
[image: image]

Building Scalable Web
Apps with Node.js and
Express

[image:]

Design and Develop a Robust, Scalable,
High-Performance Web Application Using
Node.js, Express.js, TypeScript, and Redis

[image:]

Yamini Panchal

Ravi Kumar Gupta

[image:]

www.orangeava.com

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: June 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,

N1 7AA, United Kingdom

ISBN: 978-81-97223-81-5

www.orangeava.com

About the Authors

Yamini Panchal holds a Bachelor of Engineering in Computer Science from Gujarat Technological University and has over 8 years of experience in the IT industry. She has worked on diverse domain-based web development applications, including IoT, Telecommunication, Healthcare, and Cloud Services.

Currently a Technical Lead at Azilen Technologies, she specializes in open-source development with a focus on Node.js, constructing server-side applications and APIs. She has expertise in both SQL and NoSQL databases.

Yamini has contributed to robotics-based applications using Node.js, TypeScript, React.js, and AWS services, as well as developed a WebRTC-based application for audio-video conferencing. She excels in building scalable backend services with Node.js and leveraging AWS services in microservice architectures. She enjoys embracing new technologies, reading, writing, and fostering innovation.

Ravi Kumar Gupta is an accomplished author and open-source software evangelist with a strong technology background. He holds an MS in Software Systems from BITS Pilani and a B.Tech from LNMIIT, Jaipur.

Currently, he works as a Solution Architect at Orbiwise and contributes to the NoiseApp Team. Ravi excels in coding with Python, TypeScript, Node.js, and Java, enhancing OrbiWAN's performance and efficiency.

Previously, he served as a Solution Architect at Azilen and a lead consultant at CIGNEX Datamatics. At TCS, he was a core member of the open-source group, working on Liferay and other UI technologies. Throughout his career, he has built enterprise solutions using the latest technologies and open-source tools.

Ravi enjoys writing, learning, and discussing new technologies. His interest in search engines began with a college project on a crawler. He has co-authored books on Test-Driven JavaScript Development and Mastering Elastic Stack and writes for his blog at TechD of Computer World (http://techdc.blogspot.in). He has also been a Liferay trainer at TCS and CIGNEX and reviewed Learning Bootstrap for Packt Publishing.

About the Technical Reviewer

Bhargav Bachina is a distinguished figure in the IT industry, boasting a remarkable 12-year journey marked by innovation and leadership in software architecture. His career is a testament to his profound expertise across technological stacks, from front-end and back-end development to the complexities of cloud computing. Bhargav's proficiency in Java, JavaScript, Python, and Node.js has made him a versatile and adept navigator in the world of software development.

As a visionary software architect, Bhargav is renowned for creating comprehensive end-to-end solutions. His commitment to excellence and passion for technology have led to the development of cutting-edge web and mobile platforms, establishing him as a thought leader in the field. Currently the CTO of an educational startup, Bhargav is about to launch an innovative project, marking another milestone in his career. His work as a fractional CTO has made him a sought-after mentor in the startup community, with many emerging startups seeking his expertise on LinkedIn.

Beyond his technical and leadership roles, Bhargav is a prolific writer. His journey as a writer began five years ago on Medium, where he has penned over 700 articles. These writings have reached an audience of over 8 million globally, resonating deeply within the tech community. His articles have been pivotal in guiding and enlightening many, earning him a significant following of 22k on Medium. His influence extends to LinkedIn, where his contributions are frequently lauded for their impact.

Bhargav's commitment to sharing knowledge is further evidenced by his active presence on GitHub. With around 431 repositories, he has become a resource for many in the tech community, evidenced by the regular stars and forks his repositories receive. Bhargav Bachina's journey is more than a career narrative; it's a source of inspiration and a roadmap for aspiring IT professionals worldwide.

To learn more about Bhargav, please visit the following sites:

Medium: https://medium.com/@bhargavbachina

GitHub: https://github.com/bbachi

YouTube: https://www.youtube.com/@bachinalabs

Acknowledgements

My deepest gratitude to my wife, Kriti. Despite being busy with our two little ones, she continually encouraged and motivated me throughout the writing process. I am forever grateful for her boundless love and patience. A ton of thanks to my co-author, Yamini, for her tremendous support. Finally, my sincere thanks to the Orange Team, editors, and reviewers, whose patience, cooperation, and expertise were vital for this project. My heartfelt thanks go out to everyone involved in this project. Much appreciated!

- Ravi Kumar Gupta

I wish to convey my heartfelt gratitude to my mother, who has been my pillar of strength and my greatest source of inspiration, shaping me into the person I am today. Additionally, I extend my profound appreciation to my co-author, Ravi, for extending this invaluable opportunity to me. I owe a debt of gratitude beyond words to him. His mentorship has been the cornerstone of this project, without which it would have remained a distant dream. Ravi's guidance and encouragement have propelled me forward, and I am immensely grateful for his unwavering faith in my abilities. I would also like to extend my appreciation to the Orange AVA Team, editors, reviewers, and the publishing team for their expertise, patience, guidance, and dedication in helping bring this book to life. Your insights and suggestions have greatly enriched the final product, and I am grateful for your professionalism and support.

Last but not least, I want to thank the readers who have embraced my work. Your passion and enthusiasm inspire me to continue writing, and I am deeply grateful for your support. Thank you all who directly or indirectly supported me for being part of this incredible journey.

- Yamini Panchal

Preface

From cumbersome setups for writing APIs to launching projects in just five minutes with Node.js and Express.js, developers have come a long way to witness revolutionary simplification in web development. If you are new to Node.js, this book offers a clear pathway to master backend development using Node.js, TypeScript, and Express.js. If you are already familiar with JavaScript or Node.js and aim to build scalable and efficient APIs, this book will elevate your skills, equipping you with the techniques needed for modern backend architecture.

The book begins with the fundamentals of Node.js, TypeScript, and Express.js, offering guidance on setting up your development environment and crafting your first API. It focuses on creating backend APIs for a Project Management System, using this consistent example to illustrate database design and module-wise implementation.

The book also delves into advanced topics such as caching, message queues, testing, and deployment using AWS cloud services, providing a comprehensive guide to modern backend development practices.

What the book covers

The book is divided into 11 chapters. The first three chapters introduce you to Node.js, TypeScript, and Express.js. The middle chapters begin with developing API for all modules, followed by chapters covering caching, testing, and deployment. The final chapter recaps what we learned throughout the book. Details about what each chapter covers are as follows:

Chapter 1. Introduction to Node.js: This chapter starts the journey into Node.js, covering the basics and the pros and cons. It guides readers through setting up Node.js on various operating systems, introduces event-driven programming and architectures, and concludes with creating a basic HTTP(s) server.

Chapter 2. Introduction to TypeScript: This chapter provides a comprehensive overview of TypeScript, discussing its advantages and potential pitfalls. It includes steps for installing necessary packages and explores object-oriented programming concepts while developing a basic application with TypeScript.

Chapter 3. Overview of Express.js: This chapter introduces Express.js, discussing its benefits and limitations. It starts with defining what the Express.js framework is and moves into building a basic application with an API. It concludes with discussing the core features and best practices of Express.js.

Chapter 4. Planning the App: This chapter lays the foundation of the primary example covered throughout the book - the Project Management System. This chapter outlines the roadmap and helps in setting up the project structure. It focuses on designing the database entities and routing, which are crucial in planning the application’s architecture and flow.

Chapter 5. REST API for User Module: This chapter completes the APIs for User module. The essential functions such as user signup, login, password recovery along with CRUD operations are covered here. This chapter delves into critical aspects of authentication and authorization, explaining how roles and rights are implemented to secure the application.

Chapter 6. REST API for Project and Task Modules: This chapter continues building APIs for Project and Task modules. It includes the creation and management of projects and tasks, ensuring they maintain relationships with the user entity. Functions such as retrieve, update, list, and delete for both projects and tasks are detailed, enhancing the overall functionalities of the application.

Chapter 7. API Caching: This chapter delves into the basics of caching and the use of Redis as a caching Server. It guides you through the setup of the Redis server, discussing the pros and cons of using Redis and the caching mechanism in general. The chapter also builds a Caching utility to enhance the application’s performance.

Chapter 8. Notification Module: This chapter explores the necessity of a Notification module and showcases its implementation using Message Queues. It starts with a basic queue implementation using Redis. The chapter then transitions to a more standardized approach by introducing the Bull package, a robust queueing system.

Chapter 9. Testing API: This chapter guides readers with an overview of testing and how Mocha framework can be used for API testing. It covers the basics of writing test cases, setting up the testing environment, and executing tests using Mocha along with Chai, which is an assertion library.

Chapter 10. Building and Deploying Application: This chapter covers the crucial steps required to build a production-ready application and deployment using AWS Cloud Services. The chapter also delves into the topic of Code Obfuscation while discussing common techniques used in code obfuscation.

Chapter 11. The Journey Ahead: This final chapter recaps the key lessons from the book and outlines the directions for future development. The Next Steps section of the chapter suggests areas of expansion such as front-end development, security measures, reporting, monitoring, integrating machine learning, adopting containerized deployment, and many more. The chapter also discusses the impact and potential of GenAI and LLMs such as ChatGPT.

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-education/Building-Scalable-Web-Apps-with-Node.js-and-Express

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/db7c4e

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction to Node.js

Introduction

The popularity of Node.js is booming day by day in the IT market worldwide. Through this book, any JavaScript developer can easily learn about Node.js from basic to advanced levels. This chapter talks about the Node.js basics and architecture. We will also learn how to write a simple Node.js program.

Structure

In this chapter, we will be covering the following topics:

	Defining Node.Js and Where It is Used

	Pros and Cons of Node.Js

	Installing Node.Js on Various Platforms

	Understanding Event-Driven Programming

	Node.js Architectures

	Writing HTTP and HTTPS Server

	Using the Cluster Module

Defining Node.Js

When Ryan Dahl demonstrated his remarkable work, Node.js at JSConf 2009, it was the beginning of a new era. He stated that the concurrency was achieved by threads in most of the top languages and that using threads has certain problems as context switching between threads is costly. Using the event loop, he showed that Node.js achieves way higher concurrency than any of the existing languages. People at the conference welcomed the idea and applauded Dahl. Thus began the much-awaited shift in the programming world.

Node.js is an open source cross-platform JavaScript runtime environment. It states that anyone can use it free of cost on any operating system such as Windows, Linux, Unix, Mac, and more. JavaScript is the foundation of Node.js. The code of any node.js application is written in JavaScript. This code runs on Google Chrome’s V8 JavaScript engine which converts source code to machine code directly without interpreting and then it gets executed without the need for a web browser. Node.js provides the necessary environment for the code to run.

[image:]

Figure 1.1: Node.js Architecture

Figure 1.1 shows a high level architecture of Node.js. Even though Node.js is single threaded, it still handles lots of concurrent requests at a time through a mechanism of asynchronous non-blocking I/O operations which provides hidden threads from the libuv library that executes itself as multi-threaded.

Due to non-blocking I/O operation, Node.js is fast compared to other languages because the request does not wait for its response and parallelly executes another request. All requests are first sent to the event queue, processed in the event loop, and then sent back to the V8 engine through the queue as displayed in Node.js architecture. More about the event loop is elaborated in the section, “Event-driven Mechanism” later in this chapter.

Node.js is not only written for backend-side server programming applications but also developed as node modules and used on the client side, which is beneficial for developers as the same language is used on both sides.

Applications of Node.js

The usage of Node.js has been growing at a fast pace in IT Industries due to its features and different types of application. Here are a few examples of different types of applications related to Node.js.

Single-Page Applications

Currently, there are a lot of organizations and enterprises that provide complex and real time solutions to their clients by developing Node.js applications as server side applications through single-page applications. For example, Gmail, Twitter, Facebook, Trello, and many more applications are developed as SPA (Single-Page Applications). A single-page application communicates with the user’s actions by rewriting data on a single web page instead of reloading the whole web page.

Real-time Applications

Node.js is an ideal model for real-time applications because it gives responses to numerous requests at the same time. If there are a large number of users that need real-time response, Node.js is a better choice. You can use Node.js with WebSockets for continuous connection and to provide a faster response time. Applications such as audio, video, chat, multiplayer games, and stock trading are developed in this manner.

IoT Devices Applications

Due to its faster response time and ability to handle large numbers of requests concurrently, Node.js is a good choice for Internet of Things (IoT) apps where devices or sensors are connected to the internet and send huge amounts of data continuously. IoT use cases such as fire detection, noise pollution measure, fitness tracker, health monitoring are many such applications where Node.js is playing a big role.

Data Streaming Application

Node.js allows working with an abstract interface as a stream for data streaming. Large media files are divided into small chunks and sent as buffers. These buffers are transformed into meaningful data. Netflix-like streaming services use Node.js where data is transferred in chunks instead of whole large streams that reduce loading and delay while streaming happens.

The uses of Node.js are not limited to the preceding types of applications but also many more types of applications developed in Node.js such as making proxy or signaling servers, monitoring data-based applications, and more.

Pros of Node.js

Node.js is a very powerful runtime environment for JavaScript. It allows developers to build high performance and scalable applications. Some of the key advantages that Node.js offers are as follows:

	
Cross platform: Node.js comes up with cross-platform functionality so the application can be easily developed on any OS and deployed on any platform. Key platforms supported by Node.js are Windows, Mac(Intel), Mac(ARM), and Linux (Intel/ARM). Probably every major platform is supported.

	
High performance: Node.js offers high performance due to asynchronous non-blocking I/O operations which execute requests in parallel without waiting for the response of any other request.

	
Easy to scale: Node.js is itself single threaded but in heavy traffic, it handles a lot of requests at the same time to scale up with the “cluster” module which creates child processes and reduces the load on the application.

	
Caching: Node.js allows storing data in temporary memory that is not updated frequently, which reduces loading time and saves database transactions. This is called caching.

	
Huge community: Ever since Node.js appeared, its community size has been increasing day by day. The language used for programming is JavaScript which has been the backbone of the internet and almost every front-end developer was already familiar with it. This made learning easy and made the community grow rapidly. There are more than 1.3 million open-source libraries available for use.

There are many other advantages as well such as cost-effectiveness, ease of learning, and adaptability. Node.js is a technique that has really made a difference.

Cons of Node.js

There are some disadvantages of Node.js too. However many of these can be overcome using best practices.

	
Single threaded: Node.js is single threaded, which is an advantage as well as a pitfall because it is unable to process heavy CPU oriented computation quickly. When requests which need more CPU for processing come in the event loop, they keep piling up because until it finishes one request, it will not pick other requests from the event queue. However, this happens only when there are only CPU centric tasks. If a request needs some IO to happen, another request will be picked while a request waits for IO to complete. CPU centric tasks make the performance low and delay the response. For example, for searching algorithms and mathematical calculations where complexity is high at that time, Node.js is not recommended due to poor performance.

	
Callback hell: Asynchronous programming in Node.js can be challenging for some developers, especially when using callbacks. Callback hell is a situation when callback functions are nested. This can make code difficult to read and maintain. However to avoid this, developers can use promises, async-await, or libraries such as Async.js.

	
Library compatibility: Although there are more than a million libraries available yet those being open sourced by individual developers might not be up-to-date to the latest versions. This sometimes makes it difficult to use those libs in projects.

Installing Node.js

Now when we have a high level understanding of what Node.js is and what it offers, let us jump to the setup. There are different ways to download and install Node.js in your system but here, we give the easiest and best way. Download the LTS (Long Term Support) Version of Node.js from its official site (https://nodejs.org/en/download) based on your operating system. On the site, there will be LTS and Current Version, choose the LTS version because it is stable and recommended for complex projects.

At the time of writing, Node.js version 20 is ACTIVE.

[image:]

Figure 1.2: Node.js Versions

The preceding up-to-date release schedule can be seen on Node.js GitHub page— https://github.com/nodejs/release#release-schedule.

Installing Node For Linux/Ubuntu

NPM (Node Package Manager) is the default package manager for node.js and also a library of JavaScript software packages. It is open source so that developers can install other modules in their project via npm free of cost.

Node Version Manager (NVM) is a shell script that manages multiple node versions and uses it on different projects.

We can highlight the importance of installing Node.js through NVM with real use cases.

Using NVM, you can easily manage multiple Node.js versions on the same machine. Here is how it helps:

	
Version Management: NVM allows you to install multiple versions of Node.js on your system. This means you can switch between different versions seamlessly based on the requirements of your projects.

	
Isolated Environments: Each Node.js version installed through NVM is isolated from others. This ensures that changes made to one version won’t affect the others. It is particularly useful when you are working on projects with conflicting dependencies or when you need to maintain compatibility with older versions.

	
Flexibility: With NVM, you have the flexibility to switch between Node.js versions effortlessly. This allows you to test your applications across different versions, ensuring compatibility and stability.

	
Project-specific Versioning: NVM allows you to specify the Node.js version required for a particular project. This ensures that each project uses the correct version of Node.js without interfering with others.

	
Easy Updates: NVM simplifies the process of updating Node.js to the latest version. You can easily upgrade or downgrade Node.js versions with a single command, ensuring that your development environment stays up-to-date.

NVM for managing Node.js versions provides a streamlined and efficient workflow, enhancing productivity and reducing potential conflicts between projects. It is an essential tool for developers working on multiple Node.js projects simultaneously.

Based on the advantages of NVM, we will install Node.js through NVM on different platforms.

Let us first install NVM and then install Node.js by NVM. Open terminal/console or cmd and follow three given steps:

	Update your system with the latest versions of packages.
 $ sudo apt-get update

	
Download and install NVM using this command:
$ curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.3/install.sh | bash

	Before running the preceding command, make sure curl is installed on the system. If it is not installed then run the following commands to install and verify:
 $ sudo apt install curl $ curl –version

	Verify NVM version:
 $ nvm –version

	Install Node.js as follows:
$ nvm install node

This command will install the latest stable version of node.

	To install Node.js with LTS version, use this command:
 $ nvm install -lts

	If anyone wants specific version of node, then add specific version at end of NVM and install as follows:
$ nvm install 18.15.0

Or

$ nvm install 18.x

In the preceding commands, 18.15.0 is a specific version of node.js and 18.x means it will consider the highest version of 18 above and below 19.

	Verify Node.js version as follows:
$ node –version

After successfully executing the above steps, you can expect the following output to be displayed in the command prompt for your reference.

[image:]

Figure 1.3: Linux Node.js Installation

Once Node.js installed, by default NPM is also installed with Node.js installation package, which can be verified with $ npm –version

Other NVM commands which can be helpful for developers to play with node versions on different projects are as follows:

	
$ nvm ls - Checks list of node version in the system

	
$ nvm use 18.x – For specific use of node version on the project

	
$ nvm alias default 18.x – It is to set default for all projects in the system

	
$ nvm uninstall 18.x- It will uninstall that 18.x version from system

Installing Node.js for Windows

While we have covered Linux installation, now let us proceed with the installation process on Windows. You can follow the steps outlined below for Windows installation.

Installing Node.js through NVM on Windows via the command prompt (cmd) requires the usage of a specialized tool called "nvm-windows". Here are the steps to install Node.js on Windows using nvm-windows via the command prompt:

	
Download NVM for Windows:
Go to the GitHub repository of nvm-windows: nvm-windows. You can explore more nvm for windows on https://github.com/coreybutler/nvm-windows.

Download the latest installer (.zip file) from the Releases section from following link: https://github.com/coreybutler/nvm-windows/releases Here, we will download nvm-setup.zip file

[image:]

Figure 1.4: Windows Node.js Download Zip File

	Extract the Zip File:
Extract the downloaded .zip file to a directory on your system.

	Install NVM for Windows:
Open the Command Prompt as an administrator (right-click and select "Run as administrator"). Navigate to the directory where you extracted the nvm-windows files.

[image:]

Figure 1.5: NVM Install Select Location

	Click Finish to complete the process:

[image:]

Figure 1.6: NVM Finish Install Process

Run the nvm-setup.zip executable to start the installation process. Follow the on-screen instructions to complete the installation.

	Verify NVM Installation:
Close and reopen the Command prompt as administrator. Run the command NVM version to ensure that NVM is installed correctly.

	
Install Node.js:
Once NVM is installed, you can use it to install Node.js. To install a specific version of Node.js, use the command nvm install <version> (for example, nvm install 18.0.0).

After the installation is complete, you can switch between Node.js versions using the nvm use <version> command.

	Verify Node.js Installation:
Run the command node -v to verify that Node.js is installed and the correct version is active.

Installing Node.js for mac

Installation of Node.js on Mac OS is similar to that of Linux. Follow the given steps:

	Install NVM: To install NVM, we just need to run the following command:
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.3/install.sh | bash

Please make sure that curl is available.

	Install Node.js using NVM. In case, we just want to install latest Node.js, run the following command:
nvm install node

This command will automatically download and install the latest Node.js version. In case you want to install the LTS (Long term support) version, run this command:

nvm install –-lts

(Please note that there are two '-’ hyphens before lts).

	Verify the installation by opening the console and run the following command:
node --version

This will output the version installed, for example:

 v20.0.0

	We can also check the npm version using this command:
npm -- version

9.6.4

Event-Driven Mechanism

Node.js is an asynchronous non-blocking event-driven programming. Any action that happens is called an event and it is either done by the user or the system itself. Node.js provides an inbuilt module Event, which is an instance of EventEmitter. Event is an I/O request that is first sent to the Event Queue. If there are multiple concurrent requests coming to the queue, then the queue passes it to the event loop.

[image:]

Figure 1.7: Event-Driven Diagram

Event loop monitors the event queue, collects the events from it, then processes it and executes based on blocking and non-blocking functions. Blocking functions are executed sequentially, one after the other, and the second function is not called until the first one responds. Sometimes it depends on external resources and waits for its response which takes longer time, whereas non-blocking functions do not need to wait for any response. It executes asynchronously, which means multiple functions run parallel at a time so that they are not depending on one another. Blocking and non-blocking functions send thread and I/O Pool to its pools, respectively. Once the actual operation is done, the response of that request is sent back to the event queue via event loop. In nutshell, events are emitted and then registered or unregistered through a queue, which is monitored by the event loop, binding the appropriate handlers accordingly.

Node.js follows a non-blocking asynchronous model even though it has a single thread that handles multiple requests at a time, without blocking its call respective handlers.

Example of Event Programming

Create a file save with event_index.js and paste the following code:

// Import 'events' module

const events = require('events');

// Initiate an EventEmitter object

const eventEmitter = new events.EventEmitter();

// Binds event handler for send message

eventEmitter.on('send_message', function () {

console.log('Hi, This is my first message');

});

// Handler associated with the connection event

const connectHandler = function connected() {

console.log('Connection is created');

// Trigger the corresponding event

eventEmitter.emit('send_message');

};

// Binds the event with handler

eventEmitter.on('connection', connectHandler);

// Trigger the connection event

eventEmitter.emit('connection');

console.log("Finish");

Run the file with $ node event_index.js and the following output will be shown:

Connection is created

Hi, This is my first message

Finish

Example of Synchronous Code

Create one file named hello.txt and paste the following text in it:

Hello, I am Developer

Create another file named index.js within the same folder, paste the following code and save it:

const fs = require('fs');

console.log('Start');

const data = fs.readFileSync('hello.txt');

console.log(data.toString());

console.log('End');

Run the code as follows:

$ node sync_index.js

You will get an output as follows:

Start

Hello, I am Developer

End

Here, fs is a file system module importing it and fs.readFileSync() is a synchronous function which waits until file read is complete and assigns that response to the data variable. It prints line-by-line and executes synchronously.

Example of Asynchronous code

Create one file named hello.txt and paste the following text:

Hello, I am Developer

Create another file named index.js within the same folder, paste the following code and save it:

const fs = require('fs');

console.log('Start');

fs.readFile('hello.txt', function (err, data) {

if (err) {

return console.error(err);

}

console.log(data.toString());

});

console.log('End');

Run the code as follows:

$ node async_index.js

You will get an output as follows:

Start

End

Hello, I am Developer

Here, fs is a file system module. We import it, and fs.readFile() is an asynchronous function. This function does not wait for the file read to complete. Instead, it has a callback function. Once the file read operation is finished, the callback function executes and prints the data. Therefore, the line after the callback is executed asynchronously.

Types of Node.js Architectures

When we start developing the applications using Node.js, it is important to decide how your application should be structured. There are many ways to structure your Node.js application with different kinds of architecture. Let us discuss those briefly here.

Monolithic Architecture

In this architecture, all components or modules of business logic are blended together in a single unit. Almost all web servers or server-side frameworks are built using monolithic architecture (see Figure 1.8), which is the easiest way for developers:

[image:]

Figure 1.8: Monolithic Architecture

For smaller applications that do not require extensive scalability, this architecture can be suitable. However, it may not be well-suited for larger and more complex applications. As the traffic load on your server-side application grows, you will need to scale it to handle the increased demand. In this architecture, you have a single main Node.js server file that routes all API requests to controllers and services, managing database transactions.

You can scale a monolithic architecture using clusters to reduce the load. However, there are instances when a single server is unable to handle the incoming traffic. In such cases, you can deploy the same code on multiple servers, run application servers, and employ a load balancer like Nginx. The load balancer, using a round-robin approach, becomes a reliable solution, especially for very large and heavily used applications. We will delve into this aspect in more detail in the deployment section. The biggest drawback of this structure is that if there is a small change needed on any component, then it needs to be done in all servers and rebuilt and redeployed again.

Microservice Architecture

A microservices architecture is a type of architecture that is developed as a collection of services. The framework provided here allows us to develop and deploy the microservices along with maintaining them independently. Microservices sort out the challenges of monolithic systems by fragmenting the application from a whole into several smaller parts. It is reliable and suitable for large and complex applications such as e-commerce platforms, social sites where multiple features are provided to millions of users at same time. Hence, during maintenance or while adding new features, it does not interrupt other existing features and deploy only updated services. Nowadays, it is trending more and more for its flexibility where multiple developers work individually and are only responsible for their own small code instead of whole system code.

In this architecture, all components or modules of business logic are individual. Many large enterprises use this kind of microservice architecture (see Figure 1.9):

[image:]

Figure 1.9: Microservice Architecture

As per the preceding diagram, client as user or UI sends a request, which is collected by API Gateway and passed to the respective microservice, which has its own function (Lambda Function). This function connects to the database and gives back a response accordingly. Each microservice can be easily changed and deployed without affecting each other. In addition, these microservices also call each other through API HTTP service or gRPC (Google Remote Procedure Call) which is a generic flow of microservice architecture. However, while it is a cost-effective and time-saving architecture for development, it may not be suitable for smaller applications. This is because it relies on cloud-based solutions, which can become expensive even with minimal setup requirements. This cost issue can often be mitigated by adopting more budget-friendly solutions offered by monolithic architectures. In fact, microservices represent a way to leverage serverless architecture within the realm of cloud computing.

Serverless Architecture

Serverless architecture is the approach for developing and building applications without managing infrastructure. Basically any app is developed and deployed on a specific server. However, managing the server hosting process can be a cumbersome task for developers. This is where serverless architecture becomes a boon for those who want to avoid server management and only pay for what they use. In serverless architecture, everything is handled by third-party services provided by cloud computing providers like AWS, Azure, Google, etc. These providers offer respective functions like AWS Lambda functions, Microsoft Azure functions, and Google Cloud functions, which is why it is also referred to as “Function as a Service” (FaaS). However, it is important to note that this approach has its drawbacks, as it involves entrusting everything to third parties, which can raise security concerns. Even though it has some limitations, it is still becoming more popular because organizations focus on actual products and services, not infrastructure, so it will be cost effective for those who spend a lot of effort on infrastructure.

[image:]

Figure 1.10: Serverless Architecture

In this serverless architecture, a transformative approach for application development and deployment that eliminates the need for traditional server management. Instead, it enables developers to focus solely on writing code while cloud providers handle the underlying infrastructure. Below is a visual representation of this serverless concept (see Figure 1.10).

It is an example of AWS serverless architecture in which an AWS API gateway is used to route REST API calls and is based on the route Lambda function called with an attached gateway. Lambda functions can be written in different languages but we consider them to be written in Node.js code that have the actual business logic to perform action to the database. AWS Cloud provides various database instances such as DynamoDB, MySQL, PostgreSQL, and others. Furthermore, it can effortlessly scale to accommodate increasing workloads. AWS offers auto-scaling capabilities, which means it can automatically add more EC2 instances when there is a surge in load and reduce instances when the load decreases.

	
Aspect

	
Monolithic Architecture

	
Microservices Architecture

	
Serverless Architecture

	
Development

	
Easier setup and development process

	
Complex setup, but independent services promote scalability

	
Focuses on writing functions without managing infrastructure

	
Scalability

	
Limited scalability due to the entire application being scaled

	
Scalable, as each service can be independently scaled

	
Automatically scales based on demand

	
Maintenance

	
Single codebase makes maintenance easier

	
Requires management of multiple services and communication

	
Less management overhead; managed by cloud provider

	
Technology Stack

	
Limited flexibility; all components use the same technology stack

	
Flexibility to use different technologies for each service

	
Limited control over underlying infrastructure and runtime

	
Deployment

	
Simple deployment process; deploy as a single unit

	
Deployment complexity due to multiple services

	
Simplified deployment process

	
Resource Utilization

	
Resource utilization may be inefficient

	
Optimized resource utilization with services scaled as needed

	
Efficient resource utilization with on-demand execution

	
Cost

	
Lower upfront costs; higher operational costs in the long term

	
Higher initial setup costs; potential cost savings with scale

	
Pay-per-use model can be cost-effective for low traffic apps

	
Fault Isolation

	
A bug in one part can affect the entire application

	
Faults are isolated to specific services; others remain unaffected

	
Managed by cloud provider, potential vendor lock-in

	
Flexibility

	
Limited flexibility due to the monolithic structure

	
Flexibility to use different technologies and languages

	
Limited control over underlying infrastructure and runtime

Table 1.1: Comparisons of Architecture

Table 1.1 provides a comparison of various aspects of monolithic, microservices, and serverless architectures in Node.js, outlining their respective advantages and disadvantages. Depending on specific project requirements, one architecture may be more suitable than the others.

Let us create a basic http and https server with programming.

Writing an HTTP Server

Now when Node.js is properly set up and running in your system, let us do the famous "Hello World" in Node.js way by serving this through an HTTP server.

Let us create a file with name index.js, and copy the following code into it:

const http = require('http');

const hostname = '127.0.0.1';

const port = 3000;

const server = http.createServer((req, res) => {

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World');

});

server.listen(port, hostname, () => {

console.log(`Server running at http://${hostname}:${port}/`);

});

In the provided code, "http" is a default module provided by Node.js, so there is no need to install it separately. However, for modules not included in Node.js’s built-in modules, you can install them from the npm library.

The npm library contains millions of registered packages, and you can install them using the following code:

$ npm install package-name

ex. npm install express

package-name can be as "body-parser", "express", "moment", and so on.

The http module creates a http server that runs on specific port 3000. Ideally, Node.js runs on port 3000 but developers can assign different ports such as 3001, 4000 or any port. Just need to make sure that the port number does not conflict with other applications on the system.

To run the program, open console with source code directory and paste the following command:

$ node index.js

Once it runs, open the browser and go to the URL as http://localhost:3000; it will print "Hello World".

[image:]

Figure 1.11: HTTP Server Program Output

Making it HTTPS

The server we just created does not provide a secure way of serving APIs. Most often, we need to serve the APIs using HTTPS rather than HTTP.

HTTP does not encrypt the data, thus it is not secure where the information is leaked during transmission. On the other hand, HTTPS encrypts data during transmission on request from client to server that makes it secure.

Let us rewrite the same code with the https server. For HTTPS, we need SSL certificates.

Let us first create a self-signed SSL certificate:

	Open console and install openssl if not installed in your system.

	For Debian Linux such as ubuntu, installation can be done using the apt command:
 $ sudo apt install openssl

	For Centos, Fedora, and Rocky Linux, yum can be used to install openssl:
 $ sudo yum install openssl

	Make openssl directory as follows:
$mkdir openssl

$cd openssl

	Request to generate ssl certificate with the following command:
$ openssl req -newkey rsa -x509 -sha256 -days 365 -nodes -out ssl.crt -keyout ssl.key

Let us understand the preceding command:

	
-newkey rsa : create new key with rsa algorithm default 2048 bit

	
-x509 : creates a X.509 Certificate

	
-sha256 : use 265-bit SHA (Secure Hash Algorithm)

	
-days 365 : The number of days to certify the certificate for 365. You can use any positive integer

	
-nodes : creates a key without a passphrase.

	
-out ssl.crt : Specifies the filename to write the newly created certificate to. You can specify any file name.

	
-keyout ssl.key : Specifies the filename to write the newly created private key to. You can specify any file name.

Once you enter this command, it will prompt the following questions (as shown in Figure 1.12). Press enter until done and check that folder which has ssl.crt and ssl.key files:

[image:]

Figure 1.12: Openssl Certificate Generation

Now create main.js and write the following code to create https server with port 3000:

// import https module

const https = require(`https`);

//import fs module to read files

const fs = require(`fs`);

const options = {

key: fs.readFileSync(`./openssl/ssl.key`),

cert: fs.readFileSync(`./openssl/ssl.crt`)

};

// create https server on port 3000

https.createServer(options, (req, res) => {

res.writeHead(200);

res.end(`hello world from https server \n`);

}).listen(3000);

Run the code with node main.js and open the browser with https://localhost:3000 which displays "hello world from https server". This way a secure https server is built with very basic examples.

Using Cluster Module

Node.js can easily make applications highly scalable through the cluster module. Cluster is creating a child process so that it raises another process which splits single thread into multi thread. Due to that heavy traffic load is reduced and shared on different instances of thread with the same port. It is a built-in module of Node.js. As Node.js supports async single thread and sometimes when blocking functions are more, the application performance gets down. Cluster is most important and useful to improve it.

Node.js server initiates multiple incoming requests. First, it points to the main process that is called primary process or master, which is a single one. Afterwards it splits into different child processes from its parent process. Child process is called the worker process, which can be multiple and has its own event loop that processes it simultaneously. Clustering has two ways of distribution process. The first one is the default round robin method in which the master listens to server requests and sends them to the worker in an equally circular order, and the other one is socket based where the master listens and assigns only interested workers who want to do the process.

Cluster architecture harnesses the capabilities of multiple interconnected servers, elevating the performance, reliability, and scalability of contemporary applications. Figure 1.13 provides a visual representation of how cluster nodes collaborate seamlessly to efficiently manage incoming requests.

[image:]

Figure 1.13: Cluster Diagram

Programming Without Cluster Module Example

Create a file named as without_cluster.js and save the following code:

//Import http module for create server

const http = require('http');

// create server and api for test

http.createServer(function (req, res) {

if (req.url === "/api/test" && req.method === "GET") {

console.time('API_without_cluster');

let result = 0;

for (let i = 0; i < 5000000; i++) {

result += i;

}

console.timeEnd('API_without_cluster');

console.log(`Result = ${result} - on process ${process.pid}`);

res.end(`Result = ${result}`);

}

}).listen(3001);

Run the code with this command:

$ node without_cluster.js

Now we can test this in the browser with URL http://localhost:3001/api/test and call it multiple times continuously by hitting the refresh button multiple times.

The following output will be displayed in the console:

[image:]

Figure 1.14: Output Without Cluster

Programming With Cluster Module Example

Now create another file named cluster.js and save the following code:

//Import cluster module

const cluster = require('cluster');

//Import http module for create server

const http = require('http');

//check if it is master process then create child process through fork() method

if (cluster.isMaster) {

const numWorkers = require('os').cpus().length;

console.log(`Master ${process.pid} started`);

console.log(`Number of workers => ${numWorkers}`)

for (var i = 0; i < numWorkers; i++) {

cluster.fork();

}

cluster.on('exit', (worker, code, signal) => {

console.log(`worker ${worker.process.pid} died`);

 console.log("Let's fork another worker!");

cluster.fork();

});

} else {

// it is worker process so run multiple process with same 3000 port

console.log(`Worker ${process.pid} started`);

http.createServer(function (req, res) {

if (req.url === "/api/test" && req.method === "GET") {

console.time('API_with_cluster')

let result = 0;

for (let i = 0; i < 5000000; i++) {

 result += i;

}

console.timeEnd('API_with_cluster');

console.log(`Result = ${result} - on process ${process.pid}`);

res.end(`Result = ${result}`);

}

}).listen(3000);

}

Now run the code using this command:

$ node cluster.js

Open the browser with URL http://localhost:3000/api/test and call it multiple times. It will give the following output in the console:

[image:]

Figure 1.15: Output With Cluster

As we can see that when we use the cluster module, the responses take less time between 12 and 16 ms, but without the cluster module, the time goes higher – 14 to 22 ms. The difference here is not much since the code we are using has almost no logic, database operations, or any other IO. The time may be changed with implementation so cluster is useful when computation is heavy, but if there are not too many computations it might not be beneficial. Basically, cluster allows us to run multiple workers which can utilize more than one CPU.

The cluster module can also be used to set up a master-worker setup where master monitors the workers and in case a worker stops or crashes, master can start another worker. This way, we can handle errors safely in the application and prevent applications from completely crashing. In Chapter 4, Planning the Application, we will see it in action.

Conclusion

In this chapter, we got an introduction to Node.js and what it offers along with its pros and cons. We learned how to install Node.js and created a simple server. We also got familiar with how Node.js makes use of event loop and different types of architecture. Later we created a web server with HTTP and HTTPS. Finally, we saw how the cluster module can be used.

In this chapter, we used JavaScript as a programming language, which is not maintainable when the project size becomes big. A better approach is to use Typescript instead of JavaScript. In the next chapter, we will learn the basics of Typescript.

Multiple Choice Questions

	What is Node.js and which of the following statements about it is true?

	Node.js is a closed-source JavaScript runtime environment

	Node.js can only be used on Windows operating systems

	 Node.js is primarily based on Python code

	Node.js is an open-source JavaScript runtime environment that can be used on various operating systems

	For which types of applications is Node.js commonly used?

	Node.js is mainly used for desktop applications and gaming

	Node.js is primarily utilized for mobile app development

	Node.js is commonly employed for single-page applications (SPAs), real-time applications, Internet of Things (IoT) devices applications, and data streaming applications

	Node.js is exclusively used for web-based email services like Gmail

	What is one of the key advantages of using Node.js for real-time applications?

	Node.js is the only option for building real-time applications

	Node.js provides a graphical user interface for real-time applications

	Node.js offers a continuous connection through WebSockets, enabling faster response times

	Node.js can only be used for audio and video streaming applications

	How can you check the version of Node.js installed on your system?

	Run the command node version in the terminal

	Run the command node info in the terminal

	Run the command node --v in the terminal

	Run the command node -v in the terminal

	
What is the key characteristic of the event loop in Node.js?

	It executes blocking functions in parallel to improve performance

	It waits for all functions to complete before moving to the next

	It handles rendering and user interface tasks in Node.js applications

	It manages asynchronous operations, ensuring non-blocking execution

	How does microservices architecture differ from monolithic architecture?

	Microservices use a single codebase for all components

	Microservices are tightly coupled and run as a single application

	Microservices are loosely coupled and consist of independently deployable services

	Microservices communicate only via RESTful APIs

	When is serverless architecture a suitable choice for application development?

	When you want to focus on writing code and not worry about server provisioning

	When the application has a monolithic codebase

	When you want to minimize development costs

	When you need full control over server management

	Which method in the HTTP module is used to create an HTTP server in Node.js?

	http.createServer()

	http.request()

	http.get()

	http.post()

	Which method is used to create a cluster of Node.js processes using the Cluster module?

	cluster.start()

	cluster.fork()

	cluster.create()

	cluster.spawn()

	
How does the Cluster module enhance the performance of a Node.js application?

	By creating multiple instances of the Node.js application

	By managing database connections more efficiently

	By reducing the number of available CPU cores

	By slowing down the application’s response time

Answers

	d

	c

	c

	d

	d

	c

	d

	a

	b

	a

Further Reading

https://nodejs.org/en

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		About the Authors

		About the Technical Reviewer

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Introduction to Node.js
		Introduction

		Structure

		Defining Node.Js

		Applications of Node.js
		Single-Page Applications

		Real-time Applications

		IoT Devices Applications

		Data Streaming Application

		Pros of Node.js

		Cons of Node.js

		Installing Node.js
		Installing Node For Linux/Ubuntu

		Installing Node.js for Windows

		Installing Node.js for mac

		Event-Driven Mechanism
		Example of Event Programming

		Example of Synchronous Code

		Example of Asynchronous code

		Types of Node.js Architectures
		Monolithic Architecture

		Microservice Architecture

		Serverless Architecture

		Writing an HTTP Server
		Making it HTTPS

		Using Cluster Module
		Programming Without Cluster Module Example

		Programming With Cluster Module Example

		Conclusion

		Multiple Choice Questions
		Answers

		Further Reading

		2. Introduction to TypeScript
		Introduction

		Structure

		Overview of TypeScript

		Advantages of TypeScript

		Pitfalls of TypeScript

		Installing TypeScript
		Global Installation

		Project-wise Installation

		Building a Basic Application with TypeScript

		OOP Concepts in TS
		Data Types

		Primitive Types

		Non-Primitive Types

		Class

		Inheritance

		Access Modifiers

		Interface

		Abstraction

		Encapsulation

		Polymorphism

		ECMAScript Features
		Arrow Functions

		Using this Keyword

		Using the new Keyword

		Blocking Scopes

		The let Keyword

		The const Keyword

		Template Literals

		Classes

		Promises

		Destructuring
		Object Destructuring

		Array Destructuring

		Default Parameters

		Modules

		Enhanced Object Literals

		EsLint
		Installing Eslint

		Configuring Eslint

		Running Eslint

		Conclusion

		Multiple Choice Questions
		Answers

		Further Reading

		3. Overview of Express.js
		Introduction

		Structure

		Defining Express.js

		Advantages of Express.js

		Limitations of Express.js

		Express.js Installation and Creating a Basic Application

		Core Features of Express.js
		REST APIs

		REST Principles

		Building REST API

		Routing
		Route Methods

		Route Paths

		Route Parameters

		Route Handlers

		Middleware

		Error Handling

		Built-in Error Handling

		Custom Error Handling
		Async Error Handling

		Static File Serving

		Templating Engines

		Security and Performance Best Practices

		Conclusion

		Multiple Choice Questions

		Answers

		Further Readings

		4. Planning the App
		Introduction

		Structure

		Overview of the Application
		Roadmap

		Scope

		Defining the Modules
		User Module

		Project Module

		Task Module

		Comment Module

		Database Design
		User Schema Table

		Role Schema Table

		Project Schema Table

		Task Schema Table

		Comment Schema Table

		Setting Up the Project Structure
		Init the project

		Installation of Project Dependency

		Project Directory Structure

		Create Express Server

		With Cluster for a Large Project

		Connecting the Database

		Database Models (Entities)
		Role Entity

		User Entity

		Project Entity

		Task Entity

		Comment Entity

		Routes
		Role Routes

		User Routes

		Project Routes

		Task Routes

		Comment Routes

		Conclusion

		Multiple Choice Questions
		Answers

		Further Reading

		5. REST API for User Module
		Introduction

		Structure

		Base Controller

		Base Service

		Role Management
		Role Service

		Input Validation

		Add Role

		GetAll Roles

		GetOne Role

		Update Role

		Delete Role

		Add Default Role from System

		User Management
		User Service

		Input Validation

		User Onboarding
		Add Default User from System

		User Sign-In

		Authentication

		Authorization

		GetAll Users

		GetOne User

		Update User

		Delete User

		Password Management
		Change Own Password

		Recover Password

		Reset Password

		Conclusion

		6. REST API for Project and Task Modules
		Introduction

		Structure

		Project Management
		Project Service

		Input Validation

		Add Project

		GetAll Project

		Search Project by Name

		GetOne Project

		Update Project

		Delete Project

		Project Util

		Task Management
		Task Service

		Input Validation

		Add Task

		GetAll Task

		Search Task

		GetOne Task

		Update Task

		Delete Task

		Upload Supported Files

		Conclusion

		Further Reading

		7. API Caching
		Introduction

		Structure

		Understanding Caching

		Introduction to Redis

		Setting Up Redis Server
		Installing Redis Server on Mac OS

		Installing Redis Server on Ubuntu / Linux

		Installing Redis Server on Rocky (RHEL-based)

		Pros and Cons of Caching
		Pros of Caching

		Cons of Caching

		Using Redis for Caching
		Updating Project Dependencies

		Cache Utility

		Caching Entities

		Building Cache at Startup

		Consideration when Using Redis

		Conclusion

		Multiple Choice Questions
		Answers

		Further Readings

		8. Notification Module
		Introduction

		Structure

		Understanding Notification Module

		Implementing Queue
		Using Redis for Queue

		Handling Failures

		Notifying About the New Task

		Considerations while Implementing Queues

		Conclusion

		Multiple Choice Questions
		Answers

		Further Readings

		9. Testing API
		Introduction

		Structure

		Overview of Unit Testing

		Mocha Framework
		Installing Mocha and Chai

		Defining a Test Case

		Configuring the Application
		Hooks

		Verifying APIs through Test cases
		Login Test

		List of User Test

		Add User Test

		Delete User Test

		Mocking Database Connection

		Conclusion

		10. Building and Deploying Application
		Introduction

		Structure

		Code Obfuscation
		Common Techniques

		Installing Required Dependencies

		Creating an Obfuscation Script

		Downside of Code Obfuscation

		Building the Application

		Deploying the Application
		AWS Server Setup

		Signing in to the AWS Management Console

		Navigating to EC2

		Choosing an Amazon Machine Image (AMI)

		Key Pair Generation

		Network Settings

		Configuring Storage

		Launching an Instance

		Connecting the Server

		Deploying Code on Server

		Other Methods For Deployment

		Conclusion

		Multiple Choice Questions
		Answers

		Further Reading

		11. The Journey Ahead
		Introduction

		Structure

		The Story So far

		Next Steps
		FrontEnd

		Reporting

		Applying Machine Learning

		Server Monitoring

		Security Features

		SSL/TLS Encryption

		Social Media Login

		Two-Factor Authentication

		LDAP Integration

		Container-Based Deployments

		Swagger UI

		Staying Ahead

		Further Reading
		Advanced Node.js Development

		Full Stack Development

		Test-Driven Development

		Performance Tuning

		Other Topics

		Final Thoughts

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to Node.js

