-conference view

		Adding the conferences view

		Changing the default locale

		Adding a page not found component

		Handling data

		Unit testing

		Continuing with the example application

		Conclusion

		References

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to TypeScript and its Benefits

OEBPS/images/logo.jpg

